### APPM 2360: Section exam 2

7.00pm – 8.30pm, February 11, 2009.

ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) recitation section (4) your instructor's name, and (5) a grading table. Text books, class notes, and calculators are NOT permitted. A one-page crib sheet is allowed.

**Problem 1:** (36 points) Give a brief answer to each question. Box your answer. Each correct answer earns 4 points. No work given for this question will be graded.

(a) Let  $\mathbf{v}_1$ ,  $\mathbf{v}_2$ , and  $\mathbf{v}_3$  be non-zero vectors in  $\mathbb{R}^7$ . Let r denote the dimension of  $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ . What are the possible values of r?

(b) Set 
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ ,  $C = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 2 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ , and  $X = ABC$ .

Compute det(X). *Hint*: det(A) = -3 and det(C) = -2.

(c) Which of the following sets constitute basis sets for  $\mathbb{P}_2$  (the set of all polynomials of degree at most 2):

$$S_1 = \{1, t, t^2\}, \quad S_2 = \{1, t^2\}, \quad S_3 = \{1 + t, 1 - t, t^2\}, \quad S_4 = \{0, 1, t, t^2\}.$$

(d) Assuming the standard addition and multiplication rules, determine which of the following sets are vectors spaces.

(i) All 
$$4 \times 5$$
 matrices A such that  $a_{2,3} = 0$ ;

- (ii) All vectors  $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$  that satisfy  $x_1 + x_2 = 3$ .
- (e) Set  $A = \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix}$ ,  $B = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}$ . Find  $A^T B$ .
- (f) Let A be an  $8 \times 5$  matrix. If the rank of A is 2, what is the dimension of the vector space  $V = \{ \mathbf{x} \in \mathbb{R}^5 : A \mathbf{x} = 0 \}.$
- (g) For which values of t is the matrix  $A = \begin{bmatrix} 1 & t \\ 1 & (1+t) \end{bmatrix}$  invertible?
- (h) "If a  $4 \times 4$  matrix A is invertible, then  $A^5$  is also invertible." Answer TRUE or FALSE.
- (i) "The dimension of the vector space of all  $m \times n$  matrices is m+n." Answer TRUE or FALSE.

### Solution:

(a) 
$$r = 1, 2, 3$$
(d) (i)(g) For all  $t$ (b) 18(e)  $\begin{bmatrix} -4 & -2 \\ 9 & 3 \end{bmatrix}$ (h) TRUE(c)  $S_1$  and  $S_3$ (f) 3(i) FALSE

Notes:

(a) r is the rank of the non-zero  $7 \times 3$  matrix  $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ .

(b) Use that  $\det(X) = \det(A B C) = \det(A) \det(B) \det(C) = (-3) \det(B) (-2)$ , and then note that since B is diagonal, we have  $\det(B) = 2(1/2)3 = 3$ .

(c)  $S_1$  is the canonical basis. Since dim( $\mathbb{P}_2$ ) = 3,  $S_2$  and  $S_4$  cannot be bases since any basis must have precisely 3 elements. To see that  $S_3$  is a basis, note that it has three elements, and is a spanning set since you can recover the standard basis from it: 1 = (1/2)(1+t) + (1/2)(1-t) and t = (1/2)(1+t) - (1/2)(1-t).

(d) The set in (ii) does not contain the zero vector.

(e) 
$$A^{\mathrm{T}} B = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 2 \cdot (-3) & 1 \cdot 0 + (-2) \cdot 1 \\ 0 \cdot 2 + 3 \cdot 3 & 0 \cdot 0 + 3 \cdot 1 \end{bmatrix}.$$

(f) The rank of the null-space equals the number of free variables in the RREF of A, which in this case is 5-2 since there are 5 columns and 2 pivot elements.

(g)  $\det(A) = 1 \cdot (1+t) - t \cdot 1 = 1$  so  $\det(A) \neq 0$  for all t.

(h) Note that  $(A^5)^{-1} = (A^{-1})^5$ .

(i) The actual dimension is m n.

**Problem 2:** (16 points) Consider the matrix

$$A = \left[ \begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{array} \right].$$

Let  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  denote the columns of A, so that  $\mathbf{v}_1 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$ ,  $\mathbf{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ ,  $\mathbf{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ .

(a) (8 points) Is A invertible? If yes, find the inverse; if not, substantiate your claim.

- (b) (4 points) Is the set  $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$  linearly independent? Justify your answer.
- (c) (4 points) Determine for which real numbers t (if any), the vector  $\mathbf{b} = \begin{bmatrix} 1 \\ t \\ 1 \end{bmatrix}$  belongs to  $\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$

*Hint:* Verify your calculations in (a) carefully since a wrong answer may influence your answers to (b) and (c).

## Solution:

(a) We attempt to solve the matrix equation A X = I:

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & -2 & -1 & | & -2 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -2 & 2 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & 0 & | & 3 & -2 & -1 \\ 0 & 1 & 0 & | & 2 & -1 & -1 \\ 0 & 0 & 1 & | & -2 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 2 & -1 & -1 \\ 0 & 0 & 1 & | & -2 & 2 & 1 \end{bmatrix}$$

It worked, so A is invertible, and

$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -1 & -1 \\ -2 & 2 & 1 \end{bmatrix}.$$

(b) S is linearly independent.

Since A is invertible, the solution  $A \mathbf{x} = \mathbf{0}$  has only the zero solution.

(c) For every t.

Since A is invertible, the equation  $A \mathbf{x} = \mathbf{b}$  has a solution for every **b**.

Problem 3: (16 points) Set

$$A = \begin{bmatrix} 1 & -2 & 0 & 0 & 1 \\ 0 & 2 & 2 & 0 & 0 \\ -1 & 0 & -2 & 1 & 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}.$$

(a) (8 points) Give the general solution of the equation  $A \mathbf{x} = \mathbf{b}$ .

(b) (8 points) Construct a basis for the vector space  $V = \text{Null}(A) = \{\mathbf{x} : A \mathbf{x} = \mathbf{0}\}.$ 

*Hint:* A is row equivalent to the matrix 
$$\begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$
.

# Solution:

(a) We attempt to solve via row operations:

$$\begin{bmatrix} 1 & -2 & 0 & 0 & 1 & | & 3 \\ 0 & 2 & 2 & 0 & 0 & | & -2 \\ -1 & 0 & -2 & 1 & 1 & | & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & | & 3 \\ 0 & 2 & 2 & 0 & 0 & | & -2 \\ 0 & -2 & -2 & 1 & 2 & | & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & | & 3 \\ 0 & 2 & 2 & 0 & 0 & | & -2 \\ 0 & 0 & 0 & 1 & 2 & | & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -2 & 0 & 0 & 1 & | & 3 \\ 0 & 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & 2 & | & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 0 & 1 & | & 1 \\ 0 & 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & 2 & | & 4 \end{bmatrix}.$$

The system is consistent, and has the free variables  $x_3 = s$  and  $x_5 = t$ . Then

$$x_{1} = 1 - 2x_{3} - x_{5} = 1 - 2s - t$$

$$x_{2} = -1 - x_{3} = -1 - s$$

$$x_{3} = s$$

$$x_{4} = 4 - 2x_{5} = 4 - 2t$$

$$x_{5} = t.$$

(b) We read off the general solution of  $A \mathbf{x}_{h} = 0$  directly from the given RREF:

$$\mathbf{x}_{h} = \begin{bmatrix} -2s - t \\ -s \\ s \\ -2t \\ t \end{bmatrix} = \underbrace{\begin{bmatrix} -2 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}}_{\mathbf{v}_{1}} s + \underbrace{\begin{bmatrix} -1 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}}_{\mathbf{v}_{2}} t.$$

It is obvious that  $S = {\mathbf{v}_1, \mathbf{v}_2}$  is a spanning set for V. That S is linearly independent is also clear since if  $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = 0$ , then it must be that  $c_1 = 0$  (look at the third entry) and  $c_2 = 0$  (look at the fifth entry).

**Problem 4:** (16 points) Consider the mechanical spring-mass system shown in the picture. Let x = x(t) denote the deflection of the spring from its equilibrium position (counted positive downwards) at time t. The governing equation is

$$\ddot{x} + 9x = 0. \tag{1}$$



- (a) (4 points) Suppose that the body has mass m and the spring has stiffness k. What equation must m and k satisfy for the system to be modeled by (1)?
- (b) (4 points) Give the general solution of (1).
- (c) (8 points) Suppose that at time t = 1, the mass is at position x = 0 and has (downwards) velocity  $v_0$ . Determine the solution x(t) of (1) that matches these conditions. (Your answer should depend on the parameter  $v_0$ .)

### Solution:

(a) 
$$k/m = 9$$

The governing equation is  $m\ddot{x} = -kx$  which can be written  $\ddot{x} + (k/m)x = 0$ .

- (b)  $x(t) = A \cos(3t) + B \sin(3t)$  where A and B are arbitrary constants.
- (c) The initial conditions are x(1) = 0 and  $\dot{x}(1) = v_0$ , so we get the equations

$$0 = x(1) = A \cos(3) + B \sin(3),$$
  
$$v_0 = \dot{x}(1) = -3A \sin(3) + 3B \cos(3).$$

Write the system as a matrix equation:

$$\begin{bmatrix} \cos(3) & \sin(3) \\ -3\sin(3) & 3\cos(3) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ v_0 \end{bmatrix}.$$

The determinant of the coefficient matrix is 3. Then from the formula for the inverse of a  $2 \times 2$  matrix we get

$$\begin{bmatrix} A\\ B \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3\cos(3) & -\sin(3)\\ 3\sin(3) & \cos(3) \end{bmatrix} \begin{bmatrix} 0\\ v_0 \end{bmatrix} = \frac{v_0}{3} \begin{bmatrix} -\sin(3)\\ \cos(3) \end{bmatrix}.$$

Consequently,

$$x(t) = \frac{v_0}{3} \left( -\sin(3) \, \cos(3\,t) + \cos(3) \, \sin(3\,t) \right).$$

**Problem 5:** (16 points) Let k be a real number and consider the system

$$(1-k) x + (1-k) y = 1,$$
  
 $k y = k.$ 

- (a) (4 points) Find all the values of k, if any, for which this system has infinitely many solutions.
- (b) (4 points) Find all the values of k, if any, for which this system has no solutions.
- (c) (8 points) Find all the values of k, if any, for which this system has a unique solution. Determine x and y in this case.

**Solution:** We first calculate the determinant of the system matrix: (1-k)k - (1-k)0 = k(1-k). If k = 0 or k = 1, then the determinant is zero, so we need to investigate these cases separately. If  $k \neq 0, 1$ , then the system has a unique solution.

<u>Case 1 — k = 0</u>: The second equation vanishes, and the first takes the form x + y = 1. In this case, we have infinitely many solutions.

<u>Case 2 — k = 1</u>: The first equation takes the form "0 = 1" which clearly does not have a solution.

Case 3 —  $k \neq 0, 1$ : In this case, we have a unique solution. The second equation takes the form y = 1. Since  $k \neq 1$ , we can divide the first equation by (1 - k) which gives x + y = 1/(1 - k). Using that y = 1, we then find that x = 1/(1 - k) - 1.

It only remains to summarize the different cases:

- (a) The system has infinitely many solutions when k = 0.
- (b) The system has no solutions when k = 1.

(c) When  $k \neq 0, 1$ , the system has the unique solution

$$x = \frac{1}{1-k} - 1,$$
$$y = 1.$$