9:30am – 10:45am, Sep. 26, 2024.

Instructions:

- *This is a closed books exam.* No books or calculators are allowed. However, you are allowed to bring one hand written, single sided formula sheet.
- Try to answer the questions within the space given. If you must use more space, you *can* attach extra pages, but try to avoid it. If you do need extra space, then please mark this very clearly on the exam.
- If a question does not specifically ask for a motivation, then the correct answer alone will give full points. You are welcome to enter a brief explanation of how you arrived at the answer this might yield partial credit in case the given answer is incorrect.
- Use your time strategically. Questions 1 3 should be fast. Questions 5 and 7 are the only ones that require more than minimal computations. Questions 6 and 7 are only worth 10 points each, it may be wise to save these for last.
- In this exam, the default is that for a vector \mathbf{x} , the notation $\|\mathbf{x}\|$ denotes the Euclidean norm. For a matrix \mathbf{A} , the notation $\|\mathbf{A}\|$ refers to the operator norm with respect to the Euclidean vector norm, and $\|\mathbf{A}\|_{\mathrm{F}}$ refers to the Frobenius norm. If \mathbf{A} is a matrix, then \mathbf{A}^* refers to the complex conjugate of the transpose of \mathbf{A} (or merely the transpose when \mathbf{A} is real).

Name:

Section:

Question	Max points	Scored points
1	5	
2	5	
3	20	
4	25	
5	25	
6	10	
7	10	
Total:		

Question 1: (5p) Let $\mathbf{u} = [1, 2, 3]^*$ and $\mathbf{v} = [2, t, 2]$ be two vectors in \mathbb{R}^3 . For which value(s) of t are \mathbf{u} and \mathbf{v} orthogonal?

Question 2: (5p) Recall that a *Householder reflector* \mathbf{F} is a special unitary matrix that you construct in order to map a given vector \mathbf{x} to the vector $\mathbf{F}\mathbf{x} = \|\mathbf{x}\| \mathbf{e}_1 = [\|\mathbf{x}\|, 0, 0, \dots, 0]^*$. Give a formula for \mathbf{F} , expressed in terms of the vector \mathbf{x} .

Question 3: (20p) Let A be a 5 \times 5 matrix with the singular value decomposition

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^*,$$

where

and where the matrices

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3, \, \mathbf{u}_4, \, \mathbf{u}_5 \end{bmatrix}, \qquad \mathbf{V} = \begin{bmatrix} \mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4, \, \mathbf{v}_5 \end{bmatrix}$$

are unitary. Please give only the answers. Motivations will not be graded.

- (a) (2p) Specify the spectral norm of A: $\|A\| =$
- (b) (2p) Specify the Frobenius norm of A: $\|A\|_{F} =$
- (c) (2p) Specify the rank of A: rank(A) =
- (d) (2p) Specify an orthonormal basis for the column space of **A**:
- (e) (2p) Specify an orthonormal basis for the row space of **A**:
- (f) (2p) Specify an orthonormal basis for the null space of **A**:
- (g) (2p) Specify an orthonormal basis for the null space of \mathbf{A}^* :
- (h) (6p) Specify how well **A** can be approximated by a matrix of rank 2:

 $\inf\{\|\mathbf{A} - \mathbf{B}\| : \mathbf{B} \text{ has rank at most } 2\} =$

Question 4: (25p) Let **Q** be an $n \times n$ unitary matrix, and define $\mathbf{A} = \begin{bmatrix} \mathbf{Q} \\ \mathbf{Q} \end{bmatrix}$.

(a) (5p) Define what it means for a matrix to be orthonormal.

(b) (10p) Prove that there exists a real number t for which the matrix $\mathbf{B} = t\mathbf{A}$ is orthonormal.

(c) (10p) Specify an "economy size" singular value decomposition of **A**. In other words, specify a $2n \times n$ orthonormal matrix **U**, an $n \times n$ diagonal matrix **D**, and an $n \times n$ unitary matrix **V** such that $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^*$.

Question 5: (25p) Compute the QR factorization of $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$. Use the convention that the diagonal entries of **R** should be non-negative.

Question 6: (10p) Suppose that A is a 2 × 2 matrix with the QR factorization

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} \\ 0 & r_{22} \end{bmatrix}$$

Define the 3×3 matrix **B** via

$$\mathbf{B} = \left[\begin{array}{ccc} 0 & a_{11} & a_{12} \\ 0 & a_{21} & a_{22} \\ 1 & 0 & 0 \end{array} \right].$$

Specify the QR factorization of **B** (expressed in terms of the QR factorization of **A**).

Hint: There exists a very simple unitary matrix \mathbf{U} *such that* $\mathbf{UB} = \begin{bmatrix} 1 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}$.

Question 7: (10p) Compute the singular values of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$. Briefly motivate your answer.

Hint: It might be helpful to compute the eigenvalues of A^*A *.*