Quiz:

Feel free to hand this in anonymously.
Question 1: Mark in each slot:

- "no" if the value does not exist
- $\pm \infty$ if the value is infinite
- "finite" if the value exists and is finite (give an exact value if you know it but don't spend time on trying to figure it out).

	$\lim _{n \rightarrow \infty} x_{n}$	$\sup \left\{x_{n}\right\}_{n=1}^{\infty}$	$\lim \sup _{n \rightarrow \infty} x_{n}$
$x_{n}=1 / n$			
$x_{n}=(-1)^{n}+\sin (n) / n$		skip	
$x_{n}=\sum_{j=1}^{n} 1 / j$			
$x_{n}=\sum_{j=1}^{n} 1 / j-\log (n)$		skip	skip
$x_{n}=\sum_{j=1}^{n} 1 / j^{2}$			
$x_{n}=\sum_{j=1}^{n}(-1)^{j} / j$			
$x_{n}=\sum_{j=1}^{n}(-1)^{j} / j^{2}$			

Question 2: Circle the sums that are absolutely convergent:

$$
\sum_{j=1}^{n} 1 / j, \quad \sum_{j=1}^{n} 1 / j^{2}, \quad \sum_{j=1}^{n}(-1)^{j} / j, \quad \sum_{j=1}^{n}(-1)^{j} / j^{2} .
$$

Question 3: Let α denote a real number, let $B=\left\{x \in \mathbb{R}^{2}:|x| \leq 1\right\}$ and set

$$
f(\alpha)=\int_{B} \frac{1}{|x|^{\alpha}} d A
$$

(a) For which values of α is $f(\alpha)$ finite?
(b) What is the answer if B is the unit ball in \mathbb{R}^{n} rather than \mathbb{R}^{2} ?

Question 4: Let f be a continuous function defined on the set Ω. For each of the examples of sets given below, answer the following questions: Is f necessarily bounded? Is f necessarily uniformly continuous? (Give a counter examples if the answer is no.)
(a) $\Omega=\left\{x \in \mathbb{R}^{2}:|x| \leq 2\right\}$.
(b) $\Omega=\left\{x \in \mathbb{R}^{2}: 0<|x| \leq 2\right\}$.
(c) $\Omega=\left\{x \in \mathbb{R}^{2}:|x| \geq 2\right\}$.
(d) $\Omega=\cup_{n=1}^{\infty}\left[1 / n, 1 / n+1 / n^{3}\right]$.

Question 5: Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a sequence of closed sets in \mathbb{R}^{2} and let $\left\{G_{n}\right\}_{n=1}^{\infty}$ be a sequence of open sets in \mathbb{R}^{2}. Which of the following four sets are necessarily open? Necessarily closed?
(a) $\cup_{n=1}^{\infty} F_{n}$
(b) $\cap_{n=1}^{\infty} F_{n}$
(c) $\cup_{n=1}^{\infty} G_{n}$
(d) $\cap_{n=1}^{\infty} G_{n}$

Question 6: The parallelogram law in \mathbb{R}^{n} says that for any $x, y \in \mathbb{R}^{n}$

$$
|x+y|^{2}+|x-y|^{2}=
$$

Question 7: Let Ω be a bounded set in \mathbb{Q} (the set of rational numbers). Does the set Ω necessarily have a least upper bound in \mathbb{Q} ? If no, give a counter example.

Question 8: Let Ω be a closed set in \mathbb{R}^{3} (not necessarily bounded) and let $\left\{x_{n}\right\}_{n=1}^{\infty}$ denote a Cauchy sequence in Ω. Does x_{n} necessarily have a limit value in Ω ? If no, give a counter example.

Question 9: Let A be an $n \times n$ matrix of real numbers. Give a sufficient condition for there to exist a unitary matrix U, and a diagonal matrix D such that $A=U D U^{\mathrm{T}}$.

Question 10: Let f be a continuous function on the interval $[-\pi, \pi]$ and define for $n=$ $\ldots,-2,-1,0,1,2, \ldots$ the complex number a_{n} by

$$
a_{n}=\int_{-\pi}^{\pi} e^{i n x} f(x) d x .
$$

Give the right hand side of the following equality:

$$
\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}=
$$

