
Midterm exam for Numerical Analysis: Linear Algebra
9:00am – 10:45am, Oct. 28, 2021. Closed books.

Instructions:

• This is a closed books exam. No personal notes or calculators are allowed.

• Try to answer questions within the space given. If you run out of space, then you can attach
extra pages. If you do, then please mark this very clearly on the exam.

• If a question does not specifically ask for a motivation, then the correct answer alone will give
full points. You are welcome to enter a brief explanation of how you arrived at the answer —
this might yield partial credit in case the given answer is incorrect. (An exception is question
1, where no motivations will be considered in the grading.)

• In this exam, the default is that for a vector x, the notation ‖x‖ denotes the Euclidean norm.
For a matrix A, the notation ‖A‖ refers to the operator norm with respect to the Euclidean
vector norm, and ‖A‖F refers to the Frobenius norm.

• A star next to a question means that you might find it slightly more challenging. Note that
most of these questions are given only a small amount of points, so you might want to save
them for last.

• If A is a matrix, then A∗ refers to the complex conjugate of the transpose of A (or merely the
transpose when A is real).

Advice: Question 1 should not take long — if a problem resists, then just move on and return to it
later.

Name:

Question Max points Scored points
1 30
2 15
3 15
4 15
5 25
Total:



Question 1: (30p) For this question, please enter only the answer. (Motivations will not be considered
in grading it.) 6 points per sub question.

(a) The 5 × 3 matrix A has the singular values {3, 2, 1}. Specify the spectral and Frobenius norms of
A and its inverse:

‖A‖ = 3 ‖A‖F =
√

32 + 22 + 12 =
√

14 ‖A−1‖ = 1 ‖A−1‖F =
√

1/32 + 1/22 + 12 = 7/6

(b) The matrix Q = 1√
6


1 α 2
2 0 β
0 2 γ
−1 1 0

 is orthonormal (so that Q∗Q = I). Specify the missing entries:

α = 1 β = −1 γ = −1

To determine α, use that q1 · q2 = 0. The determine β and γ, use that q1 · q3 = 0 and that q2 · q3 = 0.

(c) Let A be an m × n non-zero matrix, and let b be a vector of size m × 1. Specify the definition of
the “least square solution x to the linear system Ax = b”. For full credit, you cannot assume that A
has full column rank.

There are two conditions:
(1) The vector x should satisfy ‖Ax− b‖ = infy ‖Ay − b‖.
(2) Among all vectors x that satisfy (1), the least square solution is the one with the smallest norm.

Answers that omitted part (2), or relied on the invertibility of the normal equations, got partial credit.

(d) You are given a matrix A of size m×n and a vector b of size m× 1. Let x denote the least squares
solution to the linear system Ax = b. You know that ‖b‖ = 5 and that ‖Ax‖ = 2. Specify the length
of the residual vector r = b− Ax:

Observe that Ax ⊥ r. In consequence:

‖b− Ax‖ =
√
‖b‖2 − ‖Ax‖2 =

√
52 − 22 =

√
21.

(e) Let n be a positive integer, and let In denote the n × n identity matrix. Consider the matrix

An =

[
In In
−In In

]
. Specify the spectral and Frobenius norms of An:

‖An‖F =
√

4n = 2
√
n ‖An‖ =

√
‖A∗nAn‖ =

√
‖
[

2In 0
0 2In

]
‖ =

√
2‖I2n‖ =

√
2.

Hint: To determine the spectral norm, you may find it useful to evaluate A∗nAn.



Question 2: (15p) Let A be an m× n matrix with the singular value decomposition

A = U D V∗,
m× n m×m m× n n× n

where U and V are unitary, and D is a diagonal matrix. Set p = max(m,n), and let {σj}pj=1 denote
the diagonal entries of D, ordered so that σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, as usual.

(a) (3p) Prove that since U is unitary, ‖Ux‖ = ‖x‖ for every x ∈ Cm×1.

(b) (6p) Prove that ‖Ax‖ ≤ σ1‖x‖ for all vectors x.

(c) (6p) Prove that there exists a non-zero vector x such that ‖Ax‖ = σ1‖x‖.

(a) For any vector x, we have

‖Ux‖2 = (Ux)∗ · (Ux) = x∗U∗Ux = {U∗U = I} = x∗x = ‖x‖2.

(b) Fix a vector x ∈ Cn. Set y = V∗x. Then

‖Ax‖2 = ‖UDV∗x‖2 = {Use (a)} = ‖DV∗x‖2 = ‖Dy‖2 =

p∑
j=1

|σjyj |2

≤ σ21
p∑

j=1

|yj |2 ≤ σ21‖y‖2 = {Use (a)} = σ21‖x‖2.

(c) Pick x = v1, where v1 = V(:, 1) is the first column of V. Then

‖Ax‖ = ‖UDV∗v1‖ = ‖UDe1‖ = ‖σ1u1‖ = σ1,

where e1 = [1, 0, 0, . . . , 0]∗ is the first canonical unit vector, and u1 = U(:, 1).

Note: Many answers involved the argument ‖UDV∗x‖ = ‖DV∗x‖ = ‖Dx‖ with the argument being that
U and V are unitary. The first equality is correct, but the second is emphatically not.



Question 3: (15p) Consider the function

f(x) =
1−
√

1− x3
x2

,

defined for x ∈ (0, 1]. For questions (a) and (b), please provide brief motivations — merely answering
“yes” or “no” will not give full credit!

(a) (4p) Is the function f well-conditioned on the interval (0, 0.5]? (See hint at bottom of page.)

(b) (4p) Is the function f well-conditioned on the interval (0, 1]? (See hint at bottom of page.)

(c) (4p) Estimate the number y = f(10−7) in such a way that the first fifteen digits (beyond the first
nonzero digit) are correct. Your answer should be an actual number (not a formula).

(d) (3p) Describe how you would evaluate f(x) in Matlab (or on a scientific calculator) for small x to
reduce the effect of round-off errors.

Before we answer the questions, let us differentiate f :

f ′(x) = (−2)x−3(1−
√

1− x3)+x−2(3x2)(1/2)(1−x3)−1/2 = −2x−3(1−
√

1− x3)+(3/2)(1−x3)−1/2.
We see that f ′(x) blows up as x→ 1. The other potential trouble point is x→ 0. To see what happens
there, let us do a Taylor expansion:

f(x) = x−2(1− (1− 1

2
x3 +O(x6))) = x−2(

1

2
x3 +O(x6)) =

1

2
x+O(x4).

(a) The only potential trouble point is x→ 0. We find:

κf (x) =
|f ′(x)| |x|
|f(x)|

=
|(1/2) +O(x3)| |x|
|(1/2)x+O(x4)|

= 1 +O(x3).

So the function is well-conditioned for x ∈ (0, 1/2].

Note: For a full 4p score, you needed the right answer, and an argument that clearly shows why the
limit of κf (x)→ 0 is finite. 3p for an answer without the argument on the limit.

(b) As x → 1, we have |f ′(x)| → ∞, while |x| → 1 and |f(x)| → 1. So κ blows up and the problem is
ill-conditioned.

(c) Using the first term in the Taylor expansion, we get

f(x) ≈ 1

2
x = 0.5 · 10−7.

(The question did not ask for a proof of the number of correct digits, but out of curiosity, let us try to
estimate it: The error term is of the order x4, so the relative error is of magnitude x4/x ∼ x3 ∼ 10−21

so it appears that our approximation does have 15+ correct digits.)

(d) Let us rearrange f to a mathematically equivalent expression:

f(x) =
1−
√

1− x3
x2

· 1 +
√

1− x3

1 +
√

1− x3
=

1− (1− x3)
x2(1 +

√
1− x3)

=
x3

x2(1 +
√

1− x3)
=

x

(1 +
√

1− x3)
.

The last expression can be just typed in to matlab or a calculator, and will give a good answer for x
close to zero. The formula given can be used to answer (c)!



Question 4: (15p) Consider the three matrices

A =


4 2 4
0 1 1
3 1 1
0 3 −3

 , B =


5.0 2.2 3.8

0 1 1
0 0.4 1.6
0 3 −3

 , C =


0 0 6
0 1 1
−1 −1 3
−4 1 −1

 .
Fully correct answers yield full score without any motivation. In case there are errors in the answer, a
brief description of how you computed it might result in partial credit.

(a) (6p) Specify a Householder reflector H such that HA = B.

(b) (6p) Specify a Householder reflector G such that AG = C.

(c) (3p) Specify a QR factorization A∗ = QR. Please specify only the answer, no motivation.

(a) Let x = [4, 0, 3, 0]∗ denote the first column of A. We want Hx = 5 e1. This is attained for
H = I− (2/‖u‖2)uu∗ where

u = 5e1 − x = [5, 0, 0, 0]∗ − [4, 0, 3, 0]∗ = [1, 0,−3, 0]∗.

We find

H = I− (2/10)


1
0
−3

0

 [1, 0,−3, 0] =


0.8 0 0.6 0

0 1 0 0
0.6 0 −0.8 0

0 0 0 1


(b) Let y = [4, 2, 4]∗ denote the first row of A. We want Gy = 6 e3. This is attained for G =
I− (2/‖v‖2)vv∗ where

v = 6e3 − y = [0, 0, 6]∗ − [4, 2, 4]∗ = [−4,−2, 2]∗.

We find

G = I− (2/24)

 −4
−2

2

 [−4,−2, 2] =
1

3

 −1 −2 2
−2 2 1

2 1 2


(c) From (b), we know that AG = C, so that

A∗ = GC∗.

This is almost a QR factorization of A∗, since G is unitary, and C∗ is lower triangular. To convert C∗

to upper triangular, all we need to do is to reorder its rows, and then of course reorder the columns of
G accordingly. We find

A∗ =
1

3

 2 −2 −1
1 2 −2
2 1 2


︸ ︷︷ ︸

=Q

 6 1 3 −1
0 1 −1 1
0 0 −1 −4


︸ ︷︷ ︸

=R

.



Question 5: (25p) Let ε be a positive number, and define

M =

 1 1
1 1
0 0

 , A =

 1 1
1 1
0 ε

 , b =

 1
1
1

 .
(a) (4p) Let x denote the least square solution to the linear system Mx = b, and set r = b −Mx.
Specify x and r. Hint: Observe that M does not satisfy the assumption we often make in the lectures
that the columns be linearly independent.

(b) (4p) Specify the normal equations for the least square problem Ax = b.

(c) (5p) Let x denote the least square solution to the linear system Ax = b, and set r = b−Ax. Specify
x and r.

(a) The column space of M is the set of all vectors of the form [t, t, 0]∗ for t ∈ R. The orthogonal
projection of b onto this space is the vector b′ = [1, 1, 0]∗. So the solution x = [x1, x2, x3]

∗ must satisfy

x1 + x2 = 1, x1 + x2 = 1, 0 = 0.

The solution set consists of all vectors of the form x = [t, 1− t, 0]∗ for t ∈ R. The solution that is closest
to the origin is x = [0.5, 0.5, 0]∗. So

x =

 0.5
0.5

0

 , r = b− b′ =

 1
1
1

−
 1

1
0

 =

 0
0
1

 .
(b) The normal equations are A∗Ax = A∗b, which in this case works out to:[

2 2
2 2 + ε2

]
x =

[
2

2 + ε

]
.

(c) Solving the normal equation we derived in (b), we find that

x =

[
2 2
2 2 + ε2

]−1 [
2

2 + ε

]
=

1

2ε2

[
2 + ε2 −2
−2 2

] [
2

2 + ε

]
=

1

2ε2

[
2ε2 − 2ε

2ε

]
=

[
1− 1/ε

1/ε

]
For the residual, we get

r = Ax− b =

 (1− 1/ε) + 1/ε
(1− 1/ε) + 1/ε

ε(1/ε)

−
 1

1
1

 =

 1
1
1

−
 1

1
1

 = 0.



(d) (5p) Suppose that ε = 10−10 and that you work on a computer for which εmach = 10−15. Discuss
what difficulties you may encounter if you use the normal equations you specified in (b) to compute
the solution to (c).

(e) (5p) Let A = QR be the QR factorization of A. Specify Q, R, and R−1. Would you encounter
difficulties if ε = 10−10, and you use QR to compute the least square solution x?

(d) If ε = 10−10, then when we evaluate the normal equations in floating point arithmetic, the entry
2 + ε2 will be rounded to 2. So the normal equations we will actually obtain involve the singular

coefficient matrix

[
2 2
2 2

]
.

(e) We perform Gram-Schmidt on the columns of A to find that

r11 = ‖a1‖ =
√

2,

q1 = a1/r11 = [1/
√

2, 1/
√

2, 0]∗,

r12 = q1 · a2 =
√

2,

a′2 = a2 − r12q1 = [0, 0, ε]∗,

r22 = ‖a′2‖ = ε,

q2 = a′2/r22 = [0, 0, 1]∗.

So

A =

 1/
√

2 0

1/
√

2 0
0 1


︸ ︷︷ ︸

=Q

[ √
2
√

2
0 ε

]
︸ ︷︷ ︸

=R

.

We then get

R−1 =
1√
2ε

[
ε −

√
2

0
√

2

]
=

[
1/
√

2 −1/ε
0 1/ε

]
.

Using the QR factors to compute the least squares solution, we get

x = R−1Q∗b =

[
1/
√

2 −1/ε
0 1/ε

] [
1/
√

2 1/
√

2 0
0 0 1

] 1
1
1

 =

[
1/
√

2 −1/ε
0 1/ε

] [ √
2
1

]
=

[
1− 1/ε

1/ε

]
.

All these entries can be evaluated accurately. (Well, to be precise, to about 5 accurate digits, which is
the best we can hope for since in this case, κ(A) ≈ 2

√
2/ε ∼ 1010.)


