Homework set 9 — APPM5440

From the textbook: 4.5, 4.6.

Problem: Let X be a topological space, let K be a compact subset of X, and let $f: X \to \mathbb{R}$ be a continuous map. Prove that $\sup_{x \in K} f(x)$ is finite. Prove that f attains its maximum value on K (*i.e.* there exists an $x_0 \in K$ such that $f(x_0) = \sup_{x \in K} f(x)$).

Problem: Set $X = \mathbb{R}^2$ and $Y = \mathbb{R}$, and define $f: X \to Y$ by setting $f([x_1, x_2]) = x_1$. Prove that f is continuous. Prove that f is open. Prove that f does not necessarily map close sets to close sets.

Problem: Prove that the co-finite topology (see problem set 8), is first countable if and only if X is countable.

Problem: Prove that the co-finite topology on \mathbb{R} weaker than the standard topology.

Problem: Consider the set $X = \mathbb{R}$. Let S denote the collection of sets of the form $(-\infty, a]$ or (a, ∞) for $a \in \mathbb{R}$.

- (a) Let \mathcal{B} denote the collection of sets obtained by taking finite intersections of sets in \mathcal{S} . Prove that if $G \in \mathcal{B}$, then either G is empty, or G = (a, b] for some a and b such that $-\infty < a < b < \infty$.
- (b) Let \mathcal{T} denote the topology generated by the base \mathcal{B} . Prove that all sets in \mathcal{B} are both open and closed in \mathcal{T} .
- (c) Prove that \mathcal{T} is first countable but not second countable. Hint: For any $x \in X$, any neighborhood base at x contains at least one set whose supremum is x.
- (d) Prove that \mathbb{Q} is dense in \mathcal{T} . (This proves that (X, \mathcal{T}) is separable but not second countable.)
- (e) Prove that (X, \mathcal{T}) is not metrizable.