
CSE 383C: Numerical Analysis: Linear Algebra – Final Exam – Solutions
10:30am – 12:30pm, December 13, 2024.

Question 1: (20p) Please provide answers only. Motivations will not be graded.

(a) (5p) Mark as true or false:

TRUE FALSE

If A is tridiagonal and positive definite, then its LU factors
are bidiagonal.

X

If A is tridiagonal and invertible, then A−1 is tridiagonal.
X

Every square matrix A admits a factorization A = QTQ∗

where Q is unitary and T is upper triangular.
X

(b) (5p) Given a square m × m matrix A, an m × 1 vector b, and a positive integer n, give the
definition of the Krylov space Kn(A,b):

Kn(A,b) = span
{
b, Ab, A2b, . . . , An−1b

}
(c) (5p) Given the function f(x) = 2x2 + x3, specify its relative condition number at x = 2:

κf (2) = |f ′(x)| |x|
|f(x)|

= {Set x = 2} = |4 · 2 + 3 · 4| |2|
|2 · 4 + 8|

= 20
2

16
=

5

2

(d) (5p) The matrix A =

 0 0 1
0 2 2
3 3 3

 has the QR factorization A = QR. Specify Q and R

Q =

 1 0 0
0 1 0
0 0 1

 R =

 3 3 3
0 2 2
0 0 1


Question 2: (10p) Let A be symmetric and positive definite, and suppose that it has the Cholesky
factorization A = R∗R, where R is upper triangular. Set B = RR∗. Do A and B necessarily have
the same eigenvalues? If you answer yes, then briefly motivate why. If you answer no, then provide a
counter example.

Solution: Yes. To see why, observe that

A = RR∗ = {Use that R∗ = AR−1} = RAR−1.

We see that A and B are SIMILAR. Consequently, they have the same eigenvalues.

Alternative solution: Suppose that λ is an eval of A. Then for some non-zero vector v:

Av = λv ⇒ R∗Rv = λv ⇒ RR∗Rv = λRv ⇒ BRv = λRv,

so Rv is an evec of B with eval λ. Then analogously prove: λ is an eval of B ⇒ λ is eval of A.



Question 3: (20p)

(a) (10p) For a positive integer n, define

sn =
n∑

j=1

1

j2
and s =

∞∑
j=1

1

j2
.

It is known that s = π2/6, and we clearly have sn → s as n → ∞. Moreover, as we showed in class,
s− sn ≈

∫∞
n+1 x

−2 dx = (n+ 1)−1. For n = 1010, we would expect s− sn ≈ 10−10, yet the code

nmax = 1e10;

s = 0;

for j = 1:nmax

s = s + 1/(j*j);

end

fprintf(1,’Error = %20.16f\n’,pi*pi/6-s)

fprintf(1,’Expected error = %20.16f\n’,1/(nmax+1))

produces the output:

Error = 0.0000000090136514

Expected error = 0.0000000001000000

How would you explain the discrepancy? How would you compute sn more accurately?

(b) (10p) Consider the function

f(x) = 1− e−x2
.

Suppose that for some number x such that 10−11 ≤ x ≤ 10−10 you want to evaluate f(x) with several
correct digits in relative precision. How would you proceed if you worked in an environment such as
Matlab, and you could only use standard double precision arithmetic?

Solution:

(a) Once j becomes large, j−2 becomes smaller than εmach × s, so nothing gets added to the sum at
each step. To fix this problem, sort the elements by order of magnitude, and start the summation with
the smallest terms first.

(b) The easiest solution is to rewrite the function:

f(x) = 1− e−x2
= e−x

2/2
(
ex

2/2 − e−x2/2
)

= 2e−x
2/2 e

x2/2 − e−x2/2

2
= 2e−x

2/2 sinh(x2/2).

Alternatively, you could use a Taylor expansion

f(x) = 1− e−x2
= 1−

(
1− x2 +O(x4)

)
= x2 +O(x4).

It follows that the approximation
f(x) ≈ x2

will have sixteen correct digits in the interval specified.



Question 4: (20p) The matrix A has the LU factorization 3 1 −2
−3 −2 a23

6 a32 −1


︸ ︷︷ ︸

=A

=

 1 0 0
−1 1 0

2 1 1


︸ ︷︷ ︸

=L

 3 1 u13
0 −1 1
0 0 2

 .
︸ ︷︷ ︸

=U

For this problem, no motivation is required. Just give the answers.

(a) (5p) Specify the missing entries a23, a32, and u13.

(b) (5p) Specify the determinant of A:

(c) (5p) Specify the solution x to the linear system Ax = b where b =

 0
0
1

:

(d) (5p) Set V =

 1 1 −1
0 1 0
0 0 2

 and B = AV. Suppose that B has the LU factorization B = L′U′.

Specify L′ and U′.

Solution:

(a)
a23 = 3 a32 = 1 u13 = −2

(b)
det(A) = det(U) det(L) = (1 · 1 · 1) (3 · (−1) · 2) = −6

(c) We have
x = A−1b = U−1L−1b = {Set y := L−1b} = U−1y.

Now immediately observe that y = b. It remains to solve Uy = b: 3 1 −2 0
0 −1 1 0
0 0 2 1

 ∼
 3 1 0 1

0 −1 0 −1/2
0 0 2 1

 ∼
 3 0 0 1/2

0 −1 0 −1/2
0 0 2 1

 ∼
 1 0 0 1/6

0 1 0 1/2
0 0 1 1/2

 ,
so

x =

 1/6
1/2
1/2

 ,
(d) We have

B = AV = LUV =

Since UV is upper triangular, we find that A = L (UV) is the LU factorization of B. In other words:

L′ = L and U′ = UV =

 3 4 −7
0 −1 2
0 0 4

 .



Question 5: (20p) Consider an m× n matrix A, and an m× 1 vector b.

(a) (10p) Let x? denote the least squares solution to the linear system Ax = b. Mark the following
statements as true or false:

TRUE FALSE

If rank(A) = n, then x? =
(
A∗A

)−1
A∗b.

X

Regardless of the rank of A, we have A∗Ax? = A∗b.
X

‖Ax? − b‖ = inf{‖b− y‖ : y ∈ col(A)}.
X

If rank(A) = m, then the minimization problem
inf{‖Ay − b‖ : y ∈ Rn} has a unique solution.

X

It is always the case that x? ∈ null(A)⊥.
X

(b) (10p) Consider the matrix A and the vector b defined by

A =


−2 −2

2 4
−2 −2

2 4


︸ ︷︷ ︸

=A

=


−1 1

1 1
−1 1

1 1


︸ ︷︷ ︸

=W

[
2 3
0 1

]
︸ ︷︷ ︸

=S

and b =


−1

5
−1

1


Specify the least squares solution x? to Ax = b. Please motivate your answer.

Solution to (b) via normal equations: The normal equations take the form

A∗Ax = A∗b

Now observe that A∗A = S∗W∗WS = S∗(4I)S = 4S∗S, so the normal equations simplify to

4S∗Sx = S∗W∗b.

It follows that

x =
1

4
S−1W∗b =

1

4

1

2 · 1− 0 · 3

[
1 −3
0 2

] [
8
4

]
=

1

4

1

2

[
−4

8

]
=

[
−1/2

1

]
.

Solution to (b) via QR: The factorization of A that is given is almost the QR factorization, since

W∗W = 4I.

It follows that 1
2W is an ON matrix, and so the QR factorization is

A = WS =

(
1

2
W

)
(2S) = QR, where Q =

1

2
W, and R = 2S.

Using a standard formula for the pseudo-inverse, we get

A† = R−1Q∗ = (2S)−1((1/2)W)∗ =
1

4
S−1W∗.

Finally,

x = R−1Q∗b =
1

8

[
2 −6
0 4

] [
− 1

2
1
2 − 1

2
1
2

1
2

1
2

1
2

1
2

]
−1

5
−1

1

 =
1

8

[
2 −6
0 4

] [
4
2

]
=

1

8

[
−4

8

]
=

[
−1/2

1

]
.

Solution to (b) via pseudoinverse: You can ignore QR and go directly for the formula

A† =
(
A∗A

)−1
A∗ =

(
S∗W∗WS

)−1
S∗W∗ =

(
4S∗S

)−1
S∗W∗ =

1

4
S−1S

)−∗
S∗W∗ =

1

4
S−1W∗.



Question 6: (10p) Let A be a symmetric and positive definite matrix of size n× n, with eigenvalues
{λj}nj=1 that are ordered by modulus, so that

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn.
You know that

λ1 = 1 and λn = 105.

Given a positive integer p and a vector b, we seek to solve the linear system

Apx = b.

We work in Matlab, using standard double precision floating point arithmetic. Our first attempt is:

T = A;

for i = 1:(p-1)

T = T*A;

end

x = inv(T)*b;

We find that for p = 2, the code works fine. We next try p = 5, and find that we then run into problems,
and get no accurate digits in the answer.

Explain what problem occurred, and then describe how you would proceed instead. For maximal credit,
pay attention to computational efficiency in the case where p and n are large.

Explanation: We observe that κ(A) = λn/λ1 = 105. This means that if we compute Ap for p > 3,
then the matrix will be singular to floating point precision. So plain inversion will not work. What is
more, the modes that get lost are precisely the modes you need in order to solve the system, so if you
form Ap for p > 3, then nothing you do after that will fix the problem.

An excellent solution: Compute the eigenvalue decomposition

A = UDU∗.

We can then write down the solution explicitly as

x = A−pb = UD−pU∗b.

This formula can be evaluated accurately (and rapidly) for any positive p.

Total cost of this approach is O(n3), with no dependence on p.

An accurate but more expensive solution: Iterate on A−1 instead of A. Then the modes that get
lost due to round-off errors are the ones associated with large eigenvalues of A, which is what we want.
In other words, set

x1 = A−1b,

and then evaluate iteratively

xj = A−1xj−1, for j = 2, 3, . . . , p.

Then xp will be the solution x.

Total cost is O(p n3) if you evaluate xp via Gaussian elimination from scratch at every step.

The cost can be reduced to O(n3 + p n2) if you precompute A−1. (Or do a Cholesky factorization.)


