
Applied Analysis (APPM 5440): Section exam 3
8:30am – 9:50am, Nov. 30, 2009. Closed books.

Problem 1: (24p) With X a Banach space, which statements are necessarily true (please motivate):

(a) If S, T ∈ B(X) and T is compact, then ST is compact.

(b) If S, T ∈ B(X) and T is compact, then TS is compact.

(c) Suppose that for n = 1, 2, 3, . . . , we know that Tn ∈ B(X) has finite dimensional range, and that
there exists an operator T ∈ B(X) such that Tn converges strongly to T . Then T is compact.

Solution:

Definition of a compact operator that we use: T is compact if (Txn) has a bounded subsequence
whenever (xn) is a bounded sequence.

(a) TRUE. Let (xn) be a bounded sequence. Since T is compact, we can pick a convergent subsequence
(Txnj ) of (Txn). Since S is bounded, it is also continuous, and therefore (STxnj ) is convergent.

(b) TRUE. Let (xn) be a bounded sequence. Set yn = Sxn. Since S is bounded, (yn) is bounded.
Since T is compact, we can pick a subsequence (ynj ) such that (Tynj ) is convergent. Now simply
observe that Tynj = TSxnj .

(c) FALSE. Consider X = `2 and Tn defined by

Tnx = (x1, x2, . . . , xn, 0, 0, . . . ).

The dimension of the range of Tn is n. For any fixed x, we have

||Tnx− x|| =



∞∑

j=n+1

|xj |2



1/2

→ 0, as n →∞.

Consequently, Tnx → x for any fixed x, which is to say that Tn converges strongly to the identity
operator. The identity operator is not compact, so this provides a counterexample.



Problem 2: (28p) Set X = `3. Define the operator T ∈ B(X) via

T (x1, x2, x3, . . . ) = (1
1x1,

1
2x2,

1
3x3, . . . ).

Which of the following statements are necessarily true? Motivate your answers.

(a) Ran(T ) is a linear subspace.

(b) Ker(T ) is a linear subspace.

(c) Ran(T ) is topologically closed.

(d) Ker(T ) is topologically closed.

Solution:

(a) TRUE. Suppose y1, y2 ∈ Ran(T ). Then there exist x1, x2 ∈ X such that y1 = Tx1 and y2 = Tx2.
Now for any r1, r2 ∈ R,

r1y1 + r2y2 = r1Tx1 + r2Tx2 = T (r1x1 + r2x2).

Since r1x1 + r2x2 ∈ X, it must be that r1y1 + r2y2 ∈ Ran(T ).

(b) TRUE. Suppose that x1, x2 ∈ Ker(T ) and r1, r2 ∈ R. Then

T (r1x1 + r2x2) = r1Tx1 + r2Tx2 = r1 · 0 + r2 · 0 = 0,

so r1x1 + r2x2 ∈ Ker(T ).

(c) FALSE. We will show that the vector y = (1, 1/2, 1/3, 1/4, . . . ) belongs to the closure of Ran(T )
but not to Ran(T ).

To see that y ∈ Ran(T ), set xn =
∑n

j=1 ej = (1, 1, . . . , 1, 0, 0, . . . ), and set yn = Txn =
∑n

j=1
1
j ej =

(1, 1/2, 1/3, . . . , 1/n, 0, 0, . . . ). Since xn ∈ X, we clearly have yn ∈ Ran(T ), and, moreover,

||yn − y|| =



∞∑

j=n+1

1
j3




1/3

→ 0, as n →∞.

This proves that y belongs to the closure of the range.

To see that y cannot belong to the range itself, suppose that there is an element x ∈ X such that
Tx = y. Looking elementwise, we then see that every entry of x would have to be one, which is
impossible since then x would have infinite norm.

(d) TRUE. We have ||T || ≤ 1 so T is continuous. Therefore, if xn ∈ Ker(T ), and xn → x, we have

Tx = T lim
n→∞xn = lim

n→∞Txn = lim
n→∞ 0 = 0.

Alternate solution for (b) and (d): Observe that Ker(T ) = {0}. The set {0} is obviously a both a
linear subspace, and a closed set.



Problem 3: (24p) Set X = `∞. Define for any positive integer n a linear map ϕn from X to R via

ϕn(x) =
1
n

n∑

j=1

xj .

(a) Prove that ϕn is bounded and determine its norm.

(b) Does (ϕn)∞n=1 converge in norm in X∗?

(c) Does (ϕn)∞n=1 converge weakly in X∗?

For 6 points extra credit: Answer (a), (b), and (c), again, but now for the space X = `1.

Solution:

(a) First we prove that ||ϕn|| ≤ 1:

|ϕn(x)| =
∣∣∣∣∣∣
1
n

n∑

j=1

xj

∣∣∣∣∣∣
≤ 1

n

n∑

j=1

|xj | ≤ 1
n

n∑

j=1

||x|| = ||x||.

Next we prove that ||ϕn|| ≥ 1. To this end, set xn =
∑n

j=1 ej where ej are the canonical unit vectors.
(In other words, xn is the vector consisting of n ones, and then all zeros.) Then since ||xn|| = 1,

||ϕn|| = sup
||x||=1

|ϕn(x)| ≥ sup
n
|ϕn(xn)| = sup

n

1
n

n∑

j=1

1 = 1.

It follows that ||ϕn|| = 1.

(c) We will construct an F ∈ X∗∗ such that (F (ϕn))∞n=1 does not converge. This shows that (ϕn)
does not converge weakly. Our F takes that form F (ϕ) = ϕ(x) for the particular x ∈ X defined by

x =
∞∑

n=1

2n∑

j=2n−1+1

(−1)j ej = [0, −1, 1 1, −1, −1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1, −1, . . . ]

Then

F (ϕ2n) =





−2n + 1
3 · 2n

when n is odd,

2n − 1
3 · 2n

when n is even.

Since F (ϕ2n) → −1/3 for n odd, and F (ϕ2n) → 1/3 for n even, (F (ϕ2n))∞n=1 cannot converge.

(The above is perhaps a little obtuse but the idea is simple: ϕn is the averaging operator. The
sequence of averaging operators cannot converge since the averages of a bounded sequence need not
converge. The given x is just a particular choice of a sequence whose average does not converge.)

(b) Since (ϕn) does not converge weakly, it certainly does not converge in norm.



Extra credit: First we prove that ||ϕn|| ≤ 1/n:

|ϕ(x)| =
∣∣∣∣∣∣
1
n

n∑

j=1

xj

∣∣∣∣∣∣
≤ 1

n

n∑

j=1

|xj | = 1
n
||x||.

To see that ||ϕn|| ≥ 1/n simply use the same xn as in part (b) above. Then |ϕn(xn)| = 1 = (1/n)||xn||.

Having established that ||ϕn|| = 1/n, it is obvious that ϕn → 0 in norm, and therefore that ϕn also
converges to zero weakly.

Problem 4: (24p) Let X be a topological space that satisfies the Hausdorff property. Let K be a
compact subset of X.

(a) State the definition of the Hausdorff property.

(b) State the definition of a compact set in a general topological space.

(c) Prove that K is necessarily closed.

Solution:

(a) For any x, y ∈ X such that x 6= y, there exist G,H ∈ T such that x ∈ G, y ∈ H, and G∩H = ∅.

(b) Any open cover (Gα)α∈A of K has a finite subcover (Gαj )
J
j=1.

(c) Suppose that x ∈ Kc. We will construct an open set G such that x ∈ G ⊆ Kc. This proves that
Kc is open, which is to say that K is closed.

For any y ∈ K, we invoke the Hausdorff property to assert the existence of disjoint open sets Gy and
Hy such that y ∈ Hy and x ∈ Gy. Now observe that

K =
⋃

y∈K

{y} ⊆
⋃

y∈K

Hy.

So {Hy}y∈K is an open cover of K. Since K is compact, we can pick a finite subcover

K ⊆
J⋃

j=1

Hyj .

Now set

G =
J⋂

j=1

Gyj .

Since Gyj and Hyj are disjoint, Gyj ⊆ Hc
yj

, and therefore

G =
J⋂

j=1

Gyj ⊆
J⋂

j=1

Hc
yj

=




J⋃

j=1

Hyj




c

⊆ Kc.

Finally note that x ∈ G, and that since G is a finite intersection of open sets, it must itself be open.


