
Applied Analysis (APPM 5440): Final Exam – Solutions
1.30pm – 5.00pm, Dec 11, 2005. Closed books.

In proofs, please state clearly what you assume, and what you will prove.

Problem 1: No motivation is required for the following questions: (2p each)

(a) Define what it means for a subset of a metric space to be totally bounded.

(b) Set I = [0, 1). Specify which (if any) of the following inclusions are
equalities: Cc(I) ⊆ C0(I) ⊆ Cb(I) ⊆ C(I).

(c) Let X be a Hilbert space, and define for y ∈ X the functional ϕy by setting
ϕy(x) = (y, x). What do you know about the map T : X → X∗ : y 7→ ϕy?

(d) Let P denote the set of all functions that can be written in the form
f(x) =

∑N
n=0

(
an cos(nx) + bn sin(nx)

)
, for some finite integer N , and some

complex numbers an and bn. Is P dense in C(T)?

(e) Let P be as in (d). Is P dense in L2(T)?

(f) Suppose that f ∈ Hk(T). Specify for which k, if any, it is necessarily the
case that f is continuous.

(g) Consider the metric space X consisting of all rational numbers, equipped
with the metric d(x, y) = |x− y|. Which of the following sets are open: A=
{q ∈ X : 0 < q2 ≤ 4}, B= {q ∈ X : 0 < q2 ≤ 2}, C = {q ∈ X : 0 < q < ∞}.
(h) Let X be a normed linear space, and let X∗ define the (topological) dual
of X. Define what it means for a sequence (yn)∞n=1 ⊆ X∗ to converge in the
weak-∗ topology.

(a) For any ε > 0, there exists a finite set of point (xn)N
n=1 such that

{Bε(xn)}N
n=1 is a cover of the space.

(b) None.

(c) It is an isometric isomorphism. (alt.: It is a unitary map.)

(d) Yes.

(e) Yes.

(f) k > 1/2.

(g) B and C.

(h) There exists a y ∈ X∗ such that |yn(x)− y(x)| → 0 for any x ∈ X.



Problem 2: Let X be a finite-dimensional linear space, and let || · ||1 and
|| · ||2 be two norms on X.

(a) Prove that there exist numbers c and C such that 0 < c ≤ C < ∞, and

(1) c||x||2 ≤ ||x||1 ≤ C||x||2, ∀x ∈ X.

(3p)

(b) Let G be a subset of X. Define what it means for G to be open in the
topology generated by the norm || · ||1. (2p)

(c) Prove that if G is open in the topology generated by the norm || · ||1,
then G open in the topology generated by the norm || · ||2. (You may use the
inequality (1) regardless of whether you answered part (a).) (2p)

(a) Let (ej)d
j=1 be a basis for X.

Define a norm on X by setting ||x|| = ||∑d
j=1 xjej || =

∑d
j=1 |xj |, and let T

be the topology generated by || · ||.
Set B = {x ∈ X : ||x|| = 1}. This set is clearly compact in T . (It is
homeomorphic to the set C = {x ∈ Rd :

∑d
j=1 |xj | = 1} which is bounded

and closed in Rd, and hence compact.)

For p = 1, 2, the map x 7→ ||x||p is continuous in T (since ||x − y||p ≤∑d
j=1 |xj − yj | ||ej ||p ≤ ||x− y||(max1≤j≤d ||ej ||p). Thus, since B is compact,

there exist constants Mp < ∞ such that supx∈B ||x||p ≤ Mp. Similarly, there
exist mp > 0 such that infx∈B ||x||p ≥ mp (mp cannot equal zero because if
it did, then ||x̂||p = 0 for the non-zero minimizer x̂). Now, for any x 6= 0,

||x||1
||x||2 =

||x/||x|| ||1
||x/||x|| ||2 ≤ M1/m2.

Thus, C = M1/m2 < ∞ works for the upper bound. Analogously, c =
m1/M2 > 0 works for the lower bound.

(A briefer proof may still earn full points.)

(b) G is open in the topology generated by || · ||1. ⇔ For any x ∈ G, there
exists an ε > 0 such that if ||x− y||1 < ε1, then y ∈ G.

(c) Assume G is open in the 1-topology, and let x ∈ G. By assumption, there
exists an ε1 > 0 such that if ||x−y||1 < ε1, then y ∈ G. Set ε2 = ε1/C. Then
if ||x− y||2 < ε2, we find that ||x− y||1 ≤ C||x− y||2 < ε, and then y ∈ G.



Problem 3: Set I = [−1, 1], and consider the functions f, g1, g2 ∈ C(I),
given by f(x) = x2, g1(x) = 1, and g2(x) = x. Set A = span(g1, g2).
Determine α = dist(A, f) = infg∈A ||g − f ||. Is the minimizer unique? (4p)

Consider ĝ = 1/2 g1 ∈ A. Then ||f − ĝ|| = 1/2, so α ≤ 1/2. Set g =
c1g1 + c2g2, and assume that g is a minimizer (a minimizer must exist since
A is finite dimensional). We know that ||f − g|| ≤ 1/2. Then

1/2 ≥ ||f − g|| ≥|f(0)− g(0)| = |c1|,
1/2 ≥ ||f − g|| ≥|f(1)− g(1)| = |1− c1 − c2|,
1/2 ≥ ||f − g|| ≥|f(−1)− g(−1)| = |1− c1 + c2|.

Since |c1| ≤ 1/2, it follows that |1− c1| ≥ 1/2. Then the second two inequali-
ties imply that c2 = 0, and thus c1 = 1/2. It follows that g = ĝ is the unique
minimizer.

(This solution may seem slightly magical - how would you à priori know that
ĝ is the minimizer? Well, since f is even, it is reasonable to guess that the
minimizer should be even, which means that ĝ = c g1 for some c. Then you
can very easily determine that c should be 1/2.)



Problem 4: Set I = [0, 1], let k be a continuous function on I2, and consider
the integral operator T : C(I) → C(I), given by

[Tf ](x) =
∫ 1

0
k(x, y) f(y) dy.

Prove that T is compact. (4p)

Let B be a bounded subset of C(I). In order to show that T is compact, we
need to prove that T (B) is pre-compact. The Arzelà-Ascoli theorem states
that this is the case if and only if T (B) is bounded and equicontinuous.

Set M = supf∈B ||f ||. Then M < ∞.

Boundedness: Since k is a continuous function on a compact set, k is bounded
from above by some finite number C. If f ∈ B, then

||Tf || = sup
x∈I

∣∣∣∣
∫

I
k(x, y) f(y) dy

∣∣∣∣ ≤ sup
x∈I

∫

I
|k(x, y)| |f(y)| dy ≤ C M.

Equicontinuity: Fix ε > 0. We need to show that there exists a δ such that
|x − x′| < δ ⇒ |g(x) − g(y)| < ε, for any g ∈ T (B). Since k is a continuous
function on a compact set, it is uniformly continuous. Thus, there exists a
δ such that |(x, y) − (x′, y′)| < δ ⇒ |k(x, y) − k(x′, y′)| < ε/M . Then, if
g = Tf ∈ T (B), and |x− x′| < δ, we find that

|g(x)− g(x′)| =
∣∣∣∣
∫

I

(
k(x, y)− k(x′, y)

)
f(y) dy

∣∣∣∣ <

∫

I

ε

M
M dy = ε.



Problem 5: Let X = l1(N), and let (αn)∞n=1 be numbers such that |αn| ≤
2−n. Define the linear operator T : X → X by setting, for x = (x1, x2, . . . ),
(Tx)j = αjx1 + xj .

(a) Determine sup
{ ||Tx||
||x|| : x 6= 0

}
. (3p)

(b) What is the range of T? (1p)

(c) Determine sup
{ ||x||
||Tx|| : x 6= 0

}
. (2p)

(a) Note that

sup
{ ||Tx||
||x|| : x 6= 0

}
= ||T || = sup{||Tx|| : ||x|| = 1}.

Suppose that ||x|| = 1. Then

||Tx|| =|(1 + α1)x1|+
∞∑

n=2

|αnx1 + xn|

≤
(
|1 + α1|+

∞∑

n=2

|αn|
)
|x1|+

∞∑

n=2

|xn|

≤max
{(
|1 + α1|+

∞∑

n=2

|αn|
)
, 1

}
.

Set β = |1 + α1|+
∑∞

n=2 |αn|. Then ||T || ≤ max(β, 1). To prove equality, set
x = e1 = (1, 0, 0, . . . ) if β > 1, and set x = e2 = (0, 1, 0, . . . ) otherwise.

(b) T is in fact invertible: If y ∈ X, and if we set

xn =
{

(1/(1 + α1)) y1, for n = 1,
(−αn/(1 + α1)) y1 + yn, for n ≥ 2,

then x ∈ X, and Tx = y. Thus, the range of T equals X.

(c) Via a computation analogous to the one in (a), we find that

sup
{ ||x||
||Tx|| : x 6= 0

}
=sup

{ ||T−1x||
||x|| : x 6= 0

}
= ||T−1||

=max

{
1

|1 + α1|

(
1 +

∞∑

n=2

|αn|
)

, 1

}
.



Problem 6: Let f be a bounded continuous function on R2 for which there
exists a finite number C such that

|f(t, a)− f(t, b)| ≤ C|a− b|, ∀ t, a, b ∈ R.

Consider the ODE

(ODE)

{
u̇(t) = f(t, u(t)),

u(0) = 1.

State the contraction mapping theorem, and use it to prove that for some
ε > 0, the equation (ODE) has a unique solution in C1([−ε, ε]). (You do not
need to give an optimal ε.) (5p)

Contraction mapping theorem: Let X be a complete metric space, and let
T : X → X be a map for which there exists a c < 1 such that d(Tx, Ty) ≤
c d(x, y) for all x, y ∈ X. Then there exists a unique x ∈ X such that Tx = x.

Set X = C([0, ε]), where ε > 0 will be specified later.

Rewrite (ODE) as an integral equation:

(IE) u(t) = 1 +
∫ t

0
f(s, u(s)) ds = [Tu](t).

(The equation above defines T .) Clearly, T maps X to X. We will prove
that T is a contraction if ε is small enough. For u, v ∈ X, we have

||Tu− Tv|| = sup
t∈[0,ε]

∣∣∣
∫ t

0

(
f(s, u(s))− f(s, v(s))

)
ds

∣∣∣

≤
∫ ε

0
|f(s, u(s))− f(s, v(s))| ds

≤
∫ ε

0
C|u(s)− v(s)| ds ≤ Cε||u− v||.

Pick an ε such that 0 < ε < 1/C. Then T is a contraction on X, and (IE) has
a unique solution u in X. From (IE), it follows directly that u ∈ C1([0, ε]).
Moreover, differentiating (IE), we see that u solves (ODE).

To prove the existence of a unique C1 solution on [−ε, 0], simply repeat the
proof with t replaced by −t.

(Note that since ε only depends on C, it is trivial to prove that there exists
a unique solution in C1(R).)



Problem 7: Let X be a separable infinite-dimensional Hilbert space. Prove
that there exists a family of closed linear subspaces {Ωt : t ∈ [0, 1]} such that
Ωs is a strict subset of Ωt whenever s < t. (4p)

Let (en)∞n=1 be an orthonormal basis for X.

Let (qn)∞n=1 denote an enumeration of the rational numbers in [0, 1].

Set Ωs = {x ∈ X : (en, x) = 0 if qn > s}.
Each Ωs is obviously a closed linear subspace (since Ωs is the orthogonal
complement of the set {en : qn > s}).
Moreover, if s < t, then obviously, Ωs ⊆ Ωt. To prove that the two spaces
are not equal, pick a qn such that s < qn < t. Then en ∈ Ωt, but en does not
belong to Ωs.


