Below you will find some extra exercises for practising separation of variables, and changes of variables. (These problems are not part of the regular home work and will not be collected.)

You will learn far more from these problems if you try to solve them without looking at the solutions first!!!

Example 1: Solve the ODE

$$
y^{\prime}=y^{2}-4 .
$$

Example 2: Solve the ODE

$$
y^{\prime}=y+e^{t} y^{2}
$$

Hint: Try the substitution $y(t)=e^{t} u(t)$.

Example 3: Solve the ODE

$$
y^{\prime}=t^{2} e^{y}-\frac{2}{t}
$$

Hint: Try the substitution $u(t)=t^{2} e^{y(t)}$.

Example 1: Solve the ODE

$$
y^{\prime}=y^{2}-4 .
$$

Solution: First we note that $y=2$ and $y=-2$ are the constant solutions. In the remainder of the solution, we assume that $y \neq \pm 2$. Then $y^{2}-4 \neq 0$ and we get the equation

$$
\begin{equation*}
\frac{d y}{y^{2}-4}=d t \tag{1}
\end{equation*}
$$

Note that

$$
\frac{1}{y^{2}-4}=\frac{1}{(y-2)(y+2)}=\frac{1 / 4}{y-2}-\frac{1 / 4}{y+2} .
$$

Integrating (1) we then obtain

$$
\begin{gathered}
\frac{1}{4} \log |y-2|-\frac{1}{4} \log |y+2|=t+C \\
\log \left|\frac{y-2}{y+2}\right|=4 t+4 C \\
\left|\frac{y-2}{y+2}\right|=e^{4 C} e^{4 t}
\end{gathered}
$$

Set $D= \pm e^{4 C}$. Then

$$
\begin{gathered}
\frac{y-2}{y+2}=D e^{4 t} \\
y\left(1-D e^{4 t}\right)=2\left(1+D e^{4 t}\right) \\
y=2 \frac{1+D e^{4 t}}{1-D e^{4 t}}
\end{gathered}
$$

Answer: The solutions are $y=2, y=-2$, and for any non-zero real number D, the function

$$
\begin{equation*}
y=2 \frac{1+D e^{4 t}}{1-D e^{4 t}} . \tag{2}
\end{equation*}
$$

Extra problems to be solved using a computer:

- Draw the direction field of the equation.
- Mark the two constant solutions.
- Fix a negative number D (say $D=-2$) and draw the function (2).

What can you say about $\lim _{t \rightarrow \infty} y(t)$?

- Fix a different negative value of D and draw this function as well.
- Fix a couple of different positive numbers D and draw the functions (2).

Something interesting happens around $t=-(1 / 4) \log (D)$ - what?

- What can you say about $\lim _{t \rightarrow \infty} y(t)$ when D is a positive number?

Example 2: Solve the ODE

$$
y^{\prime}=y+e^{t} y^{2}
$$

Hint: Try the substitution $y(t)=e^{t} u(t)$.

Solution: We have

$$
y^{\prime}=e^{t} u+e^{t} u^{\prime}
$$

Then the equation takes the form

$$
e^{t} u+e^{t} u^{\prime}=e^{t} u+e^{3 t} u^{2},
$$

which simplifies to

$$
u^{\prime}=e^{2 t} u^{2}
$$

The right hand side is zero when $u=0$. We note that $u=0$ corresponds to the constant solution $y=0$. Now suppose that $u \neq 0$. Then

$$
\int \frac{d u}{u^{2}}=\int e^{2 t} d t
$$

and so

$$
-\frac{1}{u}=\frac{1}{2} e^{2 t}+C .
$$

We get

$$
u=-\frac{1}{C+\frac{1}{2} e^{2 t}}
$$

Finally we convert back to the function y :

$$
y=e^{t} u=-\frac{e^{t}}{C+\frac{1}{2} e^{2 t}}
$$

Answer: The solutions are $y=0$, and for any real number C, the function

$$
\begin{equation*}
y=-\frac{e^{t}}{C+\frac{1}{2} e^{2 t}} \tag{3}
\end{equation*}
$$

Example 3: Solve the ODE

$$
y^{\prime}=t^{2} e^{y}-\frac{2}{t}
$$

Hint: Try the substitution $u(t)=t^{2} e^{y(t)}$.

Solution: We have

$$
u^{\prime}=2 t e^{y}+t^{2} y^{\prime} e^{y}
$$

Note that the equation is not defined for $t \neq 0$! We can therefore write

$$
u^{\prime}=\frac{2 u}{t}+u y^{\prime} .
$$

We also have

$$
y^{\prime}=t^{2} e^{y}-\frac{2}{t}=u-\frac{2}{t} .
$$

Combining the two equations above we obtain an equation for u :

$$
u^{\prime}=\frac{2 u}{t}+u\left(u-\frac{2}{t}\right)=u^{2} .
$$

Now that we have a separable equation for u we proceed as usual. Note that since $t \neq 0$, it must be the case that $u \neq 0$, so we can divide by u^{2} and obtain the equation

$$
\begin{aligned}
& \int \frac{d u}{u^{2}}=\int d t \\
& -\frac{1}{u}=t+C
\end{aligned}
$$

Set $D=-C$, so that

$$
u=\frac{1}{D-t}
$$

Finally we convert back to y :

$$
y=\log \left(\frac{u}{t^{2}}\right)=\log \left(\frac{1}{t^{2}(D-t)}\right) .
$$

Answer: Any solution of the equation takes the form

$$
\begin{equation*}
y=\log \left(\frac{1}{t^{2}(D-t)}\right) . \tag{4}
\end{equation*}
$$

where D is any real number.

Extra problem: Differentiate the given solution to verify that the calculation is correct!

Extra problem: Plot the solution for a few different values of D. For any given D, determine for which values of t the solution is defined.

