APPM 2360: Section exam 3

$7.00 \mathrm{pm}-8.30 \mathrm{pm}$, April 15, 2009.

ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) recitation section (4) your instructor's name, and (5) a grading table. Text books, class notes, and calculators are NOT permitted. A one-page crib sheet is allowed.

Problem 1: (36 points) Give a brief answer to each question. Box your answer. Each correct answer earns 6 points. No work given for this question will be graded.
(a) A system is described by the equation $x^{\prime \prime}+3 x^{\prime}+5 x=\sin (2 t)$. Find the frequency of the steady-state solution (i.e. the frequency of the solution as $t \rightarrow \infty$).
(b) Let A be a 2×2 matrix with eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$. Find the eigenvalues of A^{5}. Hint: The eigenvectors of A and A^{5} are the same.
(c) A mass of 1 kg is attached to a spring with constant $k=4 \mathrm{~N} / \mathrm{m}$. There is no damping. The system is forced with a forcing term of the form $f(t)=0.01 \cos \left(\omega_{\mathrm{f}} t\right)$ (measured in Newtons). Initially the mass is at rest at its equilibrium position. Find a value of ω_{f} that guarantees that the amplitude of the resulting oscillations grows without limit.
(d) If $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}a \\ c\end{array}\right]$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}b \\ d\end{array}\right]$ are non-zero vectors such that $A \mathbf{v}_{1}=2 \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=-\mathbf{v}_{2}$ for some 2×2 matrix A, then what are the possible values of the rank of the matrix $C=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$?
(e) Let A be a matrix, and let \mathbf{u}_{1} and \mathbf{u}_{2} be non-zero vectors such that $A \mathbf{u}_{1}=2 \mathbf{u}_{1}$ and $A \mathbf{u}_{2}=2 \mathbf{u}_{2}$. Which of the following statements are necessarily true:
(1) $\mathbf{u}_{1}+\mathbf{u}_{2}$ is an eigenvector of A with associated eigenvalue 4 .
(2) $3 \mathbf{u}_{1}$ is an eigenvector of A with associated eigenvalue 2 .
(3) $\operatorname{det}(A-2 I)=0$.
(f) Let A be a 3×3 matrix A with real entries. Which of the following statements could possibly be true:
(1) $\lambda_{1}=1+i$ and $\lambda_{2}=3-i$ are both eigenvalues of A.
(2) A has only one eigenvalue, but three linearly independent eigenvectors.
(3) All eigenvalues of A have non-zero imaginary parts.

PLEASE TURN OVER

For question $2-5$, motivate your answers. A correct answer with no work may receive no credit, while an incorrect answer with some correct work may result in partial credit.

Problem 2: (18 points) Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+5 y=0 . \tag{1}
\end{equation*}
$$

(a) (6 points) Construct the general solution of (1).
(b) (6 points) Set $x_{1}=y$ and $x_{2}=y^{\prime}$. Specify a matrix A such that $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(c) (6 points) Now consider the equation $z^{\prime \prime}+2 z^{\prime}+b z=0$. For which real values of b do there exist solutions such that $z(t) \rightarrow \infty$ as $t \rightarrow \infty$?

Extra credit: (2 points) What are the eigenvalues of the matrix A that you derived in 2(b)?

Problem 3: (12 points) Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}-3 y=2 e^{2 t} . \tag{2}
\end{equation*}
$$

(a) (6 points) Construct the general solution of (2).
(b) (6 points) Construct the specific solution of (2) that satisfies $y(0)=0$ and $y^{\prime}(0)=1$.

Problem 4: (16 points) Consider the matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(a) (6 points) Show that 2 is one eigenvalue of A. Find the other eigenvalues of A.
(b) (10 points) For all eigenvalues of A, find the corresponding eigenvectors and the dimensions of the eigenspaces.

Problem 5: (18 points) Consider the equation

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{3}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

for the functions $x_{1}=x_{1}(t)$ and $x_{2}=x_{2}(t)$.
(a) (6 points) Find the general solution of (3).
(b) (6 points) Find the particular solution of (3) that satisfies $x_{1}(0)=1$ and $x_{2}(0)=3$.
(c) (6 points) Let x_{1} and x_{2} be a solution of (3) such that $x_{1}(3)=a$ and $x_{2}(3)=b$. Specify a relationship that a and b must satisfy for it to be the case that $\lim _{t \rightarrow \infty} x_{1}(t)=\lim _{t \rightarrow \infty} x_{2}(t)=0$.
Hint 1: The matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ has the eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
Hint 2: There exists a solution to 5(c) that requires essentially no calculations.

