APPM 2360: Section exam 1
7.00pm — 8.30pm, February 11, 2009.

ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number,
(3) recitation section (4) your instructor’s name, and (5) a grading table. Text books, class notes,
and calculators are NOT permitted. A one-page crib sheet is allowed.

Problem 1: (28 points) For this problem, give the answer only. No motivation is required. Each
correct answer earns 4 points (no partial credits will be given).

(a)

Give the general solution to the equation 3/ = —t 2.

Give a solution to the equation ¢/ = —ty? that satisfies y(0) = 7.

Identify the equilibrium points to the equation 3 = y3 — y.
(You do not need to determine whether they are stable.)

Consider the initial value problem

y = (1+ty)y
y(0) = T.

Compute an approximation to y(1/2) by performing one step of the forwards Euler method
(in other words, use the step size h = 1/2).

Which of the following equations are both linear and homogeneous:
(1) o/ + 2y =0

(2) '+t =0

B)y +2y+1=0

(4)y +2y+t2=0.

Determine all values of a for which Picard’s theorem guarantees that the following initial
value problem has at most one solution:

Yy = ty®
y(1) = 0.

The equation
y 4+ 2y =8t3+2 (1)

has the particular solution
yp = 4t3 — 6t + 6t — 2

Find the solution y of equation (1) that satisfies y(0) = 2.



For question 2 — 4, motivate your answers. A correct answer with no work may receive no credit,
while an incorrect answer with some correct work may result in partial credit.

Problem 2: (18 points) Consider the equation y' +ty = t.

(a) (9 points) Construct the general solution.

(b) (9 points) Construct the solution that satisfies y(1) = 2.

Problem 3: (18 points) Consider the equation

/

y=y-—

<
~+ | =

+ (2)
(a) (9 points) Set z(t) = ty(t). Construct a differential equation for z that is equivalent to
equation (2).

(b) (9 points) Construct the general solution to (2).

Problem 4: (18 points)

(a) (6 points) A radioactive material, Dirtyum, is known to decay at a rate proportional to the
amount present. It takes 2 years for 10 kg to decay down to 1 kg. Find A(t), the amount of
Dirtyum as a function of time, if there are 100 tons of Dirtyum at time ¢ = 0.

(b) (6 points) Initially (¢ = 0), 100 tons of Dirtyum are deposited in an underground storage
facility. In addition to this initial amount, more Dirtyum is dumped continuously in the
facility at a rate totaling 5 tons per year. Write down a differential equation for A(t) and an
initial equation describing this situation.

(c) (6 points) Solve the differential equation in part (b) to find A(¢) and find what is the amount
of Dirtyum in the facility as ¢ — oo.

Note: Your answers may contain unevaluated formulas (for instance, “as t — oo, the amount of
dirtyum will approach 3 cos(log(4)) tons”).



sin(y),
1/y2.
(Note that

y/
y/

3)
(6)

(B)

Y =y?+2y,

()

(a) (9 points) Match direction fields (A)—(D) to the above differential equations.

y+ 12,

(18 points) For this problem, simply state the answer, no motivation is necessary.

Consider the following first order ordinary differential equations:

y/

(1)

there are more equations than direction fields, so two equations have no corresponding di-

rection fields.)
(b) (9 points) Identify the equilibria shown in EACH GRAPH and give their stability.
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