Homework set 12 — APPM5440

Problem 1: Let X denote the linear space of polynomials of degree 2 or less on I = [0, 1]. For $f \in X$, set $||f|| = \sup_{x \in I} |f(x)|$. For $f \in X$, define

$$\varphi_1(f) = \int_0^1 f(x) \, dx, \quad \varphi_2(f) = f(0), \quad \varphi_3(f) = f'(1/2), \quad \varphi_4(f) = f'(1/3).$$

Prove that $\varphi_j \in X^*$ for j = 1, 2, 3, 4. Prove that $\{\varphi_1, \varphi_2, \varphi_3\}$ forms a basis for X^* . Prove that $\{\varphi_1, \varphi_2, \varphi_4\}$ does not form a basis for X^* .

Problem 2: Consider the space $X = \mathbb{R}^2$ equipped with the Euclidean norm. Explicitly construct the set X^* . Set

$$\mathcal{S} = \{ B^{\varphi}_{\varepsilon}(x_0) : \varphi \in X^*, \ \varepsilon > 0, \ x_0 \in X \},\$$

where

$$B_{\varepsilon}^{\varphi}(x_0) = \varphi^{-1}(B_{\varepsilon}(\varphi(x_0))).$$

Give a geometric description of each set $B_{\varepsilon}^{\varphi}(x_0)$. Prove that the topology generated by the sub-basis S in X^* equals the norm topology on \mathbb{R}^2 . This proves that on X, the weak topology equals the norm topology.

Problem 3: Let $X = l^3$. What is X^* ? Set $D = \{x \in l^3 : ||x|| = 1\}$. Prove that the weak closure of D is the closed unit ball in l^3 . (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can for any element x such that ||x|| < 1 explicitly construct a sequence $(x^{(n)})_{n=1}^{\infty} \subset D$ that weakly converges to x, such that $||x^{(n)}|| = 1$.)

Problem 4: Let X be a normed linear space, let M be a closed subspace, and let x_0 be an element not contained in M. Set

$$d = \operatorname{dist}(M, x_0) = \inf_{y \in M} ||y - x_0||.$$

Prove that there exists an element $\varphi \in X^*$ such that $\varphi(x_0) = 1$, $\varphi(y) = 0$ for $y \in M$, and $||\varphi|| = 1/d$.