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Nested dissection ordering of a uniform grid on a square. The hierarchical tree has 5

levels in this example.

Problem: There is a lot of “communication” between nodes at different levels.
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The figure illustrates the dependencies between clusters in executing an LU factorization
based on the nested dissection ordering shown in the previous slide. A line in the

diagram between two clusters indicates that the nodes in the two clusters are connected.
If σ and τ are connected, with σ > τ (so that τ is closer to the root of the tree), then what
this means in practice is that after the cluster σ has been processed, then the blocks

L(Iτ , Iσ) and U(Iσ, Iτ ) must be updated. Note that some clusters (e.g. cluster 19)
communicate with every single one of their ancestors in the tree.



It is possible to recast the method slightly to obtain a tree like this:

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Any node talks only to its two children, and to its parent.



Let τ denote a leaf. Partition
I = Ii ∪ Ib ∪ Ie

standing for interior, boundary, and exterior. In the figure, these index vectors are shown
as blue for Ii, red for Ib, and gray for Ie.) The equilibrium equations for box τ read

(1)
[
Aii Aib

Abi Abb

] [
ui

ue

]
+

[
0
Abe

]
ue = 0.

Solve for ui to get
ui = −A−1ii Aibub.

Upon elimination of ui we get the new equilibrium equation(
Abb − AbiA−1ii Aib

)
ub + Abeue = 0.

Define

Sτ = − A−1ii Aib,(2)
Tτ = − AbiA−1ii Aib.(3)
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We can use the DtN maps for two leaves to build the DtN map for the parent.

A11 + Tα11 + Tβ11 Tα12 Tβ13 A14
Tα21 A2,2 + Tα22 0 A24
Tβ31 0 A3,3 + Tβ33 A34
A41 A42 A43 A44




u1
u2
u3
u4

 +


0

A2,e

A3,e

A4,e

ue = 0.

Eliminating u1 we find the reduced equilibrium equation

A2,2 0 A24

0 A3,3 A34

A42 A43 A44


︸ ︷︷ ︸

=Abb

+


Tα22 0 0
0 Tβ33 0
0 0 0

−


Tα21
Tβ31
A41

(A1,1 + Tα11 + Tβ11
)−1[Tα12 Tβ13 A14

]
︸ ︷︷ ︸

=Tbb



u2

u3

u4

 +


A2e

A3e

A4e

ue = 0.

The local solution operator is

Sτ = −
(
A1,1 + Tα11 + Tβ11

)−1[Tα12 Tβ13 A14
]
.



Outline of direct solver
All direct solvers to be described are based on hierarchical domain decomposition.
Consider a PDE Au = f defined on a square Ω = [0,1]. Put a grid on the square.
Split the domain into “small” patches we call “leaves” (they will be organized in a tree).
On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator).
This eliminates “internal” grid points from the computation. (“Static condensation.”)
Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.
Continue merging by pairs, organizing the domain in a tree of patches.
When you reach the top level, perform a solve on the reduced problem by brute force.
Then reconstruct the solution at all internal points via a downwards pass.

The original grid.
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(1)
→

Leaves reduced.
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Outline of direct solver
All direct solvers to be described are based on hierarchical domain decomposition.
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Continue merging by pairs, organizing the domain in a tree of patches.
When you reach the top level, perform a solve on the reduced problem by brute force.
Then reconstruct the solution at all internal points via a downwards pass.

Full solution.

(6)
←

Solve.

(5)
←

Solve.

(4)
←

Top level solve.



Upwards pass — build all solution operators:

(1)
→

(2)
→

(3)
→

The original grid. Leaves reduced. After merge. After merge.

Downwards pass — solve for a particular data function (very fast!):

(6)
←

(5)
←

(4)
←

Full solution. Solve. Solve. Top level solve.

Well-established idea: Classical multifrontal / nested dissection method (1973).

Alan George Iain Duff Tim Davis
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We will next build a direct solver that explicitly builds an approximate DtN operator.



Consider a domain Ω on which we are given a PDE

(4)

−∆u(x) + b(x)u(x) = 0, x ∈ Ω

u(x) = f (x) x ∈ ∂Ω,

where b = b(x) is a given function (smooth, non-negative).

Ω

Ωτ

Let Ωτ ⊂ Ω, and suppose that we somehow know the value of u on ∂Ωτ

fτ = u|∂Ωτ .

Now, the restriction of (4) to Ωτ ,

(5)

−∆u(x) + b(x)u(x) = 0, x ∈ Ωτ

u(x) = fτ (x) x ∈ ∂Ωτ ,

has a unique solution, so given fτ , we can determine u|Ωτ , and then also un|∂Ωτ .
We define the Dirichlet-to-Neumann map Tτ as the unique map

Tτ : u|∂Ωτ 7→ un|∂Ωτ , subject to −∆u + b u = 0 in Ωτ .

The map Tτ encodes everything you need to know about Ωτ to solve the PDE on Ω\Ωτ .



Consider a domain Ω on which we are given a PDE

(6)

−∆u(x) + b(x)u(x) = 0, x ∈ Ω

u(x) = f (x) x ∈ ∂Ω,

where b = b(x) is a given function (smooth, non-negative).
Ω

Ωτ

Blue area is Ω\Ωτ .
Suppose we are given Tτ for the sub-domain Ωτ .
Then in Ω\Ωτ , the solution to the boundary value problem

(7)


−∆u(x) + b(x)u(x) = 0, x ∈ Ω\Ωτ

u(x) = f (x) x ∈ ∂Ω,

un(x) = [Tτu](x) x ∈ ∂Ωτ ,

is exactly the same as the solution to (6).

We can split the problem of solving (6) into two parts:
1. Solve the PDE on Ωτ .
2. Solve the PDE on Ωc

τ .
The DtN map allows us to “glue” the two solutions together.



Consider a domain Ω on which we are given a PDE

(8)

−∆u(x) + b(x)u(x) = 0, x ∈ Ω

u(x) = f (x) x ∈ ∂Ω,

where b = b(x) is a given function (smooth, non-negative).
Let Tτ be the DtN map for a subdomain Ωτ ⊂ Ω,

Tτ : u|∂Ωτ 7→ un|∂Ωτ , subject to −∆u + b u = 0 in Ωτ .
Ω

xi
Ωτ

Representing functions on ∂Ωτ numerically:

• Place p Legendre nodes on each side of Ωτ , to get points {xi}
4p
i=1.

• Represent a function w on ∂Ωτ via the vector w ∈ R4p of tabulated values
w(i) = w(xi).

Representing the DtN map Tτ numerically:

• Let Tτ denote the 4p× 4p matrix that takes a vector uτ of tabulated Dirichlet data on
∂Ωτ and maps it to the corresponding vector vτ of tabulated Neumann data.



To illustrate the process for building DtN operators supported on Chebyshev nodes, let
us consider an elliptic Boundary Value Problem (BVP) of the form

(BVP)

−∆u(x) + b(x) u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 and Γ = ∂Ω. The solver relies on a composite spectral grid:

The unknown function u will be represented as a vector holding approximations to its
pointwise values at the grid points (collocation). We will perform a local brute-force solve
on each small square to build a local “solution operator” in the form of a
“Dirichlet-to-Neumann” operator. The global “solution operator” will be built via a
hierarchical merge process.



Classical spectral collocation — notation
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on Ω = [0,1]2.

Pick an integer p and place a Cartesian mesh of p× p Chebyshev nodes on Ω.

Let {xj}
p2
j=1 denote an enumeration of the nodes in the grid.

Partition the index vector I = {1, 2, 3, . . . , p2} = Ii ∪ Ie as follows:
• Ii holds the (p− 2)2 interior nodes (blue dots).
• Ie holds the 4p− 4 exterior nodes (red dots).

Let D(1), D(2), L, denote the p2 × p2 matrices approximating ∂/∂x1, ∂/∂x2, −∆, in the
spectral sense (i.e. they are exact for tensor products of polynomials of degree ≤ p− 1.)



Classical spectral collocation — solving a Dirichlet problem
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0,1]2. The domain is discretized using a p× p tensor product grid of Chebyshev
nodes split into Ie exterior nodes and Ii interior nodes.

Let B denote the diagonal matrix with entries [b(x j)]
p2
j=1 and let L be the spectral

Laplacian. Then A = L + B is our spectral approximation of the differential operator.

Let u ∈ Rp2 denote a vector of approximate values of the solution u, u(j) ≈ u(xj).

For the exterior nodes, simply set u equal to the Dirichlet data: u(j) = f (xj) for j ∈ Ie.

For interior nodes, enforce the PDE via collocation: A(j, :)u = 0 for j ∈ Ii.

Set ui = u(Ii), ue = u(Ie), Ai,i = A(Ii, Ii), and Ai,e = A(Ii, Ie).
Then the collocation condition can be written

Ai,i ui + Ai,e ue = 0.

Solving for ui we find the solution process:

ue = fe = [f (xj)]j∈Ie
ui = − A−1i,i Ai,e fe.



Classical spectral collocation — build the Dirichlet-to-Neumman (DtN) map
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0,1]2. The domain is discretized using a p× p tensor product grid of Chebyshev
nodes split into Ie exterior nodes and Ii interior nodes.

At this point, we have constructed a linear map from Dirichlet data fe to the full solution
vector u via:

1. For exterior nodes, set the potential to equal the given Dirichlet data

ue = [f (xj)]j∈Ie = fe.

2. For the interior nodes, enforce the PDE via spectral collocation,

Ai,iui + Ai,eue = 0.

Solving for ui, we find ui = −A−1i,i Ai,e fe.

New objective: We seek to build the Dirichlet-to-Neumann (DtN) map that maps given
Dirichlet data to the corresponding boundary fluxes. This map acts as a local solution
operator that encodes all information about the box that we need to solve the global
problem.
Solution: Simply apply spectral differentiation to the constructed solution u = [ui, ue].
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Classical spectral collocation — build the Dirichlet-to-Neumman (DtN) map
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0,1]2. The domain is discretized using a p× p tensor product grid of Chebyshev
nodes split into Ie exterior nodes and Ii interior nodes.

At this point, we have constructed a linear map from Dirichlet data fe to the full solution
vector u via:

1. For exterior nodes, set the potential to equal the given Dirichlet data

ue = [f (xj)]j∈Ie = fe.

2. For the interior nodes, enforce the PDE via spectral collocation,

Ai,iui + Ai,eue = 0.

Solving for ui, we find ui = −A−1i,i Ai,e fe.

3. Now that u is known at all nodes, apply the spectral differentiation matrices D(1) or
D(2) to compute the boundary fluxes. (Corners get special treatment.)



Merging two DtN operators
Question: Given DtN matrices of two boxes, how form the DtN matrix of the union box?

Answer: Let the rectangular domain Ω be formed by two squares Ωα and Ωβ. The sets
I1, I2, and I3 form the exterior nodes, while I4 consists of the interior nodes.

Ωα ΩβI1 I2I3

Ic

Let vj denote the boundary fluxes on side j, and let uj denote the potential. Then from
the left and the right DtN maps we get the equilibrium equations[

v1
v3

]
=

 Tα1,1 Tα1,3
Tα3,1 Tα3,3

 [ u1
u3

]
, and

[
v2
v3

]
=

 Tβ2,2 Tβ2,3
Tβ3,2 Tβ3,3

 [ u2
u3

]
.
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 [ u1
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]
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[
v2
v3

]
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 [ u2
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.



Collating the two equilibrium equations (by eliminating v3) we get
Tα1,1 0 Tα1,3

0 Tβ2,2 Tβ2,3
Tα3,1 −T

β
3,2 Tα3,3 − Tβ3,3



u1
u2
u3

 =


v1
v2
0

 .
Eliminate u3 to find the desired map[

v1
v2

]
= Tτ

[
u1
u2

]
where

Tτ =

 Tα1,1 0
0 Tβ2,2

−
 Tα1,3
Tβ2,3

(Tα3,3 − Tβ3,3
)−1 [ 1

2T
α
3,1 −

1
2T

β
3,2

]
.

(We skipped a step — the corner nodes are eliminated by re-interpolating to Legendre
nodes on the boundaries.)



Illustration of the merge operation

Before elimination of interior (blue) nodes:

After elimination of interior nodes:



Model problem: Given f and b, find u such that−∆u(x) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Pre-process: Put down a spectral composite grid on Ω (Chebyshev nodes):



Model problem: Given f and b, find u such that−∆u(x) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Eliminate the interior (blue) nodes.
Technically, we compute the Dirichlet-to-Neumann operator via a local spectral
computation.
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Model problem: Given f and b, find u such that−∆u(x) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Retabulate from Chebyshev to Legendre nodes on boundaries.



Model problem: Given f and b, find u such that−∆u(x) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.
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u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Top level solve: Invert the DtN operator for the top level box.



Model problem: Given f and b, find u such that−∆u(x) + b(x)u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.
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Summary of the hierarchical scheme:

1. Construct a quad-tree: Partition the grid into a hierarchy of boxes.

2. Process the leaves: For each leaf box in the tree, construct its DtN
(Dirichlet-to-Neumann) operator.

3. Hierarchical merge: Loop over all levels of the tree, from finer to smaller. For each
box on a level, compute its DtN operator by merging the (already computed) DtN
operators of its children.

4. Process the root of the tree: After completing Step 3, the DtN operator for the entire
domain is available. Invert (or factor) it to construct the solution operator.

The first solve costs O(N1.5) operations.

Subsequent solves cost O(N logN) operations.

Remark: For simplicity, the algorithm is described in a level-by-level manner (process all
leaves first, then proceed one level at a time in going upwards). In fact, there is flexibility
to travel through the tree in any order that ensures that no node is processed before its
children. Since all Schur complements can be discarded once their information has been
passed on to a parent, smarter orderings can greatly reduce the memory requirements.



Note: Very high order schemes can be used while retaining “thin” borders between
boxes. Recall that a major drawback of classical nested dissection schemes is that their
performance plummets when high-order discretization schemes are used.

Note: There are no corner singularities!

The exact mathematical object we are approximating is the Dirichlet-to-Neumann
operator for a rectangle. This object exhibits complicated (singular) behavior near the
corners.

However, we are only concerned with the “projection” of the exact operator onto a space
of smooth functions. In particular, we need high accuracy only for functions that are
restrictions of smooth global solutions.



Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
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Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 21× 21 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note 3: Keeping a fixed number of points per wave-length works well for this scheme!



Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 41× 41 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

41 6561 6.7 1.50 0.0025 9.88931e-14 3.46762e-12 7.9 157.5
41 25921 13.3 4.81 0.0041 1.58873e-13 1.12883e-11 32.9 166.4
41 103041 26.7 18.34 0.0162 3.95531e-13 5.51141e-11 137.1 174.4
41 410881 53.3 75.78 0.0672 3.89079e-13 1.03546e-10 570.2 181.9
41 1640961 106.7 332.12 0.2796 1.27317e-12 7.08201e-10 2368.3 189.2

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note 3: Keeping a fixed number of points per wave-length works well for this scheme!



Spectral composite method: numerical results
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The line tsolve scales perfectly linearly (until memory problems kick in), as expected.

Interesting: The line tbuild also scales almost linearly. (Unexpectedly?) It turns out that
tbuild is dominated by the leaf computation; we have not yet hit the O(N1.5) asymptotic.



Hierarchical Poincaré-Steklov Method: numerical results — variable coefficients
Now consider the variable coefficient problem

−∆u(x)− κ2
(
1− b(x)

)
u(x) = 0 x ∈ Ω,

u(x) = f (x) x ∈ Γ,

where Ω = [0,1]2, where Γ = ∂Ω, and where b(x) = (sin(4πx1) sin(4πx2))2 .

The Helmholtz parameter was kept fixed at κ = 80, corresponding to a domain size of
12.7× 12.7 wave lengths. The boundary data was given by f (x) = cos(8x1)

(
1− 2x2

)
.

The error estimator Eint
N = uN(x̂)− u4N(x̂) where x̂ = (0.75, 0.25) is reported below:

p N pts per wave uN(x̂) E int
N wN(ŷ) Ebnd

N

21 6561 6.28 -2.448236804078803 -1.464e-03 -32991.4583727724 2.402e+02
21 25921 12.57 -2.446772430608166 7.976e-08 -33231.6118304666 5.984e-03
21 103041 25.13 -2.446772510369452 5.893e-11 -33231.6178142514 -5.463e-06
21 410881 50.27 -2.446772510428384 2.957e-10 -33231.6178087887 -2.792e-05
21 1640961 100.53 -2.446772510724068 -33231.6177808723
41 6561 6.28 -2.446803898373796 -3.139e-05 -33233.0037457220 -1.386e+00
41 25921 12.57 -2.446772510320572 1.234e-10 -33231.6179029824 -8.940e-05
41 103041 25.13 -2.446772510443995 2.888e-11 -33231.6178135860 -1.273e-05
41 410881 50.27 -2.446772510472872 7.731e-11 -33231.6178008533 -4.668e-05
41 1640961 100.53 -2.446772510550181 -33231.6177541722



A curved domain

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ =
{

(y1, y2) : 0 ≤ y1 ≤ 1 0 ≤ y2 ≤ 1
ψ(y1)

}
Ω = [0,1]2

Consider a curved domain Ψ as shown above and the equation

(10)

−∆u(y)− κ2 u(y) = 0 y ∈ Ψ,

u(y) = f (y) y ∈ ∂Ψ.

The reparameterization is y1 = x1 and y2 = ψ(y1) y2, and so the Helmholtz equation (10)
takes the form
∂2u
∂x21

+
2ψ′(x1) x2
ψ(x1)

∂2u
∂x1∂x2

+

(
x22ψ

′(x1)2

ψ(x1)2
+ ψ(x1)2

)
∂2u
∂x22

+
x2ψ′′(x1)

ψ(x1)

∂u
∂x2

+k2u = 0, x ∈ Ω.



Numerical results for curved domain

The equation is (constant coefficient) Helmholtz on a domain of size 35× 50 wave
lengths.

Exact solution known Dirichlet data f = 1
N Epot Egrad E(1)

N E(2)
N E(3)

N
25921 2.12685e+02 3.55772e+04 2.24618e-01 4.99854e-01 6.69023e-01

103041 3.29130e-01 5.89976e+01 1.10143e-02 5.28238e-03 6.14890e-02
410881 1.40813e-05 1.98907e-03 4.57900e-06 2.18438e-06 1.13415e-05

1640961 7.22959e-10 1.17852e-07 5.12914e-07 1.67971e-06 4.97764e-06
3690241 1.63144e-09 2.26204e-07 — — —



Hierarchical Poincaré-Steklov Method: “FEM-BEM coupling”
Consider the free space acoustic scattering problem

−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Joint work with A. Barnett and A. Gillman.

Introduce an artificial box Ω such that support(b) ⊆ Ω.

On Ω:
• Variable coefficient PDE.

On Ωc:
• Constant coefficient PDE.

• Use HPS. • Use BIE.
• Build DtN for ∂Ω. • Build DtN for ∂Ωc.

• Merge using fast operator algebra!
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Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b
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The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(κ x1))
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Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — now a photonic crystal with a wave guide.

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−6 (estimated)



Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(κ x1)).


