APPM 2360: Section exam 3

7.00pm – 8.30pm, April 15, 2009.

ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) recitation section (4) your instructor's name, and (5) a grading table. Text books, class notes, and calculators are NOT permitted. A one-page crib sheet is allowed.

Problem 1: (36 points) Give a brief answer to each question. Box your answer. Each correct answer earns 6 points. No work given for this question will be graded.

- (a) A system is described by the equation $x'' + 3x' + 5x = \sin(2t)$. Find the frequency of the steady-state solution (*i.e.* the frequency of the solution as $t \to \infty$).
- (b) Let A be a 2×2 matrix with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$. Find the eigenvalues of A^5 . *Hint:* The eigenvectors of A and A^5 are the same.
- (c) A mass of 1 kg is attached to a spring with constant k = 4 N/m. There is no damping. The system is forced with a forcing term of the form $f(t) = 0.01 \cos(\omega_f t)$ (measured in Newtons). Initially the mass is at rest at its equilibrium position. Find a value of ω_f that guarantees that the amplitude of the resulting oscillations grows without limit.
- (d) If $\mathbf{v_1} = \begin{bmatrix} a \\ c \end{bmatrix}$ and $\mathbf{v_2} = \begin{bmatrix} b \\ d \end{bmatrix}$ are non-zero vectors such that $A \mathbf{v_1} = 2 \mathbf{v_1}$ and $A \mathbf{v_2} = -\mathbf{v_2}$ for some 2×2 matrix A, then what are the possible values of the rank of the matrix $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$?
- (e) Let A be a matrix, and let u₁ and u₂ be non-zero vectors such that A u₁ = 2 u₁ and A u₂ = 2 u₂. Which of the following statements are *necessarily* true:
 (1) u₁ + u₂ is an eigenvector of A with associated eigenvalue 4.
 (2) 3 u₁ is an eigenvector of A with associated eigenvalue 2.
 (3) det(A 2I) = 0.
- (f) Let A be a 3×3 matrix A with real entries. Which of the following statements could *possibly* be true:
 - (1) $\lambda_1 = 1 + i$ and $\lambda_2 = 3 i$ are both eigenvalues of A.
 - (2) A has only one eigenvalue, but three linearly independent eigenvectors.
 - (3) All eigenvalues of A have non-zero imaginary parts.

PLEASE TURN OVER

For question 2 - 5, motivate your answers. A correct answer with no work may receive no credit, while an incorrect answer with some correct work may result in partial credit.

Problem 2: (18 points) Consider the equation

$$y'' + 2y' + 5y = 0. (1)$$

- (a) (6 points) Construct the general solution of (1).
- (b) (6 points) Set $x_1 = y$ and $x_2 = y'$. Specify a matrix A such that $\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- (c) (6 points) Now consider the equation z'' + 2z' + bz = 0. For which real values of b do there exist solutions such that $z(t) \to \infty$ as $t \to \infty$?

Extra credit: (2 points) What are the eigenvalues of the matrix A that you derived in 2(b)?

Problem 3: (12 points) Consider the equation

$$y'' + 2y' - 3y = 2e^{2t}.$$
 (2)

- (a) (6 points) Construct the general solution of (2).
- (b) (6 points) Construct the specific solution of (2) that satisfies y(0) = 0 and y'(0) = 1.

Problem 4: (16 points) Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right].$$

- (a) (6 points) Show that 2 is one eigenvalue of A. Find the other eigenvalues of A.
- (b) (10 points) For all eigenvalues of A, find the corresponding eigenvectors and the dimensions of the eigenspaces.

Problem 5: (18 points) Consider the equation

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(3)

for the functions $x_1 = x_1(t)$ and $x_2 = x_2(t)$.

- (a) (6 points) Find the general solution of (3).
- (b) (6 points) Find the particular solution of (3) that satisfies $x_1(0) = 1$ and $x_2(0) = 3$.
- (c) (6 points) Let x_1 and x_2 be a solution of (3) such that $x_1(3) = a$ and $x_2(3) = b$. Specify a relationship that a and b must satisfy for it to be the case that $\lim_{t \to \infty} x_1(t) = \lim_{t \to \infty} x_2(t) = 0$.

Hint 1: The matrix $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ has the eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. *Hint 2:* There exists a solution to 5(c) that requires essentially no calculations.