Applied Analysis (APPM 5440): Final exam
1:30pm — 4:00pm, Dec. 14, 2009. Closed books.

Problem 1: (20p) Set I = [0, 1]. Prove that there is a continuous function u on I such that

(1) u(z) — ;)/Ow sin (u(t)?) dt = cos(x), xel.

Solution: Define the operator T" via

1 xX
[Tu](x) = 5/ sin(u(t)?) dt + cos(z).
0

Clearly T'u is continuous whenever u is continuous so 7" maps C(I) to C(I). Now (1) takes the form
(2) u = Tu.

Define Q = {u € C(I) : ||u|| < M} where the norm is the uniform norm and M is a real number to
be determined. 2 is a closed subset of the complete space C(I), so if we can determine M so that T
maps 2 to 2, and T is a contraction on €2, then the contraction mapping theorem will apply.

First we observe that |sina| < |a| and |sina — sin 8| < |a — ] for any real numbers a and S.

Ensure that T maps € to Q: Suppose that u € ). Then
|| Tul| = sup

1 z 1 1
/ sin(u(t)?) dt + cos(z)| < sup < / |sin(u(t)?)| dt + | cos(z )\) < / 1dt+1 = 6
zel 5 0 zel ) 0 b}

We see that Tu € Q if M > 6/5.
Ensure that T is a contraction: If u,v € Q, then
[ . 9 .
5 (sm u(t)? —sinv(t)?)
5/yu —o(t)?|dt = /u — ()] [ult) + o(t) i

|| Tu — Tvl|| = sup

dt < - / |sinu(t)? — sinv(t)?| dt

2M

<5/0 \U(t)—v(t)l(IU(t)|+|v(t)l)dt<Sup/ [l = oIl (M + M)dt = —=|u —]|.

We see that T is a contraction if M < 5/2.

Conclusion: Picking, say, M = 2, we see that T' becomes a contraction on the complete metric space
Q. Consequently, (2) has a unique solution.



Problem 2: (25p) Let X be a set.

(a) (6p) State the definitions of a metric on X and a topology on X.

(b) (4p) Given a metric d on X, define the topology 7 induced by d.

(c) (8p) Prove that the 7 that you defined in (b) satisfies the axioms of a topology.

(d) (7p) Set Y = R?, and define on Y x Y the function

2
b(z,y) = b([$1,$2], [2/14%2]) = (|$1 - Z»/l’l/2 + |z2 — yz|1/2) .
Is (Y, b) a metric space? Motivate.

Solution:
(a) See text book.

(b) A subset G of X belongs to 7 if and only if the following condition holds:
For any = € G, there is an € > 0 such that B.(z) C G, where B.(z) = {y € X : d(z,y) < e}.

(¢) @ and X obviously satisfy the criterion in (b).

Let {G4}aca be an arbitrary collection of sets in 7. Set G = U Go. We need to show that G € T.

a€cA
Suppose & € G. Then x € G for some 3 € A. Since Gg € T, there is a € > 0 such that B.(z) C G3.

But then B.(z) C Gg C U G =G.
acA

n

Let {G;}]_; be a finite collection of sets in 7. Set G = ﬂ G. We need to show that G € T. Pick
j=1

r € G. Then z € Gj for every j, so for each j we can pick an &; > 0 such that B (z) C G;. Set

€= 1I<r1j£1 gj. Since the min is over a finite number of elements, ¢ > 0. Moreover, B.(z) C G; for
<j<n

every j, so Be(x) C G.

(d) No, the given b does not satisfy the triangle inequality. Consider the points
x =[1,0], y =[0,1], z=11,1].
We have )
b(x,y) = (1Y% +11/2)" =4,

and
b(x,z)+b(z,y) = (01/2 + 11/2)2 + (01/2 + 11/2)2 =2



Problem 3: (10p)
(a) (5p) State the Hahn-Banach theorem.

(b) (5p) Define what it means for a sequence (x,)5 ; in a Banach space X to converge weakly.

Solution:

(a) Let M be a linear subspace of a NLS X, and let ¢ be a bounded linear functional on M. Then
there exists a bounded linear functional ¢ on X such that

<P(37)=1/J(33)7 Va:eM,
and
lellx+ = [[¥]|ar=-

Alternative formulation: Every bounded linear functional of a subspace of a NLS can be extended
to the entire space without enlarging the norm.

(b) A sequence (z,,)52; converges weakly if there exists an element x € X such that

o(zn) — o(z) for every p € X™.



Problem 4: (25p) Let H be a Hilbert space with a closed convex subset M.

(a) (13p) Suppose that x € H and that x ¢ M. Prove that there exists a unique z € M such that

xz —z|| = inf ||z — yl|.
I | yeMH yl|

(b) (12p) Now consider the particular case o Of H L?(I) where I = [0, 1]. The set H is equipped
with the usual inner product (f, g) fo t)dt. Let M denote the linear space of polynomials
of degree two or less, and set f(t) = 3. Evaluate

d = dist(M, f) = inf ||f — g]|.
ist(M, f) = inf |1/ — g

Solution:
(a) See lecture notes for Chapter 6. (Observe that M is only a subset of H, not a subspace.)

(b) The unique minimizer z assured in part (a) takes the form
2(t) = a+ bt + ct?

where a, b, and ¢ are some numbers to determined. We know that f — z € M~*. Since the functions
u1(t) = 1, ug(t) = t, and ug(t) = t form a basis for M, the condition that f —z € M~ is satisfied iff

' 1 1,1
O:(f_Z,U1):/O(ts—a—bt—ct2)dt:4—@—2[)_307
' 11 1, 1
O:(f—z,uz)Z/O(t4 a—bt2—ct3)dt £ §a_§b_ic’
' 11 1, 1
O:(f—z,ug)Z/O(tE’ a—bt3—ct4)dt 6 5“_11’_56'
Solving the linear system
1 1/2 1/3 a 1/4
1/2 1/3 1/4 b | =1|1/5
1/3 1/4 1/5 c 1/6
we find that
1,8 _3
a_207 - 5, 6—2.
Now the laborious part is to evaluate the norm of the residual. After some work, we find
1 1 3 3 1/2 ] )
dist(M, f) = ||z[[ = - —+t— 4 dt) == = :
o) =1l = ([ - g5+ 2= 3) - L

Alternate solution: Tt is possible to use Gram-Schmidt to orthonormalize {u;, ug, us} to form an
orthonormal set {v1, va, vs}; this is a bit of work, but results in the functions

vi(t) =1, () =2V3(t—1/2),  ws(t) = 6V5(t2 —t+1/6).



Then z = (v, f)v1 + (va, f) v + (v3 f) v3, and since f — z € M+, Pythagoras theorem yields

Ilf—ZI!2=Hfl!z—\|2|!2=%—!(vl,f)IZ—!(vz,f)F—!(vz,f)!2
11 sviz\” (V5 2_ 1
7 16\ 40 ) \20) " 2800

Problem 5: (20p) Let (X, d) be a compact metric space. Let C},(X) denote the set of all bounded
real-valued continuous functions on X, equipped with the uniform norm,

[ fl[u = sup [ f(2)]
zeX

Prove that Cp(X) is complete.

Solution: The assumption that X is compact is a red herring — this property is not required for
the statement to be true.

Let (fn)o2; be a Cauchy sequence in (X, d). We will construct a limit function, and then prove that
it is bounded, that it is indeed the limit of the sequence in the uniform norm, and finally that it is
continuous.

Step 1 — construct the limit point f: Fix x € X. Since |fn(z) — fm ()| < ||fn — fmll and (fn)o2,
is Cauchy, the sequence (f,(x))>2, is Cauchy in R. Since R is complete, the sequence is convergent,
we can therefore define a function f via

f(z) = lim f,(x).

n—o0

Step 2 — prove that f is bounded: We have

sup | f(z)| = sup ( lim |fn(:z)\) < lim inf <Sup \fn(x)|> = lim inf || f,|| < oo,
zeX r€EX \To n—=oo \zeX n

where in the last step we used that (f,,) is Cauchy, and therefore bounded.

Step 3 — prove that f, — f uniformly: Fix ¢ > 0. Pick N such that ||f,, — fnl| < €/2 when
m,n > N. Then for n > N, we have

= 1l = sup [ fulw) = f(@)] = sup ( T |fa2) = fin(2)])
zeX

zeX

< timinf (sup £, (o) = f(o)l) = timint 15, ~ ol < /2 <=

m—0o0 zeX

Step 4 — prove that f is continuous: This follows directly from the fact that each f,, is continuous
and f,, — f uniformly (since uniform convergence preserves continuity).

Steps 2 and 4 prove that f € C,(X), and step 3 proves that f is the limit point of (f,). The proof
is therefore complete.



