APPM 2360: Final exam

7:30am-10:00am, May 6, 2009.

- ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) recitation section (4) your instructor's name, and (5) a grading table.
- Text books, class notes, and calculators are NOT permitted.
- A one-page double-sided crib sheet is allowed.
- For questions 1 - 6, motivate your answers.
- For question 7, brief answers with no motivation are sufficient.

Problem 1: (30 points) Consider the matrix

$$
A=\left[\begin{array}{rr}
-4 & 3 \\
2 & 1
\end{array}\right]
$$

(a) (20 points) Find the eigenvalues and eigenvectors of A.
(b) (10 points) Find the general solution to the system $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=A\left[\begin{array}{l}x \\ y\end{array}\right]$.

Problem 2: (30 points)
(a) (12 points) Determine the general solution to

$$
y^{\prime}=t^{2} y^{2} .
$$

(b) (12 points) Determine the general solution to

$$
\begin{equation*}
\left(t^{2}+1\right) y^{\prime}+2 t y=0 . \tag{1}
\end{equation*}
$$

(c) (6 points) Find the solution of (1) that satisfies $y(1)=1$.

Problem 3: (30 points)
(a) (15 points) Find the general solution to

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0 .
$$

(b) (15 points) Find the general solution to

$$
y^{\prime \prime}-4 y^{\prime}+13 y=t e^{t}
$$

Problem 4: (30 points) Consider the matrix and the vector

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -3 & 1 \\
0 & 1 & 2 & -1 \\
1 & 1 & -1 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right] .
$$

(a) (20 points) Find the general solution to the equation $A \mathbf{x}=\mathbf{b}$.
(b) (10 points) Find the general solution to the equation $A \mathbf{x}=\mathbf{0}$.

Problem 5: (30 points) Consider the nonlinear system

$$
\left\{\begin{array}{l}
x^{\prime}=2 y \tag{2}\\
y^{\prime}=y+x-x^{3}
\end{array}\right.
$$

(a) (10 points) Identify all equilibrium points of the system (2).
(b) (15 points) Compute the Jacobian matrix at each equilibrium. Determine the geometry type (for example: saddle, spiral, center, star, etc) and stability of each equilibrium.
(c) (5 points) Which graph is the direction field of the system (2).

Note: No problems on this page should require lengthy calculations. The starred problems (6c, 6d, and 7f) are intentionally slightly different from the homework problems; unless you quickly "see" how to solve them you may want to save them for last.
Problem 6: (20 points) Consider the matrices $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrr}0 & -1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Given that $A^{-1}=\left[\begin{array}{rrr}1 & 1 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$, determine which of the following equations are solvable, and solve the ones that are.
(a) (5 points) $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ with the 3×1 vector \mathbf{x} as unknown.
(b) (5 points) $B \mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ with the 3×1 vector \mathbf{y} as unknown.
(c) (*5 points) $Z A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -2 & 0\end{array}\right]$ with the 2×3 matrix Z as unknown.
(d) (*5 points) $W A+B W A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ with the 3×3 matrix W as unknown.

Problem 7: (30 points) Give a brief answer to each question. Box your answer. No work given for this question will be graded.
(a) (5 points) Give the determinant of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]$.
(b) (5 points) Determine a function y such that $y^{\prime}=2 y$ and $y(0)=3$.
(c) (5 points) Which of the following equations have stable equilibrium points at the origin:
(1) $y^{\prime}=-y$
(2) $y^{\prime}=-y^{2}$
(3) $y^{\prime}=-y^{4}$
(d) (5 points) Consider the system $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{rr}-1 & 7 \\ 0 & a\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.

For which values of a is it the case that all solutions satisfy $\lim _{t \rightarrow \infty} x(t)=\lim _{t \rightarrow \infty} y(t)=0$?
(e) (5 points) A sample of a single radioactive material weighs 1 ounce on Jan. 1 of 1990. On Jan. 1 of 2000, the sample weighs 0.1 ounce. How much does it weigh on Jan. 1 of 2010 ?
(f) (${ }^{*} 5$ points) Let a be a real number and consider the following equations for $y=y(t)$:

$$
y^{\prime \prime}+2 y^{\prime}+3 y=0, \quad y(0)=1, \quad y^{\prime}(0)=2, \quad y^{\prime \prime}(0)=a .
$$

For which values of a does there exist a function y that satisfies all conditions?

