Input: An m x n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ~ UDV*.

(1) Draw an n x k random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x k sample matrix Y = AR. |(5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix Q@ s.t. Y = QQ*Y. (6) Form U = QU.

Question: What is the error ¢, = ||A — UDV*||? (Recall that ¢, = ||A — QQ*A||.)
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Answer: Lamentably, no. The expectation of T

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
t turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m x n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ~ UDV"*.

(1) Draw an n x (k + p) random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x (k + p) sample matrix Y = AR. | (5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix @ s.t. Y = QQ*Y. (6) Form U = QU.




Bound on the expectation of the error for Gaussian test matrices

_et A denote an m x n matrix with singular values {aj}gq(m’n).

_et k denote a target rank and let p denote an over-sampling parameter.
_Let R denote an n x (k + p) Gaussian matrix.

et Q denote the m x (k + p) matrix Q = orth(AR).

fp> 2, then
e\ 1/2 (min(m.n) 1/2
EHA — QQ*A”Frob < (1 + F) Z (7/-2 :
Jj=Kk+1
and /2
P . min(m,n)
E|A-QQA| < [1+ /| g+ VP ST 42
p—1 P j=k+1 j

Ref: Halko, Martinsson, Tropp, 2009 & 2011



Large deviation bound for the error for Gaussian test matrices

_et A denote an m x n matrix with singular values {aj}gq(m’n).

_Let R denote an n x (k + p) Gaussian matrix.
et Q denote the m x (k + p) matrix Q = orth(AR).
fp>4,anduandt are suchthatu > 1andt > 1, then

_et k denote a target rank and let p denote an over-sampling parameter.

_|_

|A—QQ*A|| < [ 1+t i+utevk+p ak+1+te vkip
Vp+

p+ 1 P —+

: - 2
except with probability at most 2t P + e~ U"/2,
Ref: Halko, Martinsson, Tropp, 2009 & 2011, Martinsson, Rokhlin, Tygert (2006)

1

ZO’

1/2

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

A—QQ'A| < [1+164/1+—— 8
| I< {1+ \/+ o + 8

except with probability at most 3e~P.

Za

1/2



Large deviation bound for the error for Gaussian test matrices

_et A denote an m x n matrix with singular values {aj}gq(m’n).

_et k denote a target rank and let p denote an over-sampling parameter.
_Let R denote an n x (k + p) Gaussian matrix.

et Q denote the m x (k + p) matrix Q = orth(AR).
fp>4,anduandt are suchthatu > 1andt > 1, then

/ 3k e /K te k

p+1 p+1

1/2

: - 2
except with probability at most 2t P + e~ U"/2,
Ref: Halko, Martinsson, Tropp, 2009 & 2011, Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,
1/2

|A-QQ"A| < (1+6\/(k+p) -plogp) o1 +3Vk+p| > o? |
i>K

except with probability at most 3p~P.



Proofs — Overview:

_et A denote an m x n matrix with singular values {aj}jf'iq(m’”)

_et k denote a target rank and let p denote an over-sampling parameter. Set ¢/ = k + p.
_et R denote an n x ¢ “test matrix”, and let Q denote the m x ¢ matrix Q = orth(AR).

We seek to bound the error e, = (A, R) = |A — QQ*A||, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form
IA - QQ*A|| <---A---R---

2. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E[|A - QQ*A|] <---A--.

3. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that
IA—QQ*A|| < ---A--.

holds with probability at least - - - .



Part 1 (out of 3) — deterministic bound:

_et A denote an m x n matrix with singular values {aj}jf'iq(m’”)

_et k denote a target rank and let p denote an over-sampling parameter. Set ¢/ = k + p.
_et R denote an n x ¢ “test matrix”, and let Q denote the m x ¢ matrix Q = orth(AR).

Partition the SVD of A as follows:

K n—K
Ay | D Vil ok
] D, | _VZ_ n—kK
Define Ry and R5 via
R = V] R R = V3 R.
1 1 and 2 2
kx(k+p) kxnnx(k+p) (n—KkK)x(k+p) (n—Kk)xnnx(k+p)

Theorem: [HMT2009,HMT2011] Assuming that R4 is not singular, it holds that

A —QQ*A|||° < [DalI2 + [|ID2RoR] |2
theoretically minimal error

Here, ||| - ||| represents either ¢2-operator norm, or the Frobenius norm.

Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).



D, 0| [Vv:] [R VR |
Recal: A=U| 1,177 =] 17|, Y =AR,P proj* onto Ran(Y).
i 0 D2_ _VE_ R, _VZR_

Thm: Suppose D4R has full rank. Then ||A — PA|[2 < |D,|2 + |D,R,R! |12

Proof: The problem is rotationally invariant = We can assume U =1 and so A = DV*.

Simple calculation: ||(I — P)A||? = ||A*(1 — P)?A|| = |D(1 — P)D|].

DR, ' | ' i | '
Ran(Y) = Ran Bl = Ran ! DR, | =Ran ;
' DyR, ' D,R,R!D; D,R,R!Dy

| 1 0]

Set F = DoR,RID; . Then P = o[ F*F)~ 1[I F*]. (Compare to P, = P
. F'F —(1+FF)~1F*
Use properties of psd matrices: | - P < --- < 1 I+ )
—F(I+F*F)~ | _
' D,F*FD _D4(1+ F*F)"1F*D, |
Conjugate by D to get D(I - P)D < 1 1 1 11+ , ) 2
—D,F(I+ F*F)~ "D, D3 _

Diagonal dominance: ||D(I — P)D|| < ||D;F*FD;]| + [|D3]| = |DaRoR! |12 + [|D5||2



Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

_et A denote an m x n matrix with singular values {aj}jf'iq(m’”)

_et k denote a target rank and let p denote an over-sampling parameter. Set ¢/ = k + p.
_et R denote an n x ¢ “test matrix”, and let Q denote the m x ¢ matrix Q = orth(AR).

Recall: |||A — QQ*A||[? < ||[Dy]||? + ||[DaR2R!|||%, where Ry = Vi R and Ry = V5 R.
Assumption: R is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices Ry and R5 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(o4, oo, ...). )

What is the distribution of R;f when Ry is a k x (k + p) Gaussian matrix?

If p =0, then HI?J1r | is typically large, and is very unstable.



Scatter plot showing distribution of 1/0,,;, for k x (k 4+ p) Gaussian matrices. p = 0
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Scatter plot showing distribution of 1/o,,;, for k x (k + p) Gaussian matrices. p = 2
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Scatter plot showing distribution of 1/o,,;;, for k x (k + p) Gaussian matrices. p = 5
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Scatter plot showing distribution of 1/o,,;, for k x (k + p) Gaussian matrices. p = 10
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Simplistic proof that a rectangular Gaussian matrix is well-conditioned:

Let G denote a k x ¢ Gaussian matrix where k < /.
Let “g” denote a generic A/(0, 1) variable and “r2” denote a generic ij variable. Then

J
99999 g - rn 0000 O
99999 g - 99999 9 -
G~lgggg9gg9g9 ~--|~|99999 9 -
99999 g - 99999 9 -
r, 00000 -] | r 0000
k-1 9999 g - rk—1 re-4+ 000 ---
~1 0 gggg g - |~| 0 g ggg- -
0 gggg g - 0 g ggg -
0 000 - ', 0 0 0 0
re—1 r—1 000 --- re—1 r—1 O O 0.
~1 0 2999 |~ "~ 0 rkoro 0 0
0 0 ggg - O 0 rs3rs30-
Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ¢ = 2k.

More sophisticated methods are required to getto ¢/ = k + 2.




Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then

1/2
(E[ISGT(Z])"* <|IS||r |IT]ls
E[|SGT|] <||S|| [IT|ls + IS]¢ I T|

Proposition 2: Let G be a Gaussian matrix of size k x k + p where p > 2. Then

1 1/2
(ElISE) " <2

E|ai|] <SVEEP

p




Recall: |A — QQ*A||? < ||D,||% + ||D2R2RJ1f |2, where Ry and R, are Gaussian and Ry is

K xK-+p.
. 1/2
min(m,n)
Theorem: E||A — QQ*A|]] < | 1+ L Okiq + e vktp Z o2 _
p—1 P j=k+1 /

Proof: First observe that
1/2
E||A — QQ@*A| = E(||D,||? + |D;R2R!|2) '/ < |Dy| + E|IDoR,R] ||
Condition on Ry and use Proposition 1:

E[DoRoR! || < E[|IDy]| IR || + 1Dl R
. 1/2
< {Holder} < ||D,|| (B[R ()2 + |Dy|ls E[RL .

Proposition 2 now provides bounds for IE||RJ1F| % and EHR‘; | and we get

1/2
e k+ e k+
EHDzRQRTH < \/ 711D + = \/ T0k+1 T CZU ) -




Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then

1/2
(E[ISGT(Z])"* <|IS||r |IT]ls
E[|SGT|] <||S|| [IT|ls + IS]¢ I T|

Proposition 2: Let G be a Gaussian matrix of size k x k + p where p > 2. Then

1 1/2
(ElISE) " <2

E|ai|] <SVEEP

p

Proposition 3: Suppose h is Lipschitz |h(X) — h(Y)| < L||X — Y||r and G is Gaussian. Then
P[h(G) > E[h(G)] + Lu] < e “/2.

Proposition 4: Suppose G is Gaussian of size k x k + p withp > 4. Then fort > 1:

HGTHF ¢ <t—P

p +
e/ kK +
p+1

5

f <t—(P+1)

bGW>



Recall: |A — QQ*A|? < ||Dy||2 + ||D2R2R! %, where Ry and R, are Gaussian and Ry is k x k + p.
Theorem: With probability at least 1 — 21 P — e~°/2 it holds that

1/2
3k JK te Jk1p
AQQ*A<(1+1‘ AP +p> iy + S VEEP (ZJ) |

p—+1 p+1 p+1 =

Proof: Set E; = {\|R1|\ < epvﬁ t and HR‘;HF < %t}. By Proposition 4: P(Ef) < 2t7P.
Set h(X) = ||D2XR!|. A direct calculation shows
h(X) — h(Y)| < [ID2| R} ]| X — ¥l
Hold R, fixed and take the expectation on R,. Then Proposition 1 applies and so
E[h(Re) | Re] < D2l [R}llr + [ID2|r IR}

Now use Proposition 3 (concentration of measure)

12
P[|DzRaRY| > [Dall IR + Dz IRY), + [Pz R} u | &] < &2
~h(R,) ~E[h(Ry)] -1

When E; holds true, we have bounds on the “badness” of RT:

e\/k+ ev K+ B
P{IDRR}| > [ID2] /=5t + 1Dl Do “Y 4P ut | E] < e

The theorem is obtained by using P(E;) < 2t to remove the conditioning of E;.



Example 1:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:
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A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =
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Example 2:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:
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Example 3:

The matrix A being analyzed is a 9025 x 9025 matrix arising in a diffusion geometry

approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3 x 3 patches.

Joint work with Francois Meyer of the University of Colorado at Boulder.
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The pink lines illustrates the performance of the basic random sampling scheme.

The errors are huge, and the estimated eigenvalues are much too small.



Example 4: “Eigenfaces”
We next process a data base containing m = 7 254 pictures of faces
Each image consists of n = 384 x 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304 x 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.
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The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.



Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

K e\/lT min(m,n) 1/2
EHA — QQ*AH < (1 + ) Ok4q T p( Z (72) .

_ /
p—1 P j=k+1

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (A A*)9 A has the same left singular vectors as A, and singular values
o(AA*)TA) = (0j(A)297.
Much faster decay — so let us use the sample matrix
Y=(AA")YAR

instead of
Y =AR.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also

similar to “block power method,” “block Lanczos,” “subspace iteration.”



Input: An m x n matrix A, a target rank ¢, and a small integer q.
Output: Rank-/ factors U, D, and V in an approximate SVD A ~ UDV".

(1) Draw an n x ¢ random matrix R. (4) Form the small matrix B = Q" A.
(2) Form the m x ¢ sample matrix Y = (A A*)? AR. | (5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix @ s.t. Y = QQ*Y. (6) Form U = QU.

e Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed — ypv*, the expectation of the error satisfies:

. 1/(2g+1)
(1) F [HA L ACOmpUtedH} S (1 _|_4\/2 mln(m;n)>

Reference: Halko, Martinsson, Tropp (2011).

e The improved accuracy from the modified scheme comes at a cost;
29 + 1 passes over the matrix are required instead of 1.
However, g can often be chosen quite small in practice, g = 2 or g = 3, say.

e The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.




A numerically stable version of the “power method”:

Input: An m x n matrix A, a target rank ¢, and a small integer q.
Output: Rank-/ factors U, D, and V in an approximate SVD A ~ UDV*.

Draw an n x ¢ Gaussian random matrix R.
Set Q = orth(AR)
fori=1,2 ..., 9

W = orth(A*Q)

Q = orth(AW)
end for
B-=Q"A
[U, D, V] = svd(B)
U=aqu.

Note: Algebraically, the method with orthogonalizations is identical to the “original”
method where Q = orth((AA*)9AR).

Note: This is a classic subspace iteration.

The novelty is the error analysis, and the finding that using a very small g is often fine.
(In fact, our analysis allows g to be zero...)



ADAPTIVE RANK DETERMINATION

How to proceed when the rank of a matrix is not known in advance.



Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.
We seek an m x k matrix Q whose columns form an ON basis for col(A).

Q=[]
fori=1,23,.... 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q 2.

Iz

end for




Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.

We seek an m x k matrix Q whose columns form an ON basis for col(A).

Q=1[1;

fori=1,23,..., 777

Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.

Project the sample vector away from the basis computed z; = y; — QQ™y;.

Add the new element to the basis Q = [Q H:—’H}
/

end for

Observation 1: While i < k, we know that z; # 0 with probability 1.




Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.
We seek an m x k matrix Q whose columns form an ON basis for col(A).

Q=[]
fori=1,23,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q H:—;H}
end for

Observation 1: While i < k, we know that z; # 0 with probability 1.

Observation 2: Once you come to step i = k + 1, the vector z,_ 4 must be zero!



Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.

We seek an m x k matrix Q whose columns form an ON basis for col(A).
Q=[];
fori=1,2, 3,...

Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
if |z; = 0| then
Therankisk =i —1.
break
else
Add the new element to the basis Q = [Q ﬁ]
end if

end for




Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[]
fori=1,23, ... 777

Draw an n x 1 Gaussian random vector ;.

Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.

Add the new element to the basis Q = [Q ﬁ}
/

end for
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Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[];
fori=1,2,3,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q ﬁ}
end for

Observe that
Zi =Y — QQ*y, — Ar,- — QQ*AI’,' — (A — QQ*A) K.



Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[];
fori=1,2,3,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q ﬁ}
end for

Observe that
Zi =Y — QQ*y, — Ar,- — QQ*AI’,' — (A — QQ*A) K.

In consequence, since r; is Gaussian,

E[|z]?] = |A — QQ*A|2.



Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[];
fori=1,2,3,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q ﬁ}
end for

Observe that
Zi =Y — QQ*y, — Ar,- — QQ*AI’,' — (A — QQ*A) K.

In consequence, since r; is Gaussian,
2 2
Ellzi]°] = [|A — QQ"A|I%,,.

Observation 1: Once you observe several consecutive z; such that, say, ||z;|| <¢e/2, it

will “likely” be the case that ||A — QQA||g,, < e.
Observation 2: You need to block the algorithm for computational efficiency.



Adaptive rank determination

Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q s.t. |A — QQ*A||p,, < e.

Q=[]
fori=1,2 3,...
Draw an n x b Gaussian random matrix R;.
Compute an m x b sample matrix Y; = AR,;.
Project the sample columns away from the basis computed Z; = Y; — QQ™Y;.
Orthonormalize the samples [Q;, R;| = qr(Z;, 0). (Unpivoted QR factorization!)
if |“several consecutive columns of R; are small”| then
Add the appropriate number of columns of Q; to Q.
break
else
Add the new element to the basis Q = [Q Q;].
end if
end for

Warning: Re-orthogonalization is often needed to combat floating point errors.



Adaptive rank determination — with updating

Consider the special case that A can be updated, e.qg. if it is dense and stored in RAM.
Let A be an m x n matrix whose singular values decay, but do not hit zero.

Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q@ s.t. |A — QQ*A||p,, < e.

(1) Q@=[];B=[];
(2) while |A|| > ¢
(3) Draw an n x b Gaussian matrix R;.
(4) Compute the m x b matrix [Q;, ~| = qr(AR;, 0).
(5) B; = QA
(6) Q=[QQ]
(7) B = B
Bi
(8) A=A-QB;
(9) end while

A blocked and randomized variation of the classical “modified Gram-Schmidt” algorithm.
Warning: Re-orthogonalization is often needed to combat floating point errors.



Adaptive rank determination — with updating

Consider the special case that A can be updated, e.qg. if it is dense and stored in RAM.
Let A be an m x n matrix whose singular values decay, but do not hit zero.

Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q@ s.t. |A — QQ*A||p,, < e.

(1) Q=[] B=[]
(2) while |A|| > ¢
(3) Draw an n x b Gaussian matrix R;.
(4) Compute the m x b matrix Q; = qr(AR;, 0).
(5) B; = QA
(6) Q=[QQ]
AT
Bi_
(8) A=A-QB;
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.



Adaptive rank determination — with updating

Consider the special case that A can be updated, e.qg. if it is dense and stored in RAM.
Let A be an m x n matrix whose singular values decay, but do not hit zero.

Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q@ s.t. |A — QQ*A||p,, < e.

(1) Q=[] B=[]
(2) while |A|| > ¢
(3) Draw an n x b Gaussian matrix R;.
(4) Compute the m x b matrix Q; = qr(AR;, 0).
(5) B; = QA
(6) Q=[QQ]
AT
Bi_
(8) A=A-QB;
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.
@ This algorithm is ideal for running on modern CPUs and GPUS!



Time for compression of n x n matrix. k=100 kstep=20

column pivoted QR
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Everything is implemented in Matlab. The “full gr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.



Time for compression of n x n matrix. k=200 kstep=40

column pivoted QR
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Everything is implemented in Matlab. The “full gr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.



Randomized algorithms for FULL factorizations: Column pivoted QR

Versus netlib dgeqp3 Versus Intel MKL dgeqp3
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Speedup attained by our randomized algorithm HGRRP for computing a full column pivoted
QR factorization of an N x N matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Orti, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/



