Let us consider a number of differential equations:

Equation:	Solution
$y^{\prime}(t)=t^{3}$	$y(t)=\frac{1}{4} t^{4}+C$
$y^{\prime}(t)=2 y(t)$	$y(t)=C e^{2 t}$
$y^{\prime}(t)=y(t)^{2}-4$	$y(t)=2 \frac{1+C e^{4 t}}{1-C e^{4 t}}$

The functions are solutions to the corresponding equation for any real number C.

How do you know which one is the "correct" one?
Typically, the value of y at some initial point t_{0} is given.

Example:

$$
\left\{\begin{array}{l}
y^{\prime}=2 y \\
y(1)=3
\end{array}\right.
$$

Example:

$$
\left\{\begin{array}{l}
y^{\prime}=2 y \\
y(1)=3
\end{array}\right.
$$

Solution:

The "general solution" is $y(t)=C e^{2 t}$.
Now insert the "initial value":

$$
3=C e^{2}
$$

We see that

$$
C=3 e^{-2}
$$

so the solution is

$$
y(t)=3 e^{-2} e^{2 t}=3 e^{2 t-2}
$$

In this class, we will describe mathematical techniques for determining solutions of an initial value problem such as

$$
\left\{\begin{aligned}
y^{\prime} & =f(t, y) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}\right.
$$

Before we do that, we will describe a technique that can tell much about the solution - without doing any "real" work!

Example: $\left\{\begin{array}{l}y^{\prime}=t^{3} \\ y\left(t_{0}\right)=y_{0}\end{array}\right.$
Consider the $t-y$ plane. A solution $y=y(t)$ that passes through the point (t, y) has derivative $y^{\prime}(t)=2 y$. Therefore, we can at any point (t, y) draw a short arrow that points in the direction of the curve $y(t)$. These arrows let us get an inkling of what the solutions may look like.

Problem: Try to sketch out the solutions that pass through the points:
(a) $\left(t_{0}, y_{0}\right)=(1,1)$
(b) $\left(t_{0}, y_{0}\right)=(-1 / 2,-2)$

Example: $\left\{\begin{array}{l}y^{\prime}=t^{3} \\ y\left(t_{0}\right)=y_{0}\end{array}\right.$

Example: $\left\{\begin{array}{l}y^{\prime}=t^{3} \\ y\left(t_{0}\right)=y_{0}\end{array}\right.$
Recall that an exact solution of the equation takes the form $y(t)=\frac{1}{4} t^{4}+C$.
Below are the plots for $C=-2,-1,0,1,2$.

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
We can graphically sketch out the solution that passes through any given point. Say $t_{0}=1$ and $y_{0}=1$.

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
We can graphically sketch out the solution that passes through any given point. Say $t_{0}=1$ and $y_{0}=1$.

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
Let us take a different initial value: $t_{0}=0.5$ and $y_{0}=-2$.

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
Let us take a different initial value: $t_{0}=0.5$ and $y_{0}=-2$.

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
Recall that the general solution is $y(t)=C e^{2 t}$.
Every value of C defines a unique curve.

Another example: $\left\{\begin{aligned} y^{\prime} & =2 y \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
Recall that the general solution is $y(t)=C e^{2 t}$.
Every value of C defines a unique curve.

The figure shows $C=-3,-2,-1,0,1,2,3$.

Yet another example: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$

Yet another example: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
Set $t_{0}=1$ and $y_{0}=1$.

Yet another example: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
Set $t_{0}=1$ and $y_{0}=1$.

Yet another example: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
And now $t_{0}=-1$ and $y_{0}=2.5$.

Yet another example: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
And now $t_{0}=-1$ and $y_{0}=2.5$.

Given an equation

$$
y^{\prime}(t)=f(t, y)
$$

it is of interest to determine any points \hat{y} such that

$$
f(t, \hat{y})=0 .
$$

These values \hat{y} are the constant solutions of the ODE.

Note that if we set

$$
y(t) \equiv \hat{y},
$$

then

$$
y^{\prime}(t)=f(t, y)=f(t, \hat{y})=0 .
$$

And since y is constant, this is a solution!

Let us see how it works for the equation $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
The equation

$$
f(t, \hat{y})=0
$$

takes the form

$$
\hat{y}^{2}-4=0
$$

which gives

$$
\hat{y}^{2}=4,
$$

which has solutions

$$
\hat{y}=2
$$

and

$$
\hat{y}=-2 .
$$

Recall: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y\left(t_{0}\right) & =y_{0}\end{aligned}\right.$
We mark these lines in the flow field:

Note that any solutions that start near the $y=2$ line move away from it, while any solutions that start near the $y=-2$ line move away towards it.

Definition: Let \hat{y} be an equilibrium point of an $\operatorname{ODE} y^{\prime}(t)=f(t, y)$. We say that

- \hat{y} is stable if solutions near it tend towards it as $t \rightarrow \infty$,
- \hat{y} is unstable if solutions near it tend away from it as $t \rightarrow \infty$.

Note that any solutions that start near the $y=2$ line move away from it, while any solutions that start near the $y=-2$ line move away towards it.

Definition: Let \hat{y} be an equilibrium point of an $\operatorname{ODE} y^{\prime}(t)=f(t, y)$. We say that

- \hat{y} is stable if solutions near it tend towards it as $t \rightarrow \infty$,
- \hat{y} is unstable if solutions near it tend away from it as $t \rightarrow \infty$.

This type of analysis can do much more than just identifying equilibrium points.
As an example, let us return to the equation $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y(1) & =1\end{aligned}\right.$
Question: Is the solution $y(t)$ convex near $t=1$?

This type of analysis can do much more than just identifying equilibrium points.
As an example, let us return to the equation $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y(1) & =1\end{aligned}\right.$
Question: Is the solution $y(t)$ convex near $t=1$?

The phase diagram does not help much!

If we could somehow construct the full solution, that would help:

It appears to be concave.

But constructing the solution is hard - sometimes impossible!!

Can we manage without doing this?

Recall the equation: $\left\{\begin{aligned} y^{\prime} & =y^{2}-4 \\ y(1) & =1\end{aligned}\right.$
Now also recall that a function $y(t)$ is

- convex at t if $y^{\prime \prime}(t)>0$, and
- concave at t if $y^{\prime \prime}(t)<0$.
- (If $y^{\prime \prime}(t)=0$ you cannot tell.)

We have

$$
y^{\prime \prime}(t)=\frac{d}{d t} y^{\prime}(t)=\frac{d}{d t}\left(y(t)^{2}-4\right)=y^{\prime}(t) \frac{d}{d y}\left(y^{2}-4\right)=y^{\prime}(t) 2 y(t)=\left(y^{2}-4\right) 2 y .
$$

Inserting $y=1$ we get

$$
y^{\prime \prime}(t)=\left(1^{2}-4\right) \cdot 2 \cdot 1=-6 .
$$

We conclude that $y(t)$ is concave at the point $(t, y)=(1,1)$.
We did not need to solve the equation!

Key concept - geometrical solutions:

$$
y^{\prime}(t)=f(t, y)
$$

- Gives "quantitative" information about the solution without the need to actually solve the equation.
- It is very useful to determine "equilibrium points".

These are points \hat{y} such that $f(t, \hat{y})=0$.
Then the constant function $y(t)=\hat{y}$ is a solution of the ODE.

- Classification of equilibrium points: they can be stable or unstable.
- We saw how to determine whether the solution is convex of concave without solving the equation. There are many other similar things that can be done.

