Applied Analysis (APPM 5440): Final Exam – Solutions 1.30pm – 5.00pm, Dec 11, 2005. Closed books.

In proofs, please state clearly what you assume, and what you will prove.

Problem 1: No motivation is required for the following questions: (2p each)

(a) Define what it means for a subset of a metric space to be *totally bounded*.

(b) Set I = [0, 1). Specify which (if any) of the following inclusions are equalities: $C_{\rm c}(I) \subseteq C_0(I) \subseteq C_{\rm b}(I) \subseteq C(I)$.

(c) Let X be a Hilbert space, and define for $y \in X$ the functional φ_y by setting $\varphi_y(x) = (y, x)$. What do you know about the map $T: X \to X^*: y \mapsto \varphi_y$?

(d) Let \mathcal{P} denote the set of all functions that can be written in the form $f(x) = \sum_{n=0}^{N} (a_n \cos(nx) + b_n \sin(nx))$, for some finite integer N, and some complex numbers a_n and b_n . Is \mathcal{P} dense in $C(\mathbb{T})$?

(e) Let \mathcal{P} be as in (d). Is \mathcal{P} dense in $L^2(\mathbb{T})$?

(f) Suppose that $f \in H^k(\mathbb{T})$. Specify for which k, if any, it is necessarily the case that f is continuous.

(g) Consider the metric space X consisting of all rational numbers, equipped with the metric d(x, y) = |x - y|. Which of the following sets are open: $A = \{q \in X : 0 < q^2 \le 4\}, B = \{q \in X : 0 < q^2 \le 2\}, C = \{q \in X : 0 < q < \infty\}.$

(h) Let X be a normed linear space, and let X^* define the (topological) dual of X. Define what it means for a sequence $(y_n)_{n=1}^{\infty} \subseteq X^*$ to converge in the weak-* topology.

(c) It is an isometric isomorphism. (*alt.*: It is a unitary map.)

(d) Yes.

(e) Yes.

(f) k > 1/2.

(g) B and C.

(h) There exists a $y \in X^*$ such that $|y_n(x) - y(x)| \to 0$ for any $x \in X$.

⁽a) For any $\varepsilon > 0$, there exists a finite set of point $(x_n)_{n=1}^N$ such that $\{B_{\varepsilon}(x_n)\}_{n=1}^N$ is a cover of the space.

⁽b) None.

Problem 2: Let X be a finite-dimensional linear space, and let $|| \cdot ||_1$ and $|| \cdot ||_2$ be two norms on X.

(a) Prove that there exist numbers c and C such that $0 < c \le C < \infty$, and

(1)
$$c||x||_2 \le ||x||_1 \le C||x||_2, \quad \forall x \in X.$$

(3p)

(b) Let G be a subset of X. Define what it means for G to be open in the topology generated by the norm $|| \cdot ||_1$. (2p)

(c) Prove that if G is open in the topology generated by the norm $|| \cdot ||_1$, then G open in the topology generated by the norm $|| \cdot ||_2$. (You may use the inequality (1) regardless of whether you answered part (a).) (2p)

(a) Let $(e_j)_{j=1}^d$ be a basis for X.

Define a norm on X by setting $||x|| = ||\sum_{j=1}^{d} x_j e_j|| = \sum_{j=1}^{d} |x_j|$, and let \mathcal{T} be the topology generated by $|| \cdot ||$.

Set $B = \{x \in X : ||x|| = 1\}$. This set is clearly compact in \mathcal{T} . (It is homeomorphic to the set $C = \{x \in \mathbb{R}^d : \sum_{j=1}^d |x_j| = 1\}$ which is bounded and closed in \mathbb{R}^d , and hence compact.)

For p = 1, 2, the map $x \mapsto ||x||_p$ is continuous in \mathcal{T} (since $||x - y||_p \leq \sum_{j=1}^d |x_j - y_j| ||e_j||_p \leq ||x - y|| (\max_{1 \leq j \leq d} ||e_j||_p)$. Thus, since B is compact, there exist constants $M_p < \infty$ such that $\sup_{x \in B} ||x||_p \leq M_p$. Similarly, there exist $m_p > 0$ such that $\inf_{x \in B} ||x||_p \geq m_p$ (m_p cannot equal zero because if it did, then $||\hat{x}||_p = 0$ for the non-zero minimizer \hat{x}). Now, for any $x \neq 0$,

$$\frac{||x||_1}{||x||_2} = \frac{||x/||x|| ||_1}{||x/||x|| ||_2} \le M_1/m_2.$$

Thus, $C = M_1/m_2 < \infty$ works for the upper bound. Analogously, $c = m_1/M_2 > 0$ works for the lower bound.

(A briefer proof may still earn full points.)

(b) G is open in the topology generated by $|| \cdot ||_1$. \Leftrightarrow For any $x \in G$, there exists an $\varepsilon > 0$ such that if $||x - y||_1 < \varepsilon_1$, then $y \in G$.

(c) Assume G is open in the 1-topology, and let $x \in G$. By assumption, there exists an $\varepsilon_1 > 0$ such that if $||x - y||_1 < \varepsilon_1$, then $y \in G$. Set $\varepsilon_2 = \varepsilon_1/C$. Then if $||x - y||_2 < \varepsilon_2$, we find that $||x - y||_1 \le C||x - y||_2 < \varepsilon$, and then $y \in G$.

Problem 3: Set I = [-1, 1], and consider the functions $f, g_1, g_2 \in C(I)$, given by $f(x) = x^2$, $g_1(x) = 1$, and $g_2(x) = x$. Set $A = \operatorname{span}(g_1, g_2)$. Determine $\alpha = \operatorname{dist}(A, f) = \inf_{g \in A} ||g - f||$. Is the minimizer unique? (4p)

Consider $\hat{g} = 1/2 g_1 \in A$. Then $||f - \hat{g}|| = 1/2$, so $\alpha \leq 1/2$. Set $g = c_1g_1 + c_2g_2$, and assume that g is a minimizer (a minimizer must exist since A is finite dimensional). We know that $||f - g|| \leq 1/2$. Then

$$1/2 \ge ||f - g|| \ge |f(0) - g(0)| = |c_1|,$$

$$1/2 \ge ||f - g|| \ge |f(1) - g(1)| = |1 - c_1 - c_2|,$$

$$1/2 \ge ||f - g|| \ge |f(-1) - g(-1)| = |1 - c_1 + c_2|.$$

Since $|c_1| \leq 1/2$, it follows that $|1 - c_1| \geq 1/2$. Then the second two inequalities imply that $c_2 = 0$, and thus $c_1 = 1/2$. It follows that $g = \hat{g}$ is the unique minimizer.

(This solution may seem slightly magical - how would you à priori know that \hat{g} is the minimizer? Well, since f is even, it is reasonable to guess that the minimizer should be even, which means that $\hat{g} = c g_1$ for some c. Then you can very easily determine that c should be 1/2.)

Problem 4: Set I = [0, 1], let k be a continuous function on I^2 , and consider the integral operator $T : C(I) \to C(I)$, given by

$$Tf](x) = \int_0^1 k(x, y) f(y) \, dy.$$

Prove that T is compact. (4p)

Let B be a bounded subset of C(I). In order to show that T is compact, we need to prove that T(B) is pre-compact. The Arzelà-Ascoli theorem states that this is the case if and only if T(B) is bounded and equicontinuous.

Set $M = \sup_{f \in B} ||f||$. Then $M < \infty$.

<u>Boundedness</u>: Since k is a continuous function on a compact set, k is bounded from above by some finite number C. If $f \in B$, then

$$||Tf|| = \sup_{x \in I} \left| \int_{I} k(x, y) f(y) \, dy \right| \le \sup_{x \in I} \int_{I} |k(x, y)| \, |f(y)| \, dy \le C \, M.$$

Equicontinuity: Fix $\varepsilon > 0$. We need to show that there exists a δ such that $\overline{|x-x'|} < \delta \Rightarrow |g(x) - g(y)| < \varepsilon$, for any $g \in T(B)$. Since k is a continuous function on a compact set, it is uniformly continuous. Thus, there exists a δ such that $|(x,y) - (x',y')| < \delta \Rightarrow |k(x,y) - k(x',y')| < \varepsilon/M$. Then, if $g = Tf \in T(B)$, and $|x-x'| < \delta$, we find that

$$|g(x) - g(x')| = \left| \int_{I} \left(k(x, y) - k(x', y) \right) f(y) \, dy \right| < \int_{I} \frac{\varepsilon}{M} \, M \, dy = \varepsilon.$$

Problem 5: Let $X = l^1(\mathbb{N})$, and let $(\alpha_n)_{n=1}^{\infty}$ be numbers such that $|\alpha_n| \leq 2^{-n}$. Define the linear operator $T: X \to X$ by setting, for $x = (x_1, x_2, \ldots)$, $(Tx)_j = \alpha_j x_1 + x_j$.

- (a) Determine $\sup \left\{ \frac{||Tx||}{||x||} : x \neq 0 \right\}$. (3p)
- (b) What is the range of T? (1p)
- (c) Determine $\sup \{ \frac{||x||}{||Tx||} : x \neq 0 \}$. (2p)

(a) Note that

$$\sup\left\{\frac{||Tx||}{||x||}: x \neq 0\right\} = ||T|| = \sup\{||Tx||: ||x|| = 1\}.$$

Suppose that ||x|| = 1. Then

$$||Tx|| = |(1 + \alpha_1)x_1| + \sum_{n=2}^{\infty} |\alpha_n x_1 + x_n|$$

$$\leq \left(|1 + \alpha_1| + \sum_{n=2}^{\infty} |\alpha_n|\right) |x_1| + \sum_{n=2}^{\infty} |x_n|$$

$$\leq \max\left\{\left(|1 + \alpha_1| + \sum_{n=2}^{\infty} |\alpha_n|\right), 1\right\}.$$

Set $\beta = |1 + \alpha_1| + \sum_{n=2}^{\infty} |\alpha_n|$. Then $||T|| \le \max(\beta, 1)$. To prove equality, set $x = e_1 = (1, 0, 0, \dots)$ if $\beta > 1$, and set $x = e_2 = (0, 1, 0, \dots)$ otherwise.

(b) T is in fact invertible: If $y \in X$, and if we set

$$x_n = \begin{cases} (1/(1+\alpha_1)) y_1, & \text{for } n = 1, \\ (-\alpha_n/(1+\alpha_1)) y_1 + y_n, & \text{for } n \ge 2, \end{cases}$$

then $x \in X$, and Tx = y. Thus, the range of T equals X.

(c) Via a computation analogous to the one in (a), we find that

$$\sup\left\{\frac{||x||}{||Tx||}: x \neq 0\right\} = \sup\left\{\frac{||T^{-1}x||}{||x||}: x \neq 0\right\} = ||T^{-1}||$$
$$= \max\left\{\frac{1}{|1+\alpha_1|}\left(1+\sum_{n=2}^{\infty} |\alpha_n|\right), 1\right\}.$$

Problem 6: Let f be a bounded continuous function on \mathbb{R}^2 for which there exists a finite number C such that

$$|f(t,a) - f(t,b)| \le C|a - b|, \qquad \forall \ t, a, b \in \mathbb{R}.$$

Consider the ODE

(ODE)
$$\begin{cases} \dot{u}(t) = f(t, u(t)), \\ u(0) = 1. \end{cases}$$

State the contraction mapping theorem, and use it to prove that for some $\varepsilon > 0$, the equation (ODE) has a unique solution in $C^1([-\varepsilon, \varepsilon])$. (You do not need to give an optimal ε .) (5p)

Contraction mapping theorem: Let X be a complete metric space, and let $T: X \to X$ be a map for which there exists a c < 1 such that $d(Tx, Ty) \leq c d(x, y)$ for all $x, y \in X$. Then there exists a unique $x \in X$ such that Tx = x.

Set $X = C([0, \varepsilon])$, where $\varepsilon > 0$ will be specified later.

Rewrite (ODE) as an integral equation:

(IE)
$$u(t) = 1 + \int_0^t f(s, u(s)) \, ds = [Tu](t)$$

(The equation above defines T.) Clearly, T maps X to X. We will prove that T is a contraction if ε is small enough. For $u, v \in X$, we have

$$\begin{aligned} ||Tu - Tv|| &= \sup_{t \in [0,\varepsilon]} \left| \int_0^t \left(f(s, u(s)) - f(s, v(s)) \right) ds \right| \\ &\leq \int_0^\varepsilon |f(s, u(s)) - f(s, v(s))| \, ds \\ &\leq \int_0^\varepsilon C |u(s) - v(s)| \, ds \leq C\varepsilon ||u - v||. \end{aligned}$$

Pick an ε such that $0 < \varepsilon < 1/C$. Then T is a contraction on X, and (IE) has a unique solution u in X. From (IE), it follows directly that $u \in C^1([0, \varepsilon])$. Moreover, differentiating (IE), we see that u solves (ODE).

To prove the existence of a unique C^1 solution on $[-\varepsilon, 0]$, simply repeat the proof with t replaced by -t.

(Note that since ε only depends on C, it is trivial to prove that there exists a unique solution in $C^1(\mathbb{R})$.)

Problem 7: Let X be a separable infinite-dimensional Hilbert space. Prove that there exists a family of closed linear subspaces $\{\Omega_t : t \in [0, 1]\}$ such that Ω_s is a strict subset of Ω_t whenever s < t. (4p)

Let $(e_n)_{n=1}^{\infty}$ be an orthonormal basis for X.

Let $(q_n)_{n=1}^{\infty}$ denote an enumeration of the rational numbers in [0, 1].

Set $\Omega_s = \{x \in X : (e_n, x) = 0 \text{ if } q_n > s\}.$

Each Ω_s is obviously a closed linear subspace (since Ω_s is the orthogonal complement of the set $\{e_n : q_n > s\}$).

Moreover, if s < t, then obviously, $\Omega_s \subseteq \Omega_t$. To prove that the two spaces are not equal, pick a q_n such that $s < q_n < t$. Then $e_n \in \Omega_t$, but e_n does not belong to Ω_s .