Solutions to homework set 7 - APPM5440 - Fall 2012

Problem 3.1: Suppose $T(x)=x$. Then $\pi / 2-\arctan (x)=0$ which clearly is impossible.

Set

$$
\alpha \sup _{x \neq y} \frac{d(T(x), T(y))}{d(x, y)} .
$$

The CMT holds only if $\alpha \in(0,1)$. In other words, there must be a single α such that the relation $d(T(x), T(y)) \leq \alpha d(x, y)$ holds for every pair $\{x, y\}$. In the present case $\alpha=1$.

Problem 3.4: For any n, we have

$$
d\left(x_{n}, x_{0}\right) \leq d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n-2}\right)+\cdots+d\left(x_{1}, x_{0}\right) .
$$

Take the limit as $n \rightarrow \infty$ to get

$$
d\left(x, x_{0}\right) \leq \sum_{n=1}^{\infty} d\left(x_{n}, x_{n-1}\right) .
$$

Now

$$
d\left(x_{n}, x_{n-1}\right) \leq c d\left(x_{n-1}, x_{n-2}\right) \leq c^{2} d\left(x_{n-2}, x_{n-3}\right) \leq \cdots \leq c^{n-1} d\left(x_{1}, x_{0}\right) .
$$

Combine the two inequalities to complete the proof.

Problem 3.5: We use the matrix norm

$$
\|S\|=\max _{i=1,2,3, \ldots, n} \sum_{j=1}^{n}\left|s_{i, j}\right| .
$$

With $|x|=\max _{i=1,2,3, \ldots, n}\left|x_{i}\right|$, we then have

$$
|S x| \leq||S|||x| .
$$

Jacobi: The iteration map is

$$
T(x)=D^{-1}(L+U) x+D^{-1} b .
$$

We show that T is a contraction:

$$
|T(x)-T(y)|=\left|D^{-1}(L+U)(x-y)\right| \leq\left\|D^{-1}(L+U)\right\||x-y| .
$$

Now

$$
\left\|D^{-1}(L+U)\right\|=\max _{i=1,2,3, \ldots, n} \sum_{j \neq i}^{n}\left|\frac{a_{i, j}}{a_{i, i}}\right|<1
$$

by the assumption that A is strictly row diagonally dominant. The iteration $x_{n+1}=T\left(x_{n}\right)$ converges by the CMT to a point x such that $T(x)=x$, which is to say $x=D^{-1}(L+U) x+D^{-1} b$. Multiply by D to get $D x=L x+U x+b$, or $(D-L-U) x=b$.

Gauss-Seidel: The iteration map is

$$
T(x)=(D-L)^{-1} U x+D^{-1} b .
$$

Set $B=(D-L)^{-1} U$, and set

$$
\alpha=\max _{i=1,2,3, \ldots, n} \sum_{j \neq i}^{n}\left|\frac{a_{i, j}}{a_{i, i}}\right| .
$$

By assumption (strict row diagonal dominance), we have $\alpha<1$. Fix x and set $y=B x$. We will show that $|y| \leq \alpha|x|$. First consider the element y_{1}, we find

$$
\left|y_{1}\right|=\left|\sum_{j>1} \frac{a_{1, j}}{a_{11}} x_{j}\right| \leq \sum_{j>1}\left|\frac{a_{1, j}}{a_{1,1}}\right||x| \leq \alpha|x| .
$$

Next consider y_{2} :
$\left|y_{2}\right|=\left|\sum_{j<2} \frac{a_{2, j}}{a_{22}} y_{j}+\sum_{j>2} \frac{a_{2, j}}{a_{22}} x_{j}\right| \leq \sum_{j<2}\left|\frac{a_{2, j}}{a_{22}}\right|\left|y_{j}\right|+\sum_{j>2}\left|\frac{a_{2, j}}{a_{22}}\right|\left|x_{j}\right| \leq \sum_{j<2}\left|\frac{a_{2, j}}{a_{22}}\right|\left|x_{j}\right|+\sum_{j>2}\left|\frac{a_{2, j}}{a_{22}}\right|\left|x_{j}\right| \leq \alpha|x|$.
In the second inequality, we used that $\left|y_{1}\right| \leq|x|$. Next,
$\left|y_{3}\right|=\left|\sum_{j<3} \frac{a_{3, j}}{a_{33}} y_{j}+\sum_{j>3} \frac{a_{3, j}}{a_{33}} x_{j}\right| \leq \sum_{j<3}\left|\frac{a_{3, j}}{a_{33}}\right|\left|y_{j}\right|+\sum_{j>3}\left|\frac{a_{3, j}}{a_{33}}\right|\left|x_{j}\right| \leq \sum_{j<3}\left|\frac{a_{3, j}}{a_{33}}\right|\left|x_{j}\right|+\sum_{j>3}\left|\frac{a_{3, j}}{a_{33}}\right|\left|x_{j}\right| \leq \alpha|x|$.
In the second inequality, we used that $\left|y_{1}\right| \leq|x|$ and that $\left|y_{2}\right| \leq|x|$.
Continuing the process outlined through all n steps, we find

$$
|y| \leq \alpha|x| .
$$

Now use the CMT to assert convergence of the iteration.
The proof that the limit point satisfies $A x=b$ goes exactly like in the Jacobi case.

