Homework 1 - partial solutions - APPM5440, Fall 2012

Problem 1.3: Note that the desired inequality is equivalent to the following pair of inequalities:

$$
\left\{\begin{array}{l}
d(x, z)-d(y, z) \leq d(x, y) \\
d(y, z)-d(x, z) \leq d(x, y)
\end{array}\right.
$$

Now prove each of the two inequalities in the pair above separately.

Problem 2: (a) The putative norms a, d, e, and fare norms. (b and g are semi-norms, c does not satisfy $\|\alpha f\|=|\alpha|\|f\|$.)
(c) Set $I=[0,1]$ and consider the set X consisting of all continuous functions on I, with the norm

$$
\|f\|=\int_{0}^{1}|f(x)| d x
$$

Prove that the space X is not complete.

Solution: A straight-forward way of proving this is to construct a Cauchy-sequence that does not have a limit point in X. One example is

$$
f_{n}(x)= \begin{cases}-1 & x<1 / 2-1 / n \\ n(x-1 / 2) & 1 / 2-1 / n \leq x \leq 1 / 2+1 / n \\ 1 & x>1 / 2+1 / n\end{cases}
$$

We first prove that $\left(f_{n}\right)$ is Cauchy. Note that for any m, n, and x, we have $\left|f_{n}(x)-f_{m}(x)\right| \leq 1$. When $m, n \geq N$, we further have $f_{n}(x)-f_{m}(x)=0$ outside the interval $[1 / 2-1 / N, 1 / 2+1 / N]$, so

$$
\left\|f_{n}-f_{m}\right\|=\int_{1 / 2-1 / N}^{1 / 2+1 / N}\left|f_{n}(x)-f_{m}(x)\right| d x \leq \int_{1 / 2-1 / N}^{1 / 2+1 / N} 1 d x=2 / N
$$

We next prove that $\left(f_{n}\right)$ cannot converge to any element in X. Pick an arbitrary $\varphi \in X$. Assume temporarily that $\varphi(1 / 2) \geq 0$. Since φ is continuous, there exists a $\delta>0$ such that $\varphi(x) \geq-1 / 2$ for $x \in B_{\delta}(1 / 2)$. Pick an integer $N>2 / \delta$. Then, for $n \geq N$, we have $f_{n}(x)=-1$ when $x \in[1 / 2-\delta, 1 / 2-\delta / 2]$, and so

$$
\left\|f_{n}-\varphi\right\| \geq \int_{1 / 2-\delta}^{1 / 2-\delta / 2}\left|f_{n}(x)-\varphi(x)\right| d x \geq \int_{1 / 2-\delta}^{1 / 2-\delta / 2} 1 / 2 d x=\delta / 4
$$

If on the other hand $\varphi(1 / 2)<0$, then pick $\delta>0$ such that $\varphi(x) \leq 1 / 2$ on $[1 / 2,1 / 2+\delta]$ and proceed analogously.

Remark 1: Note that you cannot solve a problem like the one above by constructing a Cauchy sequence $\left(f_{n}\right)$ in X, point to a non-continuous function f, and claim that since f_{n} "converges to $f ", X$ cannot be complete. Note that the metric is not even defined for functions outside of X.

Remark 2: Can you somehow add the limit points of Cauchy sequences in X and obtain a complete space \tilde{X} ? The answer is yes, you can do that for any metric space; the resulting space
\tilde{X} is called the "completion" of X and is (in a certain sense) unique. For the present example, \tilde{X} is the set of all (Lebesgue measurable) real-valued functions on I for which

$$
\int_{0}^{1}|f(x)| d x<\infty
$$

where the integral is what is called a "Lebesgue" integral. This space is denoted $L^{1}(I)$. Strictly speaking, an element of $L^{1}(I)$ is an equivalence class of functions that differ only on a set of Lebesgue measure zero. This roughly means that two functions f and g are considered identical if

$$
\int_{0}^{1}|f(x)-g(x)| d x=0 .
$$

