Applied Analysis (APPM 5440): Section exam 3
 8:30am - 9:50am, Nov. 30, 2009. Closed books.

Problem 1: (24p) With X a Banach space, which statements are necessarily true (please motivate):
(a) If $S, T \in \mathcal{B}(X)$ and T is compact, then $S T$ is compact.
(b) If $S, T \in \mathcal{B}(X)$ and T is compact, then $T S$ is compact.
(c) Suppose that for $n=1,2,3, \ldots$, we know that $T_{n} \in \mathcal{B}(X)$ has finite dimensional range, and that there exists an operator $T \in \mathcal{B}(X)$ such that T_{n} converges strongly to T. Then T is compact.

Solution:

Definition of a compact operator that we use: T is compact if $\left(T x_{n}\right)$ has a bounded subsequence whenever $\left(x_{n}\right)$ is a bounded sequence.
(a) TRUE. Let (x_{n}) be a bounded sequence. Since T is compact, we can pick a convergent subsequence ($T x_{n_{j}}$) of ($T x_{n}$). Since S is bounded, it is also continuous, and therefore ($S T x_{n_{j}}$) is convergent.
(b) TRUE. Let $\left(x_{n}\right)$ be a bounded sequence. Set $y_{n}=S x_{n}$. Since S is bounded, $\left(y_{n}\right)$ is bounded. Since T is compact, we can pick a subsequence ($y_{n_{j}}$) such that ($T y_{n_{j}}$) is convergent. Now simply observe that $T y_{n_{j}}=T S x_{n_{j}}$.
(c) FALSE. Consider $X=\ell^{2}$ and T_{n} defined by

$$
T_{n} x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right) .
$$

The dimension of the range of T_{n} is n. For any fixed x, we have

$$
\left\|T_{n} x-x\right\|=\left(\sum_{j=n+1}^{\infty}\left|x_{j}\right|^{2}\right)^{1 / 2} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Consequently, $T_{n} x \rightarrow x$ for any fixed x, which is to say that T_{n} converges strongly to the identity operator. The identity operator is not compact, so this provides a counterexample.

Problem 2: $(28 \mathrm{p})$ Set $X=\ell^{3}$. Define the operator $T \in \mathcal{B}(X)$ via

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\frac{1}{1} x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right) .
$$

Which of the following statements are necessarily true? Motivate your answers.
(a) $\operatorname{Ran}(T)$ is a linear subspace.
(b) $\operatorname{Ker}(T)$ is a linear subspace.
(c) $\operatorname{Ran}(T)$ is topologically closed.
(d) $\operatorname{Ker}(T)$ is topologically closed.

Solution:

(a) TRUE. Suppose $y_{1}, y_{2} \in \operatorname{Ran}(T)$. Then there exist $x_{1}, x_{2} \in X$ such that $y_{1}=T x_{1}$ and $y_{2}=T x_{2}$. Now for any $r_{1}, r_{2} \in \mathbb{R}$,

$$
r_{1} y_{1}+r_{2} y_{2}=r_{1} T x_{1}+r_{2} T x_{2}=T\left(r_{1} x_{1}+r_{2} x_{2}\right) .
$$

Since $r_{1} x_{1}+r_{2} x_{2} \in X$, it must be that $r_{1} y_{1}+r_{2} y_{2} \in \operatorname{Ran}(T)$.
(b) TRUE. Suppose that $x_{1}, x_{2} \in \operatorname{Ker}(T)$ and $r_{1}, r_{2} \in \mathbb{R}$. Then

$$
T\left(r_{1} x_{1}+r_{2} x_{2}\right)=r_{1} T x_{1}+r_{2} T x_{2}=r_{1} \cdot 0+r_{2} \cdot 0=0,
$$

so $r_{1} x_{1}+r_{2} x_{2} \in \operatorname{Ker}(T)$.
(c) FALSE. We will show that the vector $y=(1,1 / 2,1 / 3,1 / 4, \ldots)$ belongs to the closure of $\operatorname{Ran}(T)$ but not to $\operatorname{Ran}(T)$.

To see that $y \in \overline{\operatorname{Ran}(T)}$, set $x_{n}=\sum_{j=1}^{n} e_{j}=(1,1, \ldots, 1,0,0, \ldots)$, and set $y_{n}=T x_{n}=\sum_{j=1}^{n} \frac{1}{j} e_{j}=$ $(1,1 / 2,1 / 3, \ldots, 1 / n, 0,0, \ldots)$. Since $x_{n} \in X$, we clearly have $y_{n} \in \operatorname{Ran}(T)$, and, moreover,

$$
\left\|y_{n}-y\right\|=\left(\sum_{j=n+1}^{\infty} \frac{1}{j^{3}}\right)^{1 / 3} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

This proves that y belongs to the closure of the range.
To see that y cannot belong to the range itself, suppose that there is an element $x \in X$ such that $T x=y$. Looking elementwise, we then see that every entry of x would have to be one, which is impossible since then x would have infinite norm.
(d) TRUE. We have $\|T\| \leq 1$ so T is continuous. Therefore, if $x_{n} \in \operatorname{Ker}(T)$, and $x_{n} \rightarrow x$, we have

$$
T x=T \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} 0=0
$$

Alternate solution for (b) and (d): Observe that $\operatorname{Ker}(T)=\{0\}$. The set $\{0\}$ is obviously a both a linear subspace, and a closed set.

Problem 3: $(24 \mathrm{p})$ Set $X=\ell^{\infty}$. Define for any positive integer n a linear map φ_{n} from X to \mathbb{R} via

$$
\varphi_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} x_{j}
$$

(a) Prove that φ_{n} is bounded and determine its norm.
(b) Does $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converge in norm in X^{*} ?
(c) Does $\left(\varphi_{n}\right)_{n=1}^{\infty}$ converge weakly in X^{*} ?

For 6 points extra credit: Answer (a), (b), and (c), again, but now for the space $X=\ell^{1}$.

Solution:

(a) First we prove that $\left\|\varphi_{n}\right\| \leq 1$:

$$
\left|\varphi_{n}(x)\right|=\left|\frac{1}{n} \sum_{j=1}^{n} x_{j}\right| \leq \frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right| \leq \frac{1}{n} \sum_{j=1}^{n}\|x\|=\|x\|
$$

Next we prove that $\left\|\varphi_{n}\right\| \geq 1$. To this end, set $x_{n}=\sum_{j=1}^{n} e_{j}$ where e_{j} are the canonical unit vectors. (In other words, x_{n} is the vector consisting of n ones, and then all zeros.) Then since $\left\|x_{n}\right\|=1$,

$$
\left\|\varphi_{n}\right\|=\sup _{\|x\|=1}\left|\varphi_{n}(x)\right| \geq \sup _{n}\left|\varphi_{n}\left(x_{n}\right)\right|=\sup _{n} \frac{1}{n} \sum_{j=1}^{n} 1=1
$$

It follows that $\left\|\varphi_{n}\right\|=1$.
(c) We will construct an $F \in X^{* *}$ such that $\left(F\left(\varphi_{n}\right)\right)_{n=1}^{\infty}$ does not converge. This shows that $\left(\varphi_{n}\right)$ does not converge weakly. Our F takes that form $F(\varphi)=\varphi(x)$ for the particular $x \in X$ defined by

$$
x=\sum_{n=1}^{\infty} \sum_{j=2^{n-1}+1}^{2^{n}}(-1)^{j} e_{j}=[0,-1,11,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1, \ldots]
$$

Then

$$
F\left(\varphi_{2^{n}}\right)= \begin{cases}-\frac{2^{n}+1}{3 \cdot 2^{n}} & \text { when } n \text { is odd } \\ \frac{2^{n}-1}{3 \cdot 2^{n}} & \text { when } n \text { is even }\end{cases}
$$

Since $F\left(\varphi_{2^{n}}\right) \rightarrow-1 / 3$ for n odd, and $F\left(\varphi_{2^{n}}\right) \rightarrow 1 / 3$ for n even, $\left(F\left(\varphi_{2^{n}}\right)\right)_{n=1}^{\infty}$ cannot converge.
(The above is perhaps a little obtuse but the idea is simple: φ_{n} is the averaging operator. The sequence of averaging operators cannot converge since the averages of a bounded sequence need not converge. The given x is just a particular choice of a sequence whose average does not converge.)
(b) Since $\left(\varphi_{n}\right)$ does not converge weakly, it certainly does not converge in norm.

Extra credit: First we prove that $\left\|\varphi_{n}\right\| \leq 1 / n$:

$$
|\varphi(x)|=\left|\frac{1}{n} \sum_{j=1}^{n} x_{j}\right| \leq \frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|=\frac{1}{n}| | x| | .
$$

To see that $\left\|\varphi_{n}\right\| \geq 1 / n$ simply use the same x_{n} as in part (b) above. Then $\left|\varphi_{n}\left(x_{n}\right)\right|=1=(1 / n)\left\|x_{n}\right\|$.
Having established that $\left\|\varphi_{n}\right\|=1 / n$, it is obvious that $\varphi_{n} \rightarrow 0$ in norm, and therefore that φ_{n} also converges to zero weakly.

Problem 4: (24p) Let X be a topological space that satisfies the Hausdorff property. Let K be a compact subset of X.
(a) State the definition of the Hausdorff property.
(b) State the definition of a compact set in a general topological space.
(c) Prove that K is necessarily closed.

Solution:

(a) For any $x, y \in X$ such that $x \neq y$, there exist $G, H \in \mathcal{T}$ such that $x \in G, y \in H$, and $G \cap H=\emptyset$.
(b) Any open cover $\left(G_{\alpha}\right)_{\alpha \in A}$ of K has a finite subcover $\left(G_{\alpha_{j}}\right)_{j=1}^{J}$.
(c) Suppose that $x \in K^{\mathrm{c}}$. We will construct an open set G such that $x \in G \subseteq K^{\mathrm{c}}$. This proves that K^{c} is open, which is to say that K is closed.

For any $y \in K$, we invoke the Hausdorff property to assert the existence of disjoint open sets G_{y} and H_{y} such that $y \in H_{y}$ and $x \in G_{y}$. Now observe that

$$
K=\bigcup_{y \in K}\{y\} \subseteq \bigcup_{y \in K} H_{y} .
$$

So $\left\{H_{y}\right\}_{y \in K}$ is an open cover of K. Since K is compact, we can pick a finite subcover

$$
K \subseteq \bigcup_{j=1}^{J} H_{y_{j}} .
$$

Now set

$$
G=\bigcap_{j=1}^{J} G_{y_{j}} .
$$

Since $G_{y_{j}}$ and $H_{y_{j}}$ are disjoint, $G_{y_{j}} \subseteq H_{y_{j}}^{\mathrm{c}}$, and therefore

$$
G=\bigcap_{j=1}^{J} G_{y_{j}} \subseteq \bigcap_{j=1}^{J} H_{y_{j}}^{\mathrm{c}}=\left(\bigcup_{j=1}^{J} H_{y_{j}}\right)^{\mathrm{c}} \subseteq K^{\mathrm{c}} .
$$

Finally note that $x \in G$, and that since G is a finite intersection of open sets, it must itself be open.

