
MATH 393C: Fast Methods in Scientific Computing

Lecture on April 11, 2019

P.G. Martinsson

The University of Texas at Austin



In this lecture, we develop a direct solver for an integral equations such as

(1) α q(x) +

∫
Γ
k(x,y)q(y)dS(y) = f (x), x ∈ Γ,

where Γ is a contour in R2 or a surface in R3. We’ll do 2D first, and will then generalize.

Upon Nyström discretization (see Lecture 7), the BIE (1) turns into the linear system
A q = f,

N × N N × 1 N × 1
where A is a dense N × N matrix.

Standard approach: Use an iterative solver (e.g. GMRES, CG), combined with an O(N)

method for evaluating x 7→ Ax such as the Fast Multipole Method (FMM) or panel
clustering. When convergence is fast, optimal O(N) complexity results.

New approach: We seek to construct a direct solver which in a single sweep constructs
a data-sparse representation of an operator B such that B ≈ A−1. Why?
• Can solve problems for which iterative methods converge slowly or not at all.
• Very fast when solving a sequence of equations with the same operator.
• Good for modern computers (low communication, memory and flops are cheap).

Key observation: The off-diagonal blocks of A tend to have low numerical rank.
(Note that for high-frequency problems, other structure in A is used.)



The direct solvers are (like the FMM, panel clustering, H-matrices, ... ) based on
hierarchical partitioning of the physical domain.

Example: Consider a BIE defined on a contour Γ ⊂ R2.

Γ = Γ1 Γ2Γ3 Γ4

Γ5

Γ6

Γ7

Let Γ = Γ1 denote the root of a tree.

Partition Γ1 into two pieces Γ1 = Γ2 ∪ Γ3.

Further partition Γ2 = Γ4 ∪ Γ5 and Γ3 = Γ6 ∪ Γ7.



The tree partitioning corresponds to a partitioning of the index vector I = [1,2,3, . . . ,N].

For instance, if N = 400, and we use a tree with 4 levels, and split the index vector by
halves each time, we get:

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

Note: This simplistic illustration would be accurate for a simple curve.
For complicated curves, for surfaces/volumes, etc, the index vectors are not contiguous.
The key is to subdivide based on locations {xi}Ni=1 in physical space.

Claim: The matrix A resulting upon discretization of a BIE on a curve can often be
represented as an “S-matrix” with low or moderate ranks.



Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour.

“Combined field” kernel:

K (x,x ′) = log |x−x ′|+n′ · (x − x ′)
|x − x ′| .

48

48

20

20

20

20

17

17

16

16

16

16

17

17

Rank structure of A. acc=1.00e−10  ntot=400

Ranks of off-diagonal blocks.



Example 1: Laplace problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour.

“Combined field” kernel:

K (x,x ′) = log |x−x ′|+n′ · (x − x ′)
|x − x ′| .

0 20 40 60 80 100 120 140 160 180 200
10

−20

10
−15

10
−10

10
−5

10
0

 

 

svd(A
2,3

)

Singular values of A2,3

(top right quadrant of A)



Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 1.2λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)

48

48

20

20

20

20

17

17

17

17

17

17

18

18

Rank structure of A. acc=1.00e−10  ntot=400

Ranks of off-diagonal blocks.



Example 2: Helmholtz problem discretized with Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 1.2λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)

0 20 40 60 80 100 120 140 160 180 200
10

−20

10
−15

10
−10

10
−5

10
0

10
5

 

 

svd(A
2,3

)

Singular values of A2,3

(top right quadrant of A)



Example 3: medium-frequency Helmholtz, Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 29λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)

87

87

32

32

32

32

25

25

27

27

27

27

25

25

Rank structure of A. acc=1.00e−10  ntot=400

Ranks of off-diagonal blocks.



Example 3: medium-frequency Helmholtz, Kolm-Rokhlin quadrature, n = 400.

The contour, diameter = 29λ.

“Combined field” kernel:

K (x,x ′) = i κH0(κ|x − x ′|)
+ ∂n′H0(κ|x − x ′|).

(the weights might be off...)

0 20 40 60 80 100 120 140 160 180 200
10

−20

10
−15

10
−10

10
−5

10
0

10
5

 

 

svd(A
2,3

)

Singular values of A2,3

(top right quadrant of A)



The “simple” S-matrix format can be used to build direct solvers for BIEs, but we will use
a more efficient format called the Hierarchically Block Separable (HBS) format
(sometimes called “Hierarchically Semi Separable (HSS)” format).

First we introduce block separable matrices. Consider a linear system

Aq = f,

where A is a “block-separable” matrix consisting of p× p blocks of size n× n:

A =


D4 A45 A46 A47
A54 D5 A56 A57
A64 A65 D6 A67
A74 A75 A76 D7

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j
n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n.
The critical part of the assumption is that all off-diagonal blocks in the i ’th row use the
same basis matrices Ui for their column spaces (and analogously all blocks in the j ’th
column use the same basis matrices Vj for their row spaces).



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U4 must span the column space of the matrix A(I4, Ic4) where
I4 is the index vector for the first block and Ic4 = I\I4.

A(I4, Ic4)

The matrix A



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U5 must span the column space of the matrix A(I5, Ic5) where
I5 is the index vector for the first block and Ic5 = I\I5.

A(I5, Ic5)

The matrix A



Recall A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .

Then A admits the factorization:

A =


U4

U5
U6

U7


︸ ︷︷ ︸

=U


0 Ã45 Ã46 Ã47

Ã54 0 Ã56 Ã57
Ã64 Ã65 0 Ã67
Ã74 Ã75 Ã76 0


︸ ︷︷ ︸

=Ã


V∗4

V∗5
V∗6

V∗7


︸ ︷︷ ︸

=V∗

+


D4

D5
D6

D7


︸ ︷︷ ︸

=D
or

A = U Ã V∗ + D,
p n× p n p n× p k p k × p k p k × p n p n× p n



Lemma: [Variation of Woodbury] If an N × N matrix A admits the factorization
A = U Ã V∗ + D,

p n× p n p n× p k p k × p k p k × p n p n× p n

then
A−1 = E (Ã + D̂)−1 F∗ + G,

p n× p n p n× p k p k × p k p k × p n p n× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1U

)−1
, E = D−1U D̂, F = (D̂ V∗D−1)∗, G = D−1 − D−1U D̂V∗D−1.

Note: All matrices set in blue are block diagonal.

Classical Woodbury:
(
D + UÃV∗

)−1
= D−1 − D−1U

(
Ã + V∗D−1U

)−1V∗D−1.



Derivation of “our” Woodbury: We consider the linear system
D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7




q4
q5
q6
q7

 =


f4
f5
f6
f7

 .
Introduce reduced variables q̃i = V∗i qi.

The system
∑

j Aij qj = fi then takes the form

D4 0 0 0 0 U4Ã45 U4Ã46 U4Ã47
0 D5 0 0 U5Ã54 0 U5Ã56 U5Ã57
0 0 D6 0 U6Ã64 U6Ã65 0 U6Ã67
0 0 0 D7 U7Ã74 U7Ã75 U7Ã76 0
−V∗4 0 0 0 I 0 0 0
0 −V∗5 0 0 0 I 0 0
0 0 −V∗6 0 0 0 I 0
0 0 0 −V∗7 0 0 0 I





q4
q5
q6
q7
q̃4
q̃5
q̃6
q̃7


=



f4
f5
f6
f7
0
0
0
0


.

Now form the Schur complement to eliminate the qj ’s.



After eliminating the “fine-scale” variables qi, we obtain
I V∗4Ã

−1
44U4Ã45 V∗4Ã

−1
44U4Ã46 V∗4Ã

−1
44U4Ã47

V∗5Ã
−1
55U5Ã54 I V∗5Ã

−1
55U5Ã56 V∗5Ã

−1
55U5Ã57

V∗6Ã
−1
66U6Ã61 V∗6Ã

−1
66U6Ã65 I V∗6Ã

−1
66U6Ã67

V∗7Ã
−1
77U7Ã74 V∗7Ã

−1
77U7Ã75 V∗7Ã

−1
77U7Ã76 I




q̃4
q̃5
q̃6
q̃7

 =


V∗4D

−1
4 f4

V∗5D
−1
5 f5

V∗6D
−1
6 f6

V∗7D
−1
7 f7.

 .



After eliminating the “fine-scale” variables qi, we obtain
I V∗4Ã

−1
44U4Ã45 V∗4Ã

−1
44U4Ã46 V∗4Ã

−1
44U4Ã47

V∗5Ã
−1
55U5Ã54 I V∗5Ã

−1
55U5Ã56 V∗5Ã

−1
55U5Ã57

V∗6Ã
−1
66U6Ã61 V∗6Ã

−1
66U6Ã65 I V∗6Ã

−1
66U6Ã67

V∗7Ã
−1
77U7Ã74 V∗7Ã

−1
77U7Ã75 V∗7Ã

−1
77U7Ã76 I




q̃4
q̃5
q̃6
q̃7

 =


V∗4D

−1
4 f4

V∗5D
−1
5 f5

V∗6D
−1
6 f6

V∗7D
−1
7 f7.

 .
We set

Ãii =
(
V∗i D

−1
ii Ui

)−1
,

and multiply line i by Ãii to obtain the reduced system
Ã44 Ã45 Ã46 Ã47
Ã54 Ã55 Ã56 Ã57
Ã64 Ã65 Ã66 Ã67
Ã74 Ã75 Ã76 Ã77




q̃4
q̃5
q̃6
q̃7

 =


f̃4
f̃5
f̃6
f̃7

 .
where

f̃i = Ãii V∗i D
−1
ii fi.



Before compression, we have a pn× pn linear system
p∑

j=1
Aijqj = fi, i = 1,2, . . . ,p.

After compression, we have a pk × pk linear system

Diiq̃i +
∑
i 6=j

Ãijq̃j = f̃i, i = 1,2, . . . ,p.

Recall that k is the ε-rank of Ai,j for i 6= j.
The point is that k < n.

The original matrix

The reduced matrix

The compression algorithm needs to execute the following steps:
• Compute Ui, Vi, Ãij so that Aij = Ui Ãij V∗j .

• Compute the new diagonal matrices D̂ii =
(
V∗i A

−1
ii Ui

)−1.
• Compute the new loads q̃i = D̂ii V∗i A

−1
ii qi.

For the algorithm to be efficient, it has to be able to carry out these steps locally.
To achieve this, we use interpolative representations, then Ãi,j = A(̃Ii, Ĩj).



We have built a scheme for reducing a system of size pn× pn to one of size pk × pk.

→

The computational gain is (k/n)3. Good, but not earth-shattering.

Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster



Formally, one can view this as a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3).

Expressed pictorially, the factorization takes the form
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The inverse of A then takes the form

A−1 = E(3)(E(2)(E(1) D̂(0)
(F(1))∗ + D̂(1))

(F(2))∗ + D̂(2))
(V(3))∗ + D̂(3)

.

All matrices are block diagonal except D̂(0), which is small.



Formal definition of an HBS matrix

Let us first recall the concept of a binary tree on the index vector:

Let A be an N × N matrix.

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N].

For a node τ in the tree, let Iτ denote the corresponding index vector.

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

For nodes σ and τ on the same level, set Aσ,τ = A(Iσ, Iτ ).



Formal definition of an HBS matrix

Suppose T is a binary tree.

For a node τ in the tree, let Iτ denote the corresponding index vector.

For leaves σ and τ , set Aσ,τ = A(Iσ, Iτ ) and suppose that all off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ 6= τ

n× n n× k k × k k × n

For non-leaves σ and τ , let {σ1, σ2} denote the children of σ, and let {τ1, τ2} denote the
children of τ . Set

Aσ,τ =

[
Ãσ1,τ1 Ãσ1,τ2
Ãσ2,τ1 Ãσ2,τ2

]
Then suppose that the off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ 6= τ

2k × 2k 2k × k k × k k × 2k



An HBS matrix A associated with a tree T is specified by the following factors:

Name: Size: Function:
For each leaf Dτ n× n The diagonal block A(Iτ , Iτ ).
node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .
For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .



Inversion of an HBS matrix

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all boxes τ on level `,
if τ is a leaf node
X = Dτ

else
Let σ1 and σ2 denote the children of τ .

X =

[
Dσ1 Bσ1,σ2

Bσ2,σ1 Dσ2

]
end if
Dτ =

(
V∗τ X−1Uτ

)−1.
Eτ = X−1Uτ Dτ .
F∗τ = Dτ V∗τ X−1.
Gτ = X−1 − X−1Uτ Dτ V∗τ X−1.

end loop
end loop

G1 =

[
D2 B2,3
B3,2 D3

]−1
.



function EFG = OMNI_invert_HBS_nsym(NODES)

nboxes = size(NODES,2);

EFG = cell(3,nboxes);

ATD_VEC = cell(1,nboxes);

% Loop over all nodes, from finest to coarser.

for ibox = nboxes:(-1):2

% Assemble the diagonal matrix.

if (NODES{5,ibox}==0) % ibox is a leaf.

AD = NODES{40,ibox};

elseif (NODES{5,ibox}==2) % ibox has precisely two children

ison1 = NODES{4,ibox}(1);

ison2 = NODES{4,ibox}(2);

AD = [ATD_VEC{ison1},NODES{46,ison1};NODES{46,ison2},ATD_VEC{ison2}];

end

% Extract the matrices U and V.

U = NODES{38,ibox};

V = NODES{39,ibox};

% Construct the various projection maps.

ADinv = inv(AD);

ATD = inv(V’*ADinv*U);

ATD_VEC{ibox} = ATD;

EFG{1,ibox} = ADinv*U*ATD;

EFG{2,ibox} = ATD*(V’)*ADinv;

EFG{3,ibox} = ADinv - EFG{1,ibox}*(V’*ADinv);

end

% Assemble the "top matrix" and invert it:

AT = [ATD_VEC{2},NODES{46,2};NODES{46,3},ATD_VEC{3}];

EFG{3,1} = inv(AT);

return



Now let us return to the question of how to compute a block-separable factorization of a
matrix A, where the low-rank factorization is based on an interpolative decomposition.

Example: Consider an N × N matrix A, and a partitioning of the index vector

I = {1, 2, 3, . . . , N} = I4 ∪ I5 ∪ I6 ∪ I7.

We then seek to determine matrices {Uτ , Vτ}7τ=4 and index vectors Ĩκ ⊂ Iκ such that

A(Iτ , Iσ) = Uτ Ãτ,σ V∗σ, σ 6= τ,

where Ãτ,σ = A(̃Iτ , Ĩσ) is a submatrix of Aτ,σ.

In other words, we seek a factorization

A =


U4

U5
U6

U7


︸ ︷︷ ︸

=U


0 Ã45 Ã46 Ã47

Ã54 0 Ã56 Ã57
Ã64 Ã65 0 Ã67
Ã74 Ã75 Ã76 0


︸ ︷︷ ︸

=Ã


V∗4

V∗5
V∗6

V∗7


︸ ︷︷ ︸

=V∗

+


D4

D5
D6

D7


︸ ︷︷ ︸

=D

.



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U4 must span the column space of the matrix A(I4, Ic4) where
I4 is the index vector for the first block and Ic4 = I\I4.

A(I4, Ic4)

The matrix A



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D4 U4 Ã45V∗5 U4 Ã46V∗6 U4 Ã47V∗7

U5 Ã54V∗4 D5 U5 Ã56V∗6 U5 Ã57V∗7
U6 Ã64V∗4 U6 Ã65V∗5 D6 U6 Ã67V∗7
U7 Ã74V∗4 U7 Ã75V∗5 U7 Ã76V∗6 D7

 .
We see that the columns of U5 must span the column space of the matrix A(I5, Ic5) where
I5 is the index vector for the first block and Ic5 = I\I5.

A(I5, Ic5)

The matrix A



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which Uτ
and Vτ contain identity matrices. To review how this works, consider a situation with n
sources in a domain Ω1 inducing m potentials in a different domain Ω2.

Source locations {yj}nj=1 Target locations {xi}mi=1

−→
A21

Let A21 denote the m× n matrix with entries A21(i, j) = log |xi − yj|. Then

f = A21 q = U2 Ã21 V∗1 q
m× 1 m× n n× 1 m× k k × k k × n n× 1



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which Uτ
and Vτ contain identity matrices. To review how this works, consider a situation with n
sources in a domain Ω1 inducing m potentials in a different domain Ω2.

Source locations {yj}nj=1 Target locations {xi}mi=1

−→
Ã21

Let A21 denote the m× n matrix with entries A21(i, j) = log |xi − yj|. Then

f = A21 q = U2 Ã21 V∗1 q
m× 1 m× n n× 1 m× k k × k k × n n× 1

where Ã21 = A21(̃I2, Ĩ1) is a k × k submatrix of A.

The index vector Ĩ1 ⊆ {1, 2, . . . , n} marks the chosen skeleton source locations.

The index vector Ĩ2 ⊆ {1, 2, . . . , m} marks the chosen skeleton target locations.



Review of ID: Consider a rank-k factorization of an m× n matrix: A21 = U2 Ã21V∗1

Sources in Ω1 Targets in Ω2

→
Ã21

To precision 10−10, the rank is 19.

q1
A21 //

V∗1
��

f2

q̂1 Askel
21

// f̂2

U2

OO

Advantages of the ID:
• The rank k is typically close to optimal.
• Applying V∗1 and U2 is cheap — they both contain k × k identity matrices.
• The matrices V∗1 and U2 are well-conditioned.
• Finding the k points is cheap — simply use Gaussian elimination.
• The map Ã12 is simply a restriction of the original map A12.
(We loosely say that “the physics of the problem is preserved”.)
• Interaction between adjacent boxes can be compressed (no buffering required).



Review of ID: Consider a rank-k factorization of an m× n matrix: A21 = U2 Ã21V∗1

Sources in Ω1 Targets in Ω2

To precision 10−10, the rank is 46.

q1
A21 //

V∗1
��

f2

q̂1 Askel
21

// f̂2

U2

OO

Advantages of the ID:
• The rank is k is typically close to optimal.
• Applying V∗1 and U2 is cheap — they both contain k × k identity matrices.
• The matrices V∗1 and U2 are well-conditioned.
• Finding the k points is cheap — simply use Gaussian elimination.
• The map Ã12 is simply a restriction of the original map A12.
(We loosely say that “the physics of the problem is preserved”.)
• Interaction between adjacent boxes can be compressed (no buffering required).



Review of ID: Consider a rank-k factorization of an m× n matrix: A21 = U2 Ã21V∗1

Sources in Ω1 Targets in Ω2

To precision 10−10, the rank is 11.

q1
A21 //

V∗1
��

f2

q̂1 Askel
21

// f̂2

U2

OO

Advantages of the ID:
• The rank is k is typically close to optimal.
• Applying V∗1 and U2 is cheap — they both contain k × k identity matrices.
• The matrices V∗1 and U2 are well-conditioned.
• Finding the k points is cheap — simply use Gaussian elimination.
• The map Ã12 is simply a restriction of the original map A12.
(We loosely say that “the physics of the problem is preserved”.)
• Interaction between adjacent boxes can be compressed (no buffering required).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The matrix



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The matrix

Partition the contour into 16 leaves.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , Icτ) shown in red.

Now let us focus on a single panel Γτ associated with index vector Iτ .

Our task is to determine a basis matrix Uτ and an index vector Ĩτ ⊂ Iτ such that
A(Iτ , Icτ ) = Uτ A(̃Iτ , Icτ )

n× (N − n) n× k k × (N − n)

The most direct way of doing this is to perform Gram-Schmidt on the rows of A(Iτ , Icτ ).

This works great, but it is expensive, since A(Iτ , Icτ ) is big. We seek a local procedure.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

Idea (bad): Ignore all charges in the far-field!

Let I(near)
τ denote the near-field points.

Then factor the smaller matrix B = A(Iτ , I(near)
τ ):

B = Uτ B(J, :)

n× nnear n× k k × nnear

and set Ĩτ = Iτ (J).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

The block G shown in green.Idea: Replace charges in the far-field by “proxy” charges.

Let I(near)
τ denote the near-field points and let G denote a matrix of size n× nproxy that

maps charges on the proxy locations to potentials on Γτ .

Then factor the smaller matrix B = [A(Iτ , I(near)
τ ), G]:

B = Uτ B(J, :)

n× (nnear + nproxy) n× k k × (nnear + nproxy)

and set Ĩτ = Iτ (J).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

The block G shown in green.Idea: Replace charges in the far-field by “proxy” charges.

Let I(near)
τ denote the near-field points and let G denote a matrix of size n× nproxy that

maps charges on the proxy locations to potentials on Γτ .

Then factor the smaller matrix B = [A(Iτ , I(near)
τ ), G]:

B = Uτ B(J, :)

n× (nnear + nproxy) n× k k × (nnear + nproxy)

and set Ĩτ = Iτ (J).



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Idea: Replace charges in the far-field by “proxy” charges.

... execute the same steps for the next panel ...



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Idea: Replace charges in the far-field by “proxy” charges.

... and the next ...



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Once all leaves have been processed, we have in effect eliminated a bunch of points.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour The matrix

Now consider compression of a parent node.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Replace far-field nodes by a small set of proxy charges.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

The contour

Points remaining after compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

All points



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 4 compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 3 compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 2 compression.



Model problem: Consider a collection of points {xi}Ni=1 along a contour Γ.
Let A be the N × N matrix with entries A(i, j) = log |xi − xj| for i 6= j.

After level 1 compression.



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Iτ , Icτ) in red.
A(Icτ , Iτ) in blue.Let Γτ be a panel associated with an index vector Iτ .

Our task is to determine basis matrices Uτ , Vτ and index vectors Ĩτ , Îτ , s.t.
A(Iτ , Icτ ) = Uτ A(̃Iτ , Icτ )

n× (N − n) n× k k × (N − n)
and

A(Icτ , Iτ ) = A(Icτ , Îτ ) V∗τ
(N − n)× n (N − n)× k k × n



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Iτ , Icτ) in red.

Let us first consider the task of finding Uτ . We need to factor

A(Iτ , Icτ ) = Uτ A(̃Iτ , Icτ )

n× (N − n) n× k k × (N − n)



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour The block A(Iτ , I(near)
τ ) shown in red.

The block G shown in green.Everything works the same!

Replace charges in the far-field by “proxy” charges, let I(near)
τ denote the near-field points

and let G denote a matrix of size n× nproxy that maps monopole charges on the proxy
locations to potentials on Γτ . Then factor the smaller matrix B = [A(Iτ , I(near)

τ ), G]:
B = Uτ B(J, :)

n× (nnear + nproxy) n× k k × (nnear + nproxy)

and set Ĩτ = Iτ (J).



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Icτ , Iτ) in blue.

Next we consider the task of finding Vτ . We need to factor

A(Icτ , Iτ ) = A(Icτ , Îτ ) V∗τ
(N − n)× n (N − n)× k k × n



Model problem (non-sym): Consider a collection of points {xi}Ni=1 along a contour Γ.

Let A be the N × N non-symmetric matrix with entries A(i, j) =
(xi − xj) · nj
|xi − xj|2

for i 6= j.

The contour A(Icτ , Iτ) in blue.
G in magenta.Things work almost the same . . .

Replace charges in the far-field by “proxy” charges, let I(near)
τ denote the near-field points

and let G denote a matrix of size n× nproxy that maps dipole charges on Γτ to potentials
on the proxy points. Then factor the smaller problem:A(I(near)

τ , Iτ )

G

 =

A(I(near)
τ , Îτ )

G(:, J)

 V∗τ .



Notes:

• There are in fact two potentially different sets of skeleton points:
1. The incoming skeleton points resulting from an ID of the rows of A(Iτ , Icτ).
2. The outgoing skeleton points resulting from an ID of the columns of A(Icτ , Iτ).

It is possible, and often practical, to enforce that these skeletons be the same.
This can be done by constructing an ID for the rows of [A(Iτ , Icτ ), A(Icτ , Iτ )∗].

• In real life, the presence of quadrature corrections for “near-diagonal” elements
slightly complicates matters. However, these complications can all be handled.

• For Helmholtz, the compression technique based on a proxy domain (e.g. circle) to
account for the far-field has to be modifed to avoid the possibility of resonances
(avoid using resonant radii, or, use two concentric sets of proxy circles separated by
a distance λ/4, or, use both monopoles and dipoles on the proxy surface, etc).

• For other elliptic PDEs (Stokes, elasticity, time-harmonic Maxwell, etc), analogous
representations can be worked out. Each case has its own subtleties, but the basic
ideas carry over. (At least, it currently appears that they do!)

• Some care is necessary in determining how finely to sample the proxy surface, in
particular for Helmholtz.



A “volume filling” domain: Now consider a contour like this:

Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +

∫
Γ

log |x − y |q(y)dA(y), x ∈ Γ,

where Γ is the collection of ellipses shown.



We must now use a binary tree based on splitting in physical space (as opposed to
parameter space).

1

Level 0

2 3

Level 1

4

5

6

7

Level 2

8 9

10 11

12 13

14 15

Level 3

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Level 4



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

Ωτ

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

Ωτ

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.
(gray points are inactive)

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle the same as
before, but the proxy surfaces are chosen a bit differently.

Ωτ

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.
(gray points are inactive)

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Original set of points



Skeleton points on level 4, acc =  1.000e−09



Skeleton points on level 3, acc =  1.000e−09



Skeleton points on level 2, acc =  1.000e−09



Skeleton points on level 1, acc =  1.000e−09



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

Nτ Number of discretization points in τ .
n Number of points in the skeletons for the children of τ .
g Number of points in the proxy contour.
k Rank of interaction between τ and the outside world.

Then

Cost of compressing τ ∼ n g k
Cost of building local operators τ ∼ n3

Unfortunately, for a “volume filling” set of points, we have

n ∼
√

Nτ , g ∼
√

Nτ , k ∼
√
Nτ ,

so the overall cost of the direct solver is O(N3/2).



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

Nτ Number of discretization points in τ .
n Number of points in the skeletons for the children of τ .
g Number of points in the proxy contour.
k Rank of interaction between τ and the outside world.

Then

Cost of compressing τ ∼ n g k
Cost of building local operators τ ∼ n3

Unfortunately, for a “volume filling” set of points, we have

n ∼
√

Nτ , g ∼
√

Nτ , k ∼
√
Nτ ,

so the overall cost of the direct solver is O(N3/2).



Good news: The direct solver based on HBS matrix algebra works with only minor
modifications.

Bad news: The simple direct solver no longer has O(N) complexity.

Complexity analysis: For a box τ , define quantities:

Nτ Number of discretization points in τ .
n Number of points in the skeletons for the children of τ .
g Number of points in the proxy contour.
k Rank of interaction between τ and the outside world.

Then

Cost of compressing τ ∼ n g k
Cost of building local operators τ ∼ n3

Unfortunately, for a “volume filling” set of points, we have

n ∼
√

Nτ , g ∼
√

Nτ , k ∼
√

Nτ ,

so the overall cost of the direct solver is O(N3/2).



A surface in 3D: Now consider a surface in R3:

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space

Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +

∫
Γ

1
|x − y | q(y)dA(y), x ∈ Γ,

where Γ is the “torus-like” domain shown (it is deformed to avoid rotational symmetry).



We construct a tree by bisecting in parameter space — level 1.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2 3

Tessellation in parameter space at level 1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

Tessellation in physical space at level 1



We construct a tree by bisecting in parameter space — level 2.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

4 5 6 7

Tessellation in parameter space at level 2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

Tessellation in physical space at level 2



We construct a tree by bisecting in parameter space — level 3.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

8

9

10

11

12

13

14

15

Tessellation in parameter space at level 3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

Tessellation in physical space at level 3



We construct a tree by bisecting in parameter space — level 4.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

Tessellation in parameter space at level 4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

Tessellation in physical space at level 4



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

Γτ

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

Γτ

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

Γτ

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

The domain in physical space



0 1 2 3 4 5 6

0

0.5

1

1.5

2

The domain in parameter space



0 1 2 3 4 5 6

0

0.5

1

1.5

2

The domain in parameter space



0 1 2 3 4 5 6

0

0.5

1

1.5

2

The domain in parameter space



0 1 2 3 4 5 6

0

0.5

1

1.5

2

The domain in parameter space



0 1 2 3 4 5 6

0

0.5

1

1.5

2

The domain in parameter space



0 1 2 3 4 5 6

0

0.5

1

1.5

2

The domain in parameter space



Example: Consider free space scattering from a domain with variable wave speed.
Given an “incoming wave” v, we seek to determine an “outgoing wave” u that solves

−∆u(x)− k2 (1− b(x))u(x) =− k2 b(x) v(x) x ∈ R2(2)
lim
|x|→∞

√
|x|
(
∂|x|u(x)− ik u(x)

)
= 0(3)

We suppose that b is a smooth “scattering potential” whose support is contained to
some rectangle Ω, support(b) ⊂ Ω.

The scattering potential specifies the deviation of the local wave speed v = v(x) from

the free space wave speed vfree: b(x) = 1−
(
vfree
v(x)

)2
.

We look for a solution of the form

(4) u(x) = [φκ ∗ q](x) =

∫
R2
φκ(x − y)q(y)dA(y).

where φκ(x) = H(1)
0 (κ|x|) is the free space fundamental solution. u satisfies (3)

automatically, and (2) is satisfied if q satisfies the Lippman-Schwinger integral equation:

(5) q(x) + κ2 b(x)

∫
Ω
H(1)
0 (κ|x − y |)q(y)dA(y) = −κ2 b(x) v(x), x ∈ Ω.

Observe that (5) is a local equation defined on the bounded set Ω.
(It is also a second kind Fredholm equation, which is very nice.)



Recall: We seek to solve q(x) + κ2 b(x)

∫
Ω

H(1)
0 (κ|x − y |)q(y)dA(y) = −κ2 b(x) v(x), x ∈ Ω.

We discretize Ω using a uniform grid, and then split the points into a quad-tree:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Now discretize the integral equation using Nyström with the trapezoidal rule.

A small number of elements “close to the diagonal” (in physical space) are modified
since the kernel in the integral is singular, but most matrix elements are given by

A(i, j) = κ2 b(xi)H
(1)
0 (κ|xi − xj|)

√
wi wj.

We will build a direct solver for Aq = f, where f(i) = −κ2 b(xi) v(xi)
√wi.



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Iτ .
• Points in Icτ .

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Iτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).



Compression stage: Finding Ĩτ , Uτ , and Vτ , for a box τ works in principle as before.

• Points in Ĩτ .
• Points in I(near)

τ .
• Points in Γproxy.

At first, it seems like we need to perform an ID of the large matrix A(Iτ , Icτ ).
But, using the Green localization trick, we only need to ID the matrix [A(Iτ , I(near)

τ ) G],
where G is the matrix of interaction with the proxy surface (green).
Peculiarity of Lippman-Schwinger I: There is no need for a proxy surface in this case ...
Peculiarity of Lippman-Schwinger II: A = I + BG where B is diagonal, and G is
translation invariant. This means we only need to compress one box per level.



Alternative approaches:

• H-matrix methods: Rely on buffering. “Adaptive Cross Approximation (ACA)” for
compression (instead of “Green trick”). Work by Bebendorf, Börm, Grasedyck,
Hackbusch, Khoromskij, Sauter, etc.

• Inversion of FMM structure: You can “roll out” the FMM and formulate it as a
block-sparse matrix. Then invoke sparse direct solvers to invert. Work by Pals &
Chandrasekaran.

• Piggy-back on sparse direct solvers: You can “roll out” the HBS representation and
formulate it as a block-sparse matrix. Then invoke sparse direct solvers
(e.g. UMFPACK, MUMPS) to invert. Work by Ho & Greengard.

• “Shifted skeletonization”: It appears that O(N) complexity can be attained by
skeletonizing “intermediate levels” that are shifted by “half a grid spacing.” Recent
work by Ho and Ying.

• Higher-frequency scattering: Very recent work in Eric Michielssen’s group seems to
show that so called “butterfly algorithms” (see, e.g., M. O’Neil, F. Woolfe, and V.
Rokhlin, ACHA 2010) can be used to build linear complexity algorithms for high
frequency scattering problems.



Bibliography: See page 2 for background, and website for details.

• Skeletonization: H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin, “On the compression of low
rank matrices”. SIAM Journal of Scientific Computing, 26(4), pp. 1389-1404, 2005.

• Original paper (2D BIE): P.G. Martinsson and V. Rokhlin, “A fast direct solver for boundary integral
equations in two dimensions”. Journal of Computational Physics, 205(1), pp. 1 – 23, 2005. (Inspired
by earlier work by Greengard, Rokhlin, Starr . . . )

• O(N) direct solver for high-frequency scattering (elongated domains): P.G. Martinsson and
V. Rokhlin, “A fast direct solver for scattering problems involving elongated structures”. Journal of
Computational Physics, 221, pp. 288–302, 2007.

• Extension to 3D: L. Greengard, D. Gueyffier, P.G. Martinsson, V. Rokhlin, “Fast direct solvers for
integral equations in complex three-dimensional domains”. Acta Numerica, 18, pp. 243–275, 2009.

• Survey on HBS based methods for integral equations: A. Gillman, P. Young, and P.G. Martinsson, “A
direct solver with O(N) complexity for integral equations on one-dimensional domains”. Frontiers of
Math. in China, 7(2), pp. 217–247, 2012.

• O(N) volume IE in 2D: E. Corona, P.G. Martinsson, D. Zorin “An O(N) Direct Solver for Integral
Equations in the Plane”. To appear in ACHA. (arXiv.org report #1303.5466).

• 3D BIE: J. Bremer, A. Gillman, P.G. Martinsson, “A high-order accurate accelerated direct solver for
acoustic scattering from surfaces.” To appear in BIT Numerical Mathematics. (arXiv.org #1308.6643)

• Corner compression: A. Gillman, S. Hao, and P.G. Martinsson, “A simplified technique for the efficient
and highly accurate discretization of boundary integral equations in 2D on domains with corners.”
Journal of Computational Physics, 256(1), pp. 214–219, 2014. (Drawing on Bremer, Helsing, etc.)


