Homework set 12 - APPM5440
Problem 1: Let X denote the linear space of polynomials of degree 2 or less on $I=[0,1]$. For $f \in X$, set $\|f\|=\sup _{x \in I}|f(x)|$. For $f \in X$, define $\varphi_{1}(f)=\int_{0}^{1} f(x) d x, \quad \varphi_{2}(f)=f(0), \quad \varphi_{3}(f)=f^{\prime}(1 / 2), \quad \varphi_{4}(f)=f^{\prime}(1 / 3)$.
Prove that $\varphi_{j} \in X^{*}$ for $j=1,2,3,4$. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis for X^{*}. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis for X^{*}.

Problem 2: Consider the space $X=\mathbb{R}^{2}$ equipped with the Euclidean norm. Explicitly construct the set X^{*}. Set

$$
\mathcal{S}=\left\{B_{\varepsilon}^{\varphi}\left(x_{0}\right): \varphi \in X^{*}, \varepsilon>0, x_{0} \in X\right\},
$$

where

$$
B_{\varepsilon}^{\varphi}\left(x_{0}\right)=\varphi^{-1}\left(B_{\varepsilon}\left(\varphi\left(x_{0}\right)\right)\right) .
$$

Give a geometric description of each set $B_{\varepsilon}^{\varphi}\left(x_{0}\right)$. Prove that the topology generated by the sub-basis \mathcal{S} in X^{*} equals the norm topology on \mathbb{R}^{2}. This proves that on X, the weak topology equals the norm topology.
Problem 3: Let $X=l^{3}$. What is X^{*} ? Set $D=\left\{x \in l^{3}:\|x\|=1\right\}$. Prove that the weak closure of D is the closed unit ball in l^{3}. (Hint: To prove that the closed unit ball is contained in the weak closure of D, you can for any element x such that $\|x\|<1$ explicitly construct a sequence $\left(x^{(n)}\right)_{n=1}^{\infty} \subset D$ that weakly converges to x, such that $\left\|x^{(n)}\right\|=1$.)

Problem 4: Let X be a normed linear space, let M be a closed subspace, and let x_{0} be an element not contained in M. Set

$$
d=\operatorname{dist}\left(M, x_{0}\right)=\inf _{y \in M}\left\|y-x_{0}\right\| .
$$

Prove that there exists an element $\varphi \in X^{*}$ such that $\varphi\left(x_{0}\right)=1, \varphi(y)=0$ for $y \in M$, and $\|\varphi\|=1 / d$.

