
APPM 2360: Section exam 3
7.00pm – 8.30pm, April 15, 2009.

ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number,
(3) recitation section (4) your instructor’s name, and (5) a grading table. Text books, class
notes, and calculators are NOT permitted. A one-page crib sheet is allowed.

Problem 1: (36 points) Give a brief answer to each question. Box your answer. Each correct
answer earns 6 points. No work given for this question will be graded.

(a) A system is described by the equation x′′ + 3 x′ + 5 x = sin(2 t). Find the frequency of the
steady-state solution (i.e. the frequency of the solution as t →∞).

(b) Let A be a 2× 2 matrix with eigenvalues λ1 = 1 and λ2 = 2. Find the eigenvalues of A5.
Hint: The eigenvectors of A and A5 are the same.

(c) A mass of 1 kg is attached to a spring with constant k = 4 N/m. There is no damping.
The system is forced with a forcing term of the form f(t) = 0.01 cos(ωf t) (measured in
Newtons). Initially the mass is at rest at its equilibrium position. Find a value of ωf that
guarantees that the amplitude of the resulting oscillations grows without limit.

(d) If v1 =
[

a
c

]
and v2 =

[
b
d

]
are non-zero vectors such that Av1 = 2v1 and Av2 = −v2

for some 2 × 2 matrix A, then what are the possible values of the rank of the matrix

C =
[

a b
c d

]
?

(e) Let A be a matrix, and let u1 and u2 be non-zero vectors such that Au1 = 2u1 and
Au2 = 2u2. Which of the following statements are necessarily true:
(1) u1 + u2 is an eigenvector of A with associated eigenvalue 4.
(2) 3u1 is an eigenvector of A with associated eigenvalue 2.
(3) det(A− 2 I) = 0.

(f) Let A be a 3 × 3 matrix A with real entries. Which of the following statements could
possibly be true:
(1) λ1 = 1 + i and λ2 = 3− i are both eigenvalues of A.
(2) A has only one eigenvalue, but three linearly independent eigenvectors.
(3) All eigenvalues of A have non-zero imaginary parts.



Solutions to Problem 1:

(a) Either of the answers “1/π” and “2” give full credit.

(b) λ1 = 15 = 1 and λ2 = 25 = 32

(c) ωf =
√

k/m = 2

(d) 2

(e) (2) and (3)

(f) (2)

Comments:

(a) The steady state solution takes the form x(t) = C cos(2 t − δ) for some numbers C and δ.
The “angular velocity” is then ω = 2 and the “frequency” is f = ω/(2π) = 1/π.

(b) You can easily verify that if Av = λv, then Ap = λp v.

(c) The governing equation is m ẍ + k x = 0.01 cos(ωf t) which we rewrite as ẍ + ω2 x =
0.01 cos(ωf t) with ω =

√
k/m = 2. Resonance occurs if ωf = ω = 2.

(d) Since v1 and v2 are eigenvectors associated with different eigenvalues, they must be linearly
independent. It follows that C is non-singular and has rank 2.

(e) u1 + u2 is indeed an eigenvector, but it has eigenvalue 2 so (1) is not true.

(f) If λ is an eigenvalue of a matrix with real entries, then λ̄ must also be an eigenvalue. So
(1) must be false since otherwise A would have had to have four different eigenvalues (1 + i,
1− i, 3− i, 3 + i) which is impossible. Similarly, (3) must be false since the number of complex
eigenvalues must be even (since they come in pairs). To see that (2) can be true, consider the
identity matrix.



Problem 2: (18 points) Consider the equation

y′′ + 2 y′ + 5 y = 0. (1)

(a) (6 points) Construct the general solution of (1).

(b) (6 points) Set x1 = y and x2 = y′. Specify a matrix A such that
[

x′1
x′2

]
= A

[
x1

x2

]
.

(c) (6 points) Now consider the equation z′′ + 2 z′ + b z = 0. For which real values of b do
there exist solutions such that z(t) →∞ as t →∞?

Extra credit: (2 points) What are the eigenvalues of the matrix A that you derived in 2(b)?

Solution:

(a) The characteristic polynomial is r2 + 2 r + 5 = 0 which has roots r = −1± 2 i.

The general solution is x(t) = b1 e(−1+2 i) t + b2 e(−1−2 i) t.

An alternative (better!) solution is x(t) = c1 e−t cos(2 t) + c2 e−t sin(2 t).

(b) We have x′1 = y′ = x2 and x′2 = y′′ = −5 y − 2 y′ = −5x1 − 2x2. Thus
[

x′1
x′2

]
=

[
x2

−5x1 − 2x2

]
= A =

[
0 1

−5 −2

] [
x1

x2

]
.

The answer is A =
[

0 1
−5 −2

]
.

(c) The characteristic equation is r2 + 2 r + b = 0 which has roots

r1 = −1−
√

1− b, r2 = −1 +
√

1− b.

There exists a growing solution precisely if the real part of either r1 or r2 is positive. r1 always
has negative real part. r2 has a positive real part if and only if b < 0.

There exists a solution that grows if and only if b < 0.

The above is all the motivation that is required, but we note that the different regimes are:

• If b > 1, then r1 and r2 are complex numbers with real part −1 so all solutions decay
(while oscillating).

• If b = 1 then the general solution is x(t) = c1 e−t + c2 t e−t. Again, all solutions decay.

• If 0 < b < 1, then x(t) = c1 er1 t + c2 er2 t where r1 and r2 are real negative numbers.
Again, all solutions decay.

• If b = 0, then r1 < 0, r2 = 0, and x(t) = c1 er1 t + c2. No solution grows to infinity.

• If b < 0, then r1 < 0 and r2 > 0 and so x = c1 er1 t + c2 er2 t grows to infinity if c2 > 0.

Extra credit problem: The eigenvalues are λ1,2 = −1± 2 i.



Problem 3: (12 points) Consider the equation

y′′ + 2 y′ − 3 y = 2 e2 t. (2)

(a) (6 points) Construct the general solution of (2).

(b) (6 points) Construct the specific solution of (2) that satisfies y(0) = 0 and y′(0) = 1.

Solution:

(a) The characteristic equation is r2 + 2 r − 3 = 0 with roots r1 = 1 and r2 = −3. The
homogeneous solution is then yh = c1 et + c2 e−3 t.

Next look for a particular solution of the form yp = Ae2 t. We find y′′p + 2 y′p − 3 yp = 5 A e2 t so
we must have A = 2/5 and so yp = (2/5) e2 t.

y = yh + yp = c1 et + c2 e−3 t +
2
5

e2 t.

(b) We construct an equation for c1 and c2 from the initial conditions:

0 = y(0) = c1 + c2 + 2/5
1 = y′(0) = c1 − 3 c2 + 4/5.

Subtract the first equation from the second to obtain

1 = −4 c2 + 2/5

which implies that c2 = −3/20. Then the first equation implies that

c1 = −c2 − 2
5

=
3
20
− 8

20
= − 5

20
= −1

4
.

y(t) = −1
4

et − 3
20

e−3 t +
2
5

e2 t.



Problem 4: (16 points) Consider the matrix

A =




1 0 1
−1 2 0

1 0 1


 .

(a) (6 points) Show that 2 is one eigenvalue of A. Find the other eigenvalues of A.

(b) (10 points) For all eigenvalues of A, find the corresponding eigenvectors and the dimensions
of the eigenspaces.

Solution:

(a) First we find the characteristic polynomial of A.

pA(λ) = det




1− λ 0 1
−1 2− λ 0

1 0 1− λ


 = (2−λ) (1−λ)2−(2−λ) = (2−λ) (λ2−2λ) = −(2−λ)2 λ.

The roots of p(λ) = 0 are clearly λ1 = 0 and λ2 = 2.

(b) Find the solutions to (A− 0 I)v = 0:



1 0 1 0
−1 2 0 0

1 0 1 0


 ∼




1 0 1 0
0 2 1 0
0 0 0 0


 ∼




1 0 1 0
0 1 1/2 0
0 0 0 0


 .

The solution space is one-dimensional and is spanned by v1 =




−1
−1/2

1


.

Find the solutions to (A− 2 I)v = 0:


−1 0 1 0
−1 0 0 0

1 0 −1 0


 ∼




0 0 1 0
−1 0 0 0

0 0 −1 0


 ∼



−1 0 0 0

0 0 1 0
0 0 −1 0


 ∼




1 0 0 0
0 0 1 0
0 0 0 0


 .

The solution space is one-dimensional and is spanned by v2 =




0
1
0


.



Problem 5: (18 points) Consider the equation
[

ẋ1

ẋ2

]
=

[
1 2
2 1

] [
x1

x2

]
(3)

for the functions x1 = x1(t) and x2 = x2(t).

(a) (6 points) Find the general solution of (3).

(b) (6 points) Find the particular solution of (3) that satisfies x1(0) = 1 and x2(0) = 3.

(c) (6 points) Let x1 and x2 be a solution of (3) such that x1(3) = a and x2(3) = b. Specify a
relationship that a and b must satisfy for it to be the case that lim

t→∞x1(t) = lim
t→∞x2(t) = 0.

Hint: The matrix
[

1 2
2 1

]
has the eigenvectors v1 =

[
1
1

]
and v2 =

[
1

−1

]
.

Solution: A simple calculation shows that Av1 =
[

3
3

]
= 3v1 and Av2 =

[ −1
1

]
= (−1)v2

so the eigenvalues are λ1 = 3 and λ2 = −1.

(a) The general solution is
[

x1(t)
x2(t)

]
= c1 eλ1 t v1 + c2 eλ2 t v2 = c1 e3 t

[
1
1

]
+ c2 e−t

[
1

−1

]
.

(b) The initial conditions imply that
[

1
3

]
= c1

[
1
1

]
+ c2

[
1

−1

]
=

[
c1 + c2

c1 − c2

]
.

Subtracting the second equation from the first we get −2 = 2 c2 and so c2 = −1. Then the first
equation yields c1 = 1− c2 = 2.
[

x1(t)
x2(t)

]
= 2 e3 t

[
1
1

]
− e−t

[
1

−1

]
=

[
2 e3 t − e−t

2 e3 t + e−t

]
.

(c) Since x(t) = c1 e3 t v1 + c2 e−t v2 we see that x(t) → 0 as t → 0 if and only if c1 = 0. This
means that the initial conditions must be such that

[
a
b

]
= c2 e−3

[
1

−1

]
.

In other words, we must have a = c2 e−3 = −b so the answer is:

x1(t) and x2(t) tend to zero as t →∞ if and only if a = −b.

For an alternative solution, simply note that the only characteristics that move in to the origin
are those on the line spanned by v2, which means that

[
a
b

]
= cv2 = c

[
1

−1

]
,

which again is to say that a = −b.


