Applied Analysis (APPM 5440): Final Exam - Solutions

$1.30 \mathrm{pm}-5.00 \mathrm{pm}$, Dec 11, 2005. Closed books.
In proofs, please state clearly what you assume, and what you will prove.
Problem 1: No motivation is required for the following questions: (2 p each)
(a) Define what it means for a subset of a metric space to be totally bounded.
(b) Set $I=[0,1)$. Specify which (if any) of the following inclusions are equalities: $C_{\mathrm{c}}(I) \subseteq C_{0}(I) \subseteq C_{\mathrm{b}}(I) \subseteq C(I)$.
(c) Let X be a Hilbert space, and define for $y \in X$ the functional φ_{y} by setting $\varphi_{y}(x)=(y, x)$. What do you know about the map $T: X \rightarrow X^{*}: y \mapsto \varphi_{y}$?
(d) Let \mathcal{P} denote the set of all functions that can be written in the form $f(x)=\sum_{n=0}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$, for some finite integer N, and some complex numbers a_{n} and b_{n}. Is \mathcal{P} dense in $C(\mathbb{T})$?
(e) Let \mathcal{P} be as in (d). Is \mathcal{P} dense in $L^{2}(\mathbb{T})$?
(f) Suppose that $f \in H^{k}(\mathbb{T})$. Specify for which k, if any, it is necessarily the case that f is continuous.
(g) Consider the metric space X consisting of all rational numbers, equipped with the metric $d(x, y)=|x-y|$. Which of the following sets are open: $A=$ $\left\{q \in X: 0<q^{2} \leq 4\right\}, B=\left\{q \in X: 0<q^{2} \leq 2\right\}, C=\{q \in X: 0<q<\infty\}$.
(h) Let X be a normed linear space, and let X^{*} define the (topological) dual of X. Define what it means for a sequence $\left(y_{n}\right)_{n=1}^{\infty} \subseteq X^{*}$ to converge in the weak-* topology.
(a) For any $\varepsilon>0$, there exists a finite set of point $\left(x_{n}\right)_{n=1}^{N}$ such that $\left\{B_{\varepsilon}\left(x_{n}\right)\right\}_{n=1}^{N}$ is a cover of the space.
(b) None.
(c) It is an isometric isomorphism. (alt.: It is a unitary map.)
(d) Yes.
(e) Yes.
(f) $k>1 / 2$.
(g) B and C.
(h) There exists a $y \in X^{*}$ such that $\left|y_{n}(x)-y(x)\right| \rightarrow 0$ for any $x \in X$.

Problem 2: Let X be a finite-dimensional linear space, and let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on X.
(a) Prove that there exist numbers c and C such that $0<c \leq C<\infty$, and

$$
\begin{equation*}
c\|x\|_{2} \leq\|x\|_{1} \leq C\|x\|_{2}, \quad \forall x \in X \tag{1}
\end{equation*}
$$

(b) Let G be a subset of X. Define what it means for G to be open in the topology generated by the norm $\|\cdot\|_{1}$. (2p)
(c) Prove that if G is open in the topology generated by the norm $\|\cdot\|_{1}$, then G open in the topology generated by the norm $\|\cdot\|_{2}$. (You may use the inequality (1) regardless of whether you answered part (a).) (2p)
(a) Let $\left(e_{j}\right)_{j=1}^{d}$ be a basis for X.

Define a norm on X by setting $\|x\|=\left\|\sum_{j=1}^{d} x_{j} e_{j}\right\|=\sum_{j=1}^{d}\left|x_{j}\right|$, and let \mathcal{T} be the topology generated by $\|\cdot\|$.
Set $B=\{x \in X:\|x\|=1\}$. This set is clearly compact in \mathcal{T}. (It is homeomorphic to the set $C=\left\{x \in \mathbb{R}^{d}: \sum_{j=1}^{d}\left|x_{j}\right|=1\right\}$ which is bounded and closed in \mathbb{R}^{d}, and hence compact.)

For $p=1,2$, the map $x \mapsto\|x\|_{p}$ is continuous in \mathcal{T} (since $\|x-y\|_{p} \leq$ $\sum_{j=1}^{d}\left|x_{j}-y_{j}\right|\left\|e_{j}\right\|_{p} \leq\|x-y\|\left(\max _{1 \leq j \leq d}\left\|e_{j}\right\|_{p}\right)$. Thus, since B is compact, there exist constants $M_{p}<\infty$ such that $\sup _{x \in B}\|x\|_{p} \leq M_{p}$. Similarly, there exist $m_{p}>0$ such that $\inf _{x \in B}\|x\|_{p} \geq m_{p}$ (m_{p} cannot equal zero because if it did, then $\|\hat{x}\|_{p}=0$ for the non-zero minimizer \hat{x}). Now, for any $x \neq 0$,

$$
\frac{\|x\|_{1}}{\|x\|_{2}}=\frac{\|x /\| x\| \|_{1}}{\|x /\| x\| \|_{2}} \leq M_{1} / m_{2} .
$$

Thus, $C=M_{1} / m_{2}<\infty$ works for the upper bound. Analogously, $c=$ $m_{1} / M_{2}>0$ works for the lower bound.
(A briefer proof may still earn full points.)
(b) G is open in the topology generated by $\|\cdot\|_{1} . \Leftrightarrow$ For any $x \in G$, there exists an $\varepsilon>0$ such that if $\|x-y\|_{1}<\varepsilon_{1}$, then $y \in G$.
(c) Assume G is open in the 1-topology, and let $x \in G$. By assumption, there exists an $\varepsilon_{1}>0$ such that if $\|x-y\|_{1}<\varepsilon_{1}$, then $y \in G$. Set $\varepsilon_{2}=\varepsilon_{1} / C$. Then if $\|x-y\|_{2}<\varepsilon_{2}$, we find that $\|x-y\|_{1} \leq C\|x-y\|_{2}<\varepsilon$, and then $y \in G$.

Problem 3: Set $I=[-1,1]$, and consider the functions $f, g_{1}, g_{2} \in C(I)$, given by $f(x)=x^{2}, g_{1}(x)=1$, and $g_{2}(x)=x$. Set $A=\operatorname{span}\left(g_{1}, g_{2}\right)$. Determine $\alpha=\operatorname{dist}(A, f)=\inf _{g \in A}\|g-f\|$. Is the minimizer unique? (4p)

Consider $\hat{g}=1 / 2 g_{1} \in A$. Then $\|f-\hat{g}\|=1 / 2$, so $\alpha \leq 1 / 2$. Set $g=$ $c_{1} g_{1}+c_{2} g_{2}$, and assume that g is a minimizer (a minimizer must exist since A is finite dimensional). We know that $\|f-g\| \leq 1 / 2$. Then

Since $\left|c_{1}\right| \leq 1 / 2$, it follows that $\left|1-c_{1}\right| \geq 1 / 2$. Then the second two inequalities imply that $c_{2}=0$, and thus $c_{1}=1 / 2$. It follows that $g=\hat{g}$ is the unique minimizer.
(This solution may seem slightly magical - how would you à priori know that \hat{g} is the minimizer? Well, since f is even, it is reasonable to guess that the minimizer should be even, which means that $\hat{g}=c g_{1}$ for some c. Then you can very easily determine that c should be $1 / 2$.)

Problem 4: Set $I=[0,1]$, let k be a continuous function on I^{2}, and consider the integral operator $T: C(I) \rightarrow C(I)$, given by

$$
[T f](x)=\int_{0}^{1} k(x, y) f(y) d y
$$

Prove that T is compact. (4p)

Let B be a bounded subset of $C(I)$. In order to show that T is compact, we need to prove that $T(B)$ is pre-compact. The Arzelà-Ascoli theorem states that this is the case if and only if $T(B)$ is bounded and equicontinuous.

Set $M=\sup _{f \in B}\|f\|$. Then $M<\infty$.
Boundedness: Since k is a continuous function on a compact set, k is bounded from above by some finite number C. If $f \in B$, then

$$
\|T f\|=\sup _{x \in I}\left|\int_{I} k(x, y) f(y) d y\right| \leq \sup _{x \in I} \int_{I}|k(x, y)||f(y)| d y \leq C M .
$$

Equicontinuity: Fix $\varepsilon>0$. We need to show that there exists a δ such that $\left|x-x^{\prime}\right|<\delta \Rightarrow|g(x)-g(y)|<\varepsilon$, for any $g \in T(B)$. Since k is a continuous function on a compact set, it is uniformly continuous. Thus, there exists a δ such that $\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right|<\delta \Rightarrow\left|k(x, y)-k\left(x^{\prime}, y^{\prime}\right)\right|<\varepsilon / M$. Then, if $g=T f \in T(B)$, and $\left|x-x^{\prime}\right|<\delta$, we find that

$$
\left|g(x)-g\left(x^{\prime}\right)\right|=\left|\int_{I}\left(k(x, y)-k\left(x^{\prime}, y\right)\right) f(y) d y\right|<\int_{I} \frac{\varepsilon}{M} M d y=\varepsilon .
$$

Problem 5: Let $X=l^{1}(\mathbb{N})$, and let $\left(\alpha_{n}\right)_{n=1}^{\infty}$ be numbers such that $\left|\alpha_{n}\right| \leq$ 2^{-n}. Define the linear operator $T: X \rightarrow X$ by setting, for $x=\left(x_{1}, x_{2}, \ldots\right)$, $(T x)_{j}=\alpha_{j} x_{1}+x_{j}$.
(a) Determine $\sup \left\{\frac{\|T x\|}{\|x\|}: x \neq 0\right\}$. (3p)
(b) What is the range of T ? (1p)
(c) Determine $\sup \left\{\frac{\|x\|}{\|T x\|}: x \neq 0\right\}$. (2p)
(a) Note that

$$
\sup \left\{\frac{\|T x\|}{\|x\|}: x \neq 0\right\}=\|T\|=\sup \{\|T x\|:\|x\|=1\} .
$$

Suppose that $\|x\|=1$. Then

$$
\begin{aligned}
\|T x\| & =\left|\left(1+\alpha_{1}\right) x_{1}\right|+\sum_{n=2}^{\infty}\left|\alpha_{n} x_{1}+x_{n}\right| \\
& \leq\left(\left|1+\alpha_{1}\right|+\sum_{n=2}^{\infty}\left|\alpha_{n}\right|\right)\left|x_{1}\right|+\sum_{n=2}^{\infty}\left|x_{n}\right| \\
& \leq \max \left\{\left(\left|1+\alpha_{1}\right|+\sum_{n=2}^{\infty}\left|\alpha_{n}\right|\right), 1\right\} .
\end{aligned}
$$

Set $\beta=\left|1+\alpha_{1}\right|+\sum_{n=2}^{\infty}\left|\alpha_{n}\right|$. Then $\| T| | \leq \max (\beta, 1)$. To prove equality, set $x=e_{1}=(1,0,0, \ldots)$ if $\beta>1$, and set $x=e_{2}=(0,1,0, \ldots)$ otherwise.
(b) T is in fact invertible: If $y \in X$, and if we set

$$
x_{n}= \begin{cases}\left(1 /\left(1+\alpha_{1}\right)\right) y_{1}, & \text { for } n=1, \\ \left(-\alpha_{n} /\left(1+\alpha_{1}\right)\right) y_{1}+y_{n}, & \text { for } n \geq 2,\end{cases}
$$

then $x \in X$, and $T x=y$. Thus, the range of T equals X.
(c) Via a computation analogous to the one in (a), we find that

$$
\begin{aligned}
\sup \left\{\frac{\|x\|}{\|T x\|}: x \neq 0\right\} & =\sup \left\{\frac{\left\|T^{-1} x\right\|}{\|x\|}: x \neq 0\right\}=\left\|T^{-1}\right\| \\
& =\max \left\{\frac{1}{\left|1+\alpha_{1}\right|}\left(1+\sum_{n=2}^{\infty}\left|\alpha_{n}\right|\right), 1\right\} .
\end{aligned}
$$

Problem 6: Let f be a bounded continuous function on \mathbb{R}^{2} for which there exists a finite number C such that

$$
|f(t, a)-f(t, b)| \leq C|a-b|, \quad \forall t, a, b \in \mathbb{R}
$$

Consider the ODE

$$
\left\{\begin{align*}
\dot{u}(t) & =f(t, u(t)) \tag{ODE}\\
u(0) & =1
\end{align*}\right.
$$

State the contraction mapping theorem, and use it to prove that for some $\varepsilon>0$, the equation (ODE) has a unique solution in $C^{1}([-\varepsilon, \varepsilon])$. (You do not need to give an optimal ε.) (5 p)

Contraction mapping theorem: Let X be a complete metric space, and let $T: X \rightarrow X$ be a map for which there exists a $c<1$ such that $d(T x, T y) \leq$ $c d(x, y)$ for all $x, y \in X$. Then there exists a unique $x \in X$ such that $T x=x$.

Set $X=C([0, \varepsilon])$, where $\varepsilon>0$ will be specified later.
Rewrite (ODE) as an integral equation:

$$
\begin{equation*}
u(t)=1+\int_{0}^{t} f(s, u(s)) d s=[T u](t) \tag{IE}
\end{equation*}
$$

(The equation above defines T.) Clearly, T maps X to X. We will prove that T is a contraction if ε is small enough. For $u, v \in X$, we have

$$
\begin{aligned}
\|T u-T v\| & =\sup _{t \in[0, \varepsilon]}\left|\int_{0}^{t}(f(s, u(s))-f(s, v(s))) d s\right| \\
& \leq \int_{0}^{\varepsilon}|f(s, u(s))-f(s, v(s))| d s \\
& \leq \int_{0}^{\varepsilon} C|u(s)-v(s)| d s \leq C \varepsilon\|u-v\|
\end{aligned}
$$

Pick an ε such that $0<\varepsilon<1 / C$. Then T is a contraction on X, and (IE) has a unique solution u in X. From (IE), it follows directly that $u \in C^{1}([0, \varepsilon])$. Moreover, differentiating (IE), we see that u solves (ODE).

To prove the existence of a unique C^{1} solution on $[-\varepsilon, 0]$, simply repeat the proof with t replaced by $-t$.
(Note that since ε only depends on C, it is trivial to prove that there exists a unique solution in $C^{1}(\mathbb{R})$.)

Problem 7: Let X be a separable infinite-dimensional Hilbert space. Prove that there exists a family of closed linear subspaces $\left\{\Omega_{t}: t \in[0,1]\right\}$ such that Ω_{s} is a strict subset of Ω_{t} whenever $s<t$. (4p)

Let $\left(e_{n}\right)_{n=1}^{\infty}$ be an orthonormal basis for X.
Let $\left(q_{n}\right)_{n=1}^{\infty}$ denote an enumeration of the rational numbers in $[0,1]$.
Set $\Omega_{s}=\left\{x \in X:\left(e_{n}, x\right)=0\right.$ if $\left.q_{n}>s\right\}$.
Each Ω_{s} is obviously a closed linear subspace (since Ω_{s} is the orthogonal complement of the set $\left\{e_{n}: q_{n}>s\right\}$).

Moreover, if $s<t$, then obviously, $\Omega_{s} \subseteq \Omega_{t}$. To prove that the two spaces are not equal, pick a q_{n} such that $s<q_{n}<t$. Then $e_{n} \in \Omega_{t}$, but e_{n} does not belong to Ω_{s}.

