
Homework set 3 — APPM5440, Fall 2012

From the textbook: 1.17, 1.18, 1.20, 1.22, 1.27.

Solution for 1.20: Show that an NLS X is complete iff it is the case that every absolutely
convergent sum converges.

Assume that X is complete: Let (xn) be a sequence such that
∑∞

n=1 ||xn|| < ∞. Set

sm =

m∑
n=1

xn.

We need to show that (sm) converges in X. We will do this by showing that (sm) is Cauchy, and
then the completeness of X will imply convergence. Fix ε > 0. Then pick an N such that

∞∑
n=N+1

||xn|| < ε.

Now suppose N ≤ m < k. Then

||sm − sk|| = ||
k∑

n=m+1

xn|| ≤
k∑

n=m+1

||xn|| < ε.

Assume that every absolutely convergent sum converges: Let (ym) be a Cauchy sequence in X.

Pick a subsequence (ymj ) such that ||ymj − ymj−1 || ≤ 2−j . Set

x1 = ym1

and then set for n = 2, 3, 4, . . .

xn = ymn − ymn−1 .

Observe that
∞∑
n=1

||xn|| ≤ ||x1||+
∞∑
n=2

1

2n
< ∞.

Next note that

ymj =

j∑
n=1

xn.

By assumption, we then know that ymj converges to some limit point y ∈ X. All that remains is
to show that (ym) also converges to y. Fix ε > 0. Pick N such that

m, k ≥ N ⇒ ||ym − yk|| < ε/2.

Then pick mj such that ||y − ymj || < ε/2 and mj ≥ N . Then

m ≥ N ⇒ ||y − ym|| ≤ ||y − ymj ||+ ||ymj − ym|| < ε/2 + ε/2 = ε.

Solution for 1.27: Suppose xn does not converge to x. Then there exists an ε > 0 and a
subsequence such that d(xnj , x) > ε. Since the space is compact, (xnj ) has a convergent subse-
quence. But then by assumption, this subsequence must converge to x, which is impossible since
d(xnj , x) > ε for all j.
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Problem 1: We define a subset Ω of R via

Ω = {0} ∪

( ∞∪
n=1

[
1

n+1/2 ,
1
n

])
.

Prove that Ω is compact.

Outline of solution: Ω is totally bounded since any bounded subset of R is. That Ω is complete
follows from the fact that R is complete, if we can only prove that Ω is closed. An easy way to do
this is to write Ωc as an infinite union of open sets.

Problem 2: Consider our recurring example of the metric space Q (with the standard metric),
and its subset Ω = {q ∈ Q : q2 < 2}.

(a) Prove the Ω is both open and closed in Q.

(b) Ω is bounded. Does the claim in (a) imply that Ω is compact? If yes, then motivate, if not,
then decide whether Ω is in fact compact.

Outline of solution: For (a), simply use the definition. To prove that Ω is open, pick a point
q ∈ Ω, and then construct an ε ball around it entirely contained in Ω. Then prove that Ωc is open
analogously. For (b), note that (a) does not imply that Ω is compact since the underlying space,
Q is not complete. In fact, Ω is not compact. An easy way to prove this is to prove that Ω is to
construct a sequence in Ω that does not have a convergent subsequence.

Problem 3: Let X be an infinite set equipped with the discrete metric. Decide which subsets of
X (if any) are compact.

Solution: A set Ω in (X, d) is compact iff it is finite. Suppose that Ω is finite, Ω = {xj}nj=1. Then

Ω is closed (any set is) and it is also totally bounded since for any ε, the sets {Bε(xj)}nj=1 cover

Ω. Conversely, suppose that Ω is infinite. Then {B1/2(x)}x∈Ω = {{x}}x∈Ω is an open cover of Ω
without any finite subcover.

Problem 4: Consider the metric space R with the usual metric.

(a) Construct an open cover of Ω1 = (0, 1] that does not have a finite subcover.

(b) Construct an open cover of Ω2 = [0,∞) that does not have a finite subcover.

(c) Construct a real-valued continuous function f on Ω1 that is not uniformly continuous. Demon-
strate that for your choice of f , there exists an ε > 0 such that for any δ > 0, there are numbers
xn, yn ∈ Ω1 such that d(xn, yn) ≤ 1/n and d(f(xn, yn)) > ε. Is it possible to construct such a
function that is bounded? (Note: this problem was corrected by inserting a requirement that f be
continuous.)

Solution:



3

(a) Ω1 ⊂
∞∪
n=1

(1/(n+ 1), 1/(n− 1/2)).

(b) Ω2 ⊂
∞∪
n=1

(n− 2, n).

(c) Unbounded example: f(x) = 1/x, ε = 0.25, xn = 1/n, yn = 1.5/n.

Bounded example: f(x) = cos(1/x), ε = 1, xn = 1/(π2n), yn = 1/(π(2n+ 1)).


