
Section exam 3 Numerical Analysis: Linear Algebra
Solutions

Assigned Nov 21, 2024. Due Wednesday Dec 4, 2024, at noon.

Instructions:

• This is an open book exam.
You are allowed to consult the text book. You are also allowed to do research in other text
books, on the internet, etc.

• The exam should be worked individually. Do not consult with other students.

• Please type your solutions if at all possible.

• Some of the questions involve writing Matlab code. If at all possible, please stick to Matlab.
However, if you absolutely insist, you can use other similar languages, as long as the syntax is
sufficiently similar that your code is readable to somebody who does not know the language. If
you use a different language, adding comments describing what each line does would be helpful.

• The following files are provided on Canvas and the course webpage:
– exam3 student version.m provides starting points for problems 4 and 5.
– matrix Y.mat holds the matrix Y that you need in problem 4 in Matlab format.
– matrix Y.txt holds the matrix Y that you need in problem 4 in plain text format.

Question 1: (20p) Let A be an invertible sparse matrix of size m×m with the singular value decom-
position

A = UDV∗.

Further, let b be a vector of size m× 1, and suppose that you seek to solve the linear system

Ax = b (1)

for x. Suppose that m is large enough that you cannot use dense methods, but that you can afford to
apply A and A∗ to vectors.

(a) (7 points) Since A is invertible, the system (1) is mathematically equivalent to the system

A∗Ax = A∗b. (2)

Would you be able to use Conjugate Gradients to solve (2)? If you answer yes, then discuss the costs,
and the pros and cons of this approach; identify some situations where this approach may work well,
and some where it may not work well. If you answer no, then describe why CG cannot be used.

Yes, when A is non-singular, the matrix A∗A is both symmetric and positive definite, so CG can be
used. The cost per iteration is higher than, e.g., GMRES in that you need two matvecs instead of one.
However, due to the three term recursion, the number of flops required outside of the matvec is less.
CG also requires less memory.

The key drawback of using CG to solve the normal equations is that you square the condition number
of the matrix. For an ill-conditioned matrix, this will likely slow down the speed of convergence, and
may lead to serious loss of accuracy due to round-off errors.

To summarize, the approach outlined would work well for well-conditioned problems, in particular in
cases where the spectrum of A∗A is clustered. However, this approach should not be used for highly
ill-conditioned problems.

(b) (6 points) Consider the matrix

B =

[
0 A

A∗ 0

]
.

Let ui and vi be a pair of left and right singular vectors of A, so that Avi = σiui. Prove that the vectors[
ui
vi

]
and

[
ui
−vi

]
are both eigenvectors of B, and then provide the full eigenvalue decomposition of B, expressed in terms
of the matrices U, D, and V.

A simple computation shows that[
0 A

A∗ 0

] [
ui
vi

]
=

[
Avi
A∗ui

]
=

[
σiui
σivi

]
= σi

[
ui
vi

]
.

Analogously [
0 A

A∗ 0

] [
ui
−vi

]
=

[
−Avi
A∗ui

]
=

[
−σiui
σivi

]
= −σi

[
ui

(−vi)

]
.

It follows that the columns of the matrix

W =
1√
2

[
U U
V −V

]
form an orthonormal set of eigenvectors of B, and that

B = W

[
D 0
0 −D

]
W∗

is an eigenvalue decomposition of B.

(c) (7 points) In order to solve (1), you could in principle instead solve the linear system[
0 A

A∗ 0

] [
y
x

]
=

[
b
0

]
. (3)

Observe that the coefficient matrix in (3) is symmetric. Would you be able to use Conjugate Gradients
to solve (3)? If you answer yes, then discuss the costs, and the pros and cons of this approach; identify
some situations where this approach may work well, and some where it may not work well. If you
answer no, then describe why CG cannot be used.

No, this will not work. Since B has negative eigenvalues, it is not positive definite.

Question 2: (20 points)

(a) (6 points) Consider a symmetric positive definite (spd) matrix A that has been partitioned as

A =

[
A11 A12

A∗12 A22

]
.

Suppose that A11 has the Cholesky factorization

A11 = R∗11R11.

Then A admits the partial factorization
A = R∗1A1R1

where

R1 =

[
R11 R12

0 I

]
and A1 =

[
I 0
0 A′22

]
.

Give formulas for R12 and A′22.

(b) (7 points) Suppose that A is an spd matrix A of size N ×N , where N = nb for two positive integers
n and b. Write a Matlab code that computes the Cholesky factorization of A that is blocked with a
block size b. (In other words, it will consist of a loop with n − 1 steps, where in each step a rank b
update is applied to the bottom right block of the matrix, and a final step where the last remining
block is factorized.) Submit a printout of the code as your answer to this question. You are allowed to
invoke the built-in command chol, but only to matrices of size b× b.

(c) (7 points) Consider the Cholesky factorization of matrices with the following block patterns:

block diagonal nw arrow se arrow

In the examples, b = 3 and n = 8.

Suppose that you write a code that exploits the zero structure of the matrices, as far as is possible in
each case. What would the asymptotic flop count be for each of the patterns, expressed as a function

of n and b? To illustrate, for a general dense matrix, your answer would be O(n3b3)

Solution:

(a)

R12 =
(
R∗11
)−1

A12 and A′22 = A22 − R∗12R12 = A22 − A∗12A
−1
11 A12.

(Either formula for A′22 is fine, although you want to use A′22 = A22 − R∗12R12 in your code.)

(b) For instance:

(c)

block diagonal: Each diagonal block is factored independently of the others. The cost for one block
is O(b3), and there are n blocks so:

O(nb3)

nw arrow: After the first step, you are left with a matrix of size (n− 1)b× (n− 1)b that is fully dense
in the lower right corner. Since there is no zero structure left to exploit, the total cost becomes

O(n3b3)

se arrow: Each step involves factoring the diagonal block, then updating precisely three blocks of size
b× b. In consequence, the cost per step is just O(b3), and so

O(nb3)

Question 3: (20 points) Let A be an m×m matrix that is symmetric and positive definite. Let k be
a positive integer that is smaller than m, and suppose that G is a matrix of size m× k. If the matrix
G∗AG is invertible, then we define the Nyström approximation to A (with respect to G) via

B :=
(
AG
) (

G∗AG
)−1 (

AG
)∗
.

Let {λj}mj=1 denote the eigenvalues of A, ordered by modulus so that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λm|.

(a) (5 points) Suppose that A has exact rank k, and that it has the (economy size) eigenvalue decom-
position

A = U D U∗.
m×m m× k k × k k ×m

Prove that if the matrix Z := U∗G is non-singular, then the Nyström approximation is exact. In other
words, B = A.

(b) (10 points) In parts (b) and (c), we will draw G from a Gaussian random distribution. In Matlab,
this is done through the command G = randn(m,k). It turns out that in this case, the Nyström
approximation is often a very accurate approximation to A if the eigenvalues {λj}mj=k+1 are small in
comparison to the top ones. In particular, the eigenvalues of B are very good approximations to the
top k eigenvalues of A.

For instance, consider the 30× 30 matrix A with entries

A(i, j) =
1√
i+ j

.

The left figure below plots the eigenvalues of A versus the eigenvalues of B for a particular instantiation
of the method. The errors are shown to the right.

0 5 10 15 20 25 30

j

10
-20

10
-15

10
-10

10
-5

10
0

j

Evals of A

Evals of B

0 2 4 6 8 10

j

10
-7

10
-6

10
-5

|
j(A

)
-

j(B
)|

Code up the Nyström method, and replicate the graph! (Note that your graph may not look exactly
like the one shown – the output depends on the draw of the random numbers!) Hand in your code and
the graph.

(c) (5 points) Play with some other spd matrices whose eigenvalues decay. For your solution to (c),
hand in descriptions of two matrices, and the plots analogous to those you created in (b).

Note: For problem (c), fun examples of matrices that arise in real applications are appreciated! However,
you get full credit as long as you show that you tested a couple of different things.

Solution:

(a) Observe that
AG = UDU∗G = UDZ,

and that
G∗AG = G∗UDU∗G = Z∗DZ.

It follows that

B =
(
UDZ

) (
Z∗DZ

)−1 (
UDZ

)∗
=
(
UDZ

) (
Z−1D−1Z−∗

) (
Z∗DU∗

)
= UDU∗ = A.

(b) For instance:

Note: The code actually plots the moduli of the computed eigenvalues of A. The reason is that some
of the computed eigenvalues of size machine epsilon turn out to be negative. This is purely a numerical
artifact – think of these as all εmach.

Question 4: (20 points) In this problem, you are tasked with determining approximations to some
eigenvalues and eigenvectors of a real symmetric matrix A of size 100×100. In preparing this problem,
I generated a random starting vector q, and then executed 49 steps of power iteration to build the
100× 50 matrix

Y =
[
q, Aq, A2q, A3q, . . . , A49q

]
.

You will find the resulting matrix Y ready for download on Canvas (and on the course webpage).

In this problem, the eigenvalues of A are ordered by modulus, so that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λ100|.

Using the information in Y, compute approximations to the following quantities:

(a) (8 points) The largest (in modulus) eigenvalue λ1.

(b) (7 points) The first five entries of the eigenvector v1 associated with λ1. To resolve the normalization
ambiguity, suppose that ‖v1‖ = 1 and that the first entry of v1 is positive.

(c) (5 points) The eigenvalue λ5.

Solutions: The precise answers are:

λ1 =1.050000000000000

λ5 =0.571081383523783

v1(1) =0.703819618759918

v1(2) =0.190186946209695

v1(3) =− 0.123611936151842

v1(4) =0.062117413353951

v1(5) =0.056202439003498

There are several different ways to estimate these quantities using only information in Y. Let us describe
three of them, in increasing order of sophistication. We let yj = Aj−1q denote the j’th column of y.

(1) Basic power iteration: Simply use that 1
|yj |
→ ±v1, and that for k large, we expect yk+1 ≈ λ1yk.

For instance, one may use

λapprox1 =
Y (1, 50)

Y (1, 49)
= 0.86.

To estimate v1, just normalize y50 to get vapprox1 =
sign(y50(1))
‖y50‖

y50 =



0.632895887827886
0.206732040476769
−0.144706386514006

0.064704328677310
0.054143568598003

...


(2) Power iteration with Rayleigh quotients: To enhance the accuracy in estimating λ1, let us
use a Rayleigh quotient:

λapprox1 =
y∗kAyk
y∗kyk

=
y∗kyk+1

|yk|2
.

Setting k = 49, we find

λapprox1 = 1.026454737166689.

To get an idea of how many correct digits we have, we compute the last several quotients:

Raleigh quotient at step 45 = 1.021690860323

Raleigh quotient at step 46 = 1.022964240229

Raleigh quotient at step 47 = 1.024181064223

Raleigh quotient at step 48 = 1.025343780572

Raleigh quotient at step 49 = 1.026454737167

This is slightly hard to interpret, but one may perhaps guess that we have about one or two percent
accuracy.

(3) Block Rayleigh quotients: The most sophisticated idea would be to use a block Raleigh quotient,
as in the Lanzcos method. Let Q be an orthonormal basis for the first 49 columns of Y. For instance,
compute the QR factorization

Y(:, 1 : 49) = QR

Then we seek to build the matrix
B = Q∗AQ,

with the idea that the eigenvalues of B are good approximations to the eigenvalues of A. Observe that

B = Q∗AQ = Q∗AQRR−1 = Q∗AY(:, 1 : 49)R−1. (4)

The formula (4) is correct mathematically, but if you code it up, you will get junk! The reason is that
Y numerically has much lower rank that 49, so the matrix R is singular.

0 10 20 30 40 50

j

10
-20

10
-15

10
-10

10
-5

10
0

10
5

j(Y
)

Singular values of Y

The graph indicates that the numerical rank is around 25, so we try instead to work with the first 20
columns of Y. To be precise, we execute the code:

p = 20;

[Q,R] = qr(Y(:,1:p),0);

B = Q’*Y(:,2:(p+1))*inv(R);

We now get excellent estimates:

λapprox1 =λ1(B) = 1.049999999999994

λapprox5 =λ5(B) = 0.571081184207039

For question (b), we compute the dominant eigenvector of QQ∗AQQ∗, and find

vapprox1 =



0.703819618755760
0.190186946212856
−0.123611936105692

0.062117413348342
0.056202438977621

...


(It turns out that ‖v1 − vapprox1 ‖∞ ≈ 6 · 10−11, which is pretty good!)

Notes: Method (3) is quite sophisticated – kudos to anyone who thought of it! Fwiw, I do not know of
a simple way to answer (c).

Question 5: (20 points) On Canvas (and on the course webpage) you will find a Matlab code that
executes the Jacobi method that we discussed in class. This is a method that takes a given symmetric
matrix A and iteratively drives it to diagonal form through a series of similarity transforms. To be
precise, recall from class that for any off-diagonal entry (i, j) of A, it is possible to find a Givens rotation
G that maps the submatrix A([i, j], [i, j]) to diagonal form:

G∗
[
ai,i ai,j
ai,j aj,j

]
G =

[
a′i,i 0

0 a′j,j

]
(5)

In the Jacobi iteration, you repeatedly loop over all the off-diagonal entries of A. When entry (i, j)
is processed, the method constructs a Givens rotation G that drives the (i, j) and (j, i) entries to zero
through a similarity transform where G∗ acts on the (i, j) rows from the left and G on the (i, j) columns
from the right.

In the code provided in the file exam3 student version.m, the off-diagonal entries are processed in a
fixed order, sweeping through one row of the matrix at a time.

To accelerate convergence, one may instead conduct a search to find the off-diagonal entry with the
largest modulus, and target it instead.

The plot below shows the Frobenius norm of the off-diagonal part of the matrix after step j of the
iteration. The blue line shows the error from the unpivoted method, and the red line shows the error
from the pivoted method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
4

10
-15

10
-10

10
-5

10
0

Without pivoting

With pivoting

Write a code that implements the pivoted version of the Jacobi iteration. Submit an error plot analogous
to the one shown, as well as a printout of your code.

Note: The pivoted version of Jacobi is far too expensive to use in practice. It increases the cost of one
step of the method from O(m) to O(m2)! Efficiency would be greatly improved if you first drive A to
tridiagonal form, and then exploit the tridiagonal structure.

Solution: For instance:

%%% Without pivoting.

T = A;

ff = zeros(1,niter);

ndone = 1;

for k = 1:npass

for i = 1:(m-1)

for j = (i+1):m

beta = (T(j,j) - T(i,i))/(2*T(i,j));

t = sign(beta)/(abs(beta) + sqrt(beta*beta+1));

c = 1/sqrt(t*t+1);

J = [c,c*t;-c*t,c];

T([i,j],:) = J’*T([i,j],:);

T(:,[i,j]) = T(:,[i,j])*J;

ff(ndone) = sqrt(sum(sum(triu(T,1).^2)));

ndone = ndone + 1;

end

end

end

%%% With pivoting.

T = A;

ee = zeros(1,niter);

for k = 1:niter

B = abs(T - diag(diag(T)));

[mm,jj] = max(B);

[~,i] = max(mm);

j = jj(i);

beta = (T(j,j) - T(i,i))/(2*T(i,j));

t = sign(beta)/(abs(beta) + sqrt(beta*beta+1));

c = 1/sqrt(t*t+1);

J = [c,c*t;-c*t,c];

T([i,j],:) = J’*T([i,j],:);

T(:,[i,j]) = T(:,[i,j])*J;

ee(k) = sqrt(sum(sum(triu(T,1).^2)));

end

