
Solutions to homework set 6 — APPM5440, Fall 2009

2.10: Let A denote the set of functions in C(Rn) that vanish at infinity.
That A = Cc(Rn) follows from the following two claims:

• Claim 1: Cc(Rn) is dense in A.
• Claim 2: A is closed.

Proof of Claim 1: Fix an f ∈ A. We need to prove that for any ε > 0, there
exists a g ∈ Cc such that ||f−g||u < ε. Fix ε > 0. Set R = sup{|x| : |f(x)| ≥
ε} (so that |f(x)| ≤ ε when |x| ≥ R). Set for x ∈ Rn

ϕR(x) =





1 |x| ∈ [0, R),
1 + R− |x| |x| ∈ [R, R + 1],
0 |x| ∈ (R,∞),

and set g = f ϕR. Then g ∈ Cc, and ||f − g||u < ε.

Proof of Claim 2: We will prove that C(I)\A is open. Fix an f ∈ C(I)\A.
Then for some ε > 0, there exist (xj)∞j=1 ∈ Rn such that |f(xj)| ≥ ε for all
j, and |xj | → ∞. Then if h ∈ C(I), and ||f − h|| < ε/2, we find that

|h(xj)| = |f(xj) + (h(xj)− f(xj))| ≥ |f(xj)| − |h(xj)− f(xj)| > ε/2,

and so h ∈ C(I)\A. It follows that Bε/2(f) ⊆ C(I)\A.

2.11: Set gn = fn − f . Then for every x ∈ I, gn(x) ↘ 0. We need to prove
that gn converges uniformly to 0.

Since gn(x) ↘ 0 for every x, (||gn||u)∞n=1 is a decreasing sequence. Set
α = limn→∞ ||gn||u. If α = 0, then gn → 0 uniformly. Assume α 6= 0. Then
for each n = 1, 2, . . . , there exists a point xn ∈ I such that gn(xn) ≥ α (since
gn is continuous on a compact set). Since I is compact, there exists an x ∈ I
and a subsequence nj such that xnj → x. Since gn(x) ↘ 0, there exists an
N such that gN (x) < α/2. Since gN is continuous at x, there exists an ε > 0
such that gN (y) < 3α/4 for all y ∈ Bε(x). But then gn(y) < 3α/4 for all
n ≥ N (since gn(y) ≤ gN (y) when n ≥ N). This contradicts the claims that
gnj (xnj ) ≥ α, and xj → x as j →∞.

A more elegant solution (that is perhaps harder to think of?): Fix ε > 0.
Set Gn = {x ∈ I : |f(x)− fn(x)| < ε}. Then:

(1) Each Gn is open since both f and fn are continuous (with gn = fn−f
we have Gn = g−1

n (Bε(0))).
(2) Since for any x, |f(x)−fn(x)| ≥ |f(x)−fn+1(x)| we have Gn ⊆ Gn+1.
(3)

⋃∞
n=1 Gn = I. (Every x belongs to some Gn since fn(x) → f(x).)

Since I is compact and {Gn}∞n=1 is an open cover, there is a finite N such
that I =

⋃N
n=1 Gn = GN . This means that for n ≥ N , we have ||fn−f || ≤ ε.

2.12: Fix an x ∈ [0, 1]. Fix an ε > 0. Since Ω = {fn} is equicontinuous,
there exists a δ > 0 such that if |x − y| < δ, then |fn(x) − fn(y)| < ε/2.
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Now, if |x− y| < δ, then

|f(x)− f(y)| = lim
n→∞ |fn(x)− fn(y)| ≤ lim sup

n→∞
ε/2 = ε/2.

2.14: Set
e(t) = |u(t)− u0|.

Then e satisfies

(1) e(t) = |u(t)− u(t0)| =
∣∣∣∣
∫ t

t0

f(s, u(s)) ds

∣∣∣∣ ≤
∫ t

t0

|f(s, u(s))| ds.

Now use that

|f(s, u(s))| = |(f(s, u(s))− f(s, u0)) + f(s, u0)|(2)

≤ |f(s, u(s))− f(s, u0)|+ |f(s, u0)|
≤ K|u(s)− u0|+ M

= K e(s) + M.

Inserting (2) into (1) we find that

e(t) ≤ M |t− t0|+
∫ t

t0

K e(s) ds.

A direct application of Grönwall’s inequality results in

e(t) ≤ M |t− t0| eK |t−t0|.

For the last part of the problem, the exact solution of the given ODE is
u(t) = u0 eK(t−t0), and so

|u(t)− u0| = |u0| |eK(t−t0) − 1| ≤ |u0|K|t− t0| eK|t−t0|,

since |eα−1| ≤ |α|e|α| for all real α. Since in this example f(t, u) = K u, and
M = K |u0|, we see that the given solution satisfies the bound we proved.

Problem 1: Fix ε > 0. Set δ = ε/3C. Then the Lipschitz condition implies
that for any n,

(3) d(x, y) < δ ⇒ d(fn(x), fn(y)) < ε/3.

Since X is compact, there exist points {xj}J
j=1 such that X =

⋃J
j=1 Bδ(xj).

Since fn(xj) → f(xj) for every j, and there are only finitely many points
xj , we can pick an N such that

(4) m, n ≥ N ⇒ |fn(xj)− fm(xj)| < ε/3, j = 1, 2, 3, . . . , J.

Pick any x ∈ X. Suppose m,n ≥ N . Pick xj such that d(x, xj) < δ. Then

|fm(x)−fn(x)| ≤ |fm(x)− fm(xj)|︸ ︷︷ ︸
≤ε/3

+ |fm(xj)− fn(xj)|︸ ︷︷ ︸
<ε/3

+ |fn(xj)− fn(x)|︸ ︷︷ ︸
≤ε/3

< ε.

The first and the last terms are bounded by (3) and the middle one by (4).


