
Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤
(
1 + 6

√
(k + p) · p log p

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.

Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

We seek to bound the error ek = ek(A,R) = ‖A−QQ∗A‖, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form

‖A−QQ∗A‖ ≤ · · ·A · · ·R · · ·

2. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
‖A−QQ∗A‖

]
≤ · · ·A · · ·

3. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that

‖A−QQ∗A‖ ≤ · · ·A · · ·

holds with probability at least · · · .

Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define R1 and R2 via

R1 = V∗1 R
k × (k + p) k × n n× (k + p)

and
R2 = V∗2 R.

(n− k)× (k + p) (n− k)× n n× (k + p)

Theorem: [HMT2009,HMT2011] Assuming that R1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2R2R

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).

Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[
R1
R2

]
=

[
V∗1R
V∗2R

]
, Y = AR, P projn onto Ran(Y).

Thm: Suppose D1R1 has full rank. Then ‖A− PA‖2 ≤ ‖D2‖
2 + ‖D2R2R

†
1‖

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.

Simple calculation: ‖(I− P)A‖2 = ‖A∗(I− P)2A‖ = ‖D(I− P)D‖.

Ran(Y) = Ran
([

D1R1
D2R2

])
= Ran

([
I

D2R2R
†
1D1

]
D1R1

)
= Ran

([
I

D2R2R
†
1D1

])

Set F = D2R2R
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]

Diagonal dominance: ‖D(I− P)D‖ ≤ ‖D1F∗FD1‖ + ‖D2
2‖ = ‖D2R2R

†
1‖

2 + ‖D2‖2.

Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2R2R
†
1|||

2, where R1 = V∗1R and R2 = V∗2R.

Assumption: R is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices R1 and R2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . .).)

What is the distribution of R†1 when R1 is a k × (k + p) Gaussian matrix?

If p = 0, then ‖R†1‖ is typically large, and is very unstable.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=0

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=2

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=5

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=10

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices.

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p = 0
p = 2
p = 5
p = 10

k = 20 k = 40 k = 60

1/σmin is plotted against σmax.

Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `.
Let “g” denote a generic N (0,1) variable and “r2j ” denote a generic χ2j variable. Then

G ∼



g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·


∼



r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·



∼



r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... · · ·


∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... · · ·



∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... · · ·


∼ · · · ∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... · · ·


Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ` = 2k.
More sophisticated methods are required to get to ` = k + 2.

Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)

Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R
†
1‖

2, where R1 and R2 are Gaussian and R1 is
k × k + p.

Theorem: E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Proof: First observe that

E‖A−QQ∗A‖ = E
(
‖D2‖

2 + ‖D2R2R
†
1‖

2)1/2 ≤ ‖D2‖ + E‖D2R2R
†
1‖.

Condition on R1 and use Proposition 1:

E‖D2R2R
†
1‖ ≤ E

[
‖D2‖ ‖R

†
1‖F + ‖D2‖F ‖R

†
1‖
]

≤ {Hölder} ≤ ‖D2‖
(
E‖R†1‖

2
F
)1/2

+ ‖D2‖FE‖R†1‖.

Proposition 2 now provides bounds for E‖R†1‖
2
F and E‖R†1‖ and we get

E‖D2R2R
†
1‖ ≤

√
k

p− 1‖D2‖ +
e
√

k + p
p ‖D2‖F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.

Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)

Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R†1‖2, where R1 and R2 are Gaussian and R1 is k × k + p.
Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

.

Proof: Set Et =

{
‖R1‖ ≤

e
√

k+p
p+1 t and ‖R†1‖F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t) ≤ 2 t−p.

Set h(X) = ‖D2XR†1‖. A direct calculation shows

|h(X)− h(Y)| ≤ ‖D2‖ ‖R†1‖ ‖X − y‖F.

Hold R1 fixed and take the expectation on R2. Then Proposition 1 applies and so

E
[
h
(
R2
) ∣∣ R1

]
≤ ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖.

Now use Proposition 3 (concentration of measure)

P
[
‖D2R2R†1‖︸ ︷︷ ︸

=h(R2)

> ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖︸ ︷︷ ︸
=E[h(R2)]

+ ‖D2‖ ‖R†1‖︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of R†1:

P
[
‖D2R2R†1‖ > ‖D2‖

√
3k

p + 1t + ‖D2‖F
e
√

k + p
p + 1 t + ‖D2‖

e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t) ≤ 2 t−p to remove the conditioning of Et.

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by a different instantiation
of the proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by a different instantiation
of the proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue lines indicate the
actual errors ek incurred
by 20 instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue lines indicate the
actual errors ek incurred
by 20 instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 3:

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.

Example 4: “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues

λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and singular values

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAR

instead of
Y = AR.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also
similar to “block power method,” “block Lanczos,” “subspace iteration.”

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× ` random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× ` sample matrix Y = (AA∗)qAR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed = UDV∗, the expectation of the error satisfies:

(1) E
[
‖A− Acomputed‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)
σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.

A numerically stable version of the “power method”:

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.

Draw an n× ` Gaussian random matrix R.
Set Q = orth(AR)
for i = 1, 2, . . . , q
W = orth(A∗Q)

Q = orth(AW)

end for
B = Q∗A
[Û, D, V] = svd(B)
U = QÛ.

Note: Algebraically, the method with orthogonalizations is identical to the “original”
method where Q = orth((AA∗)qAR).
Note: This is a classic subspace iteration.
The novelty is the error analysis, and the finding that using a very small q is often fine.
(In fact, our analysis allows q to be zero. . .)

Adaptive rank determination
How to proceed when the rank of a matrix is not known in advance.

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m× n matrix of exact rank k, where k is unknown.
We seek an m× k matrix Q whose columns form an ON basis for col(A).

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observation 1: While i ≤ k, we know that zi 6= 0 with probability 1.

Observation 2: Once you come to step i = k + 1, the vector zk+1 must be zero!

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m× n matrix of exact rank k, where k is unknown.
We seek an m× k matrix Q whose columns form an ON basis for col(A).

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observation 1: While i ≤ k, we know that zi 6= 0 with probability 1.

Observation 2: Once you come to step i = k + 1, the vector zk+1 must be zero!

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m× n matrix of exact rank k, where k is unknown.
We seek an m× k matrix Q whose columns form an ON basis for col(A).

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observation 1: While i ≤ k, we know that zi 6= 0 with probability 1.

Observation 2: Once you come to step i = k + 1, the vector zk+1 must be zero!

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m× n matrix of exact rank k, where k is unknown.
We seek an m× k matrix Q whose columns form an ON basis for col(A).

(*) Q = [];
(*) for i = 1, 2, 3, . . .
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) if

[
zi = 0

]
then

(*) The rank is k = i − 1.
(*) break
(*) else
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end if
(*) end for

Adaptive rank determination — vector-by-vector technique
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance. We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observe that
zi = yi −QQ∗yi = Ari −QQ∗Ari =

(
A−QQ∗A

)
ri.

In consequence, since ri is Gaussian,

E
[
‖zi‖2

]
= ‖A−QQ∗A‖2Fro.

Observation 1: Once you observe several consecutive zi such that, say, ‖zi‖ ≤ ε/2, it
will “likely” be the case that ‖A−QQA‖Fro ≤ ε.
Observation 2: You need to block the algorithm for computational efficiency.

Adaptive rank determination — vector-by-vector technique
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance. We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observe that
zi = yi −QQ∗yi = Ari −QQ∗Ari =

(
A−QQ∗A

)
ri.

In consequence, since ri is Gaussian,

E
[
‖zi‖2

]
= ‖A−QQ∗A‖2Fro.

Observation 1: Once you observe several consecutive zi such that, say, ‖zi‖ ≤ ε/2, it
will “likely” be the case that ‖A−QQA‖Fro ≤ ε.
Observation 2: You need to block the algorithm for computational efficiency.

Adaptive rank determination — vector-by-vector technique
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance. We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observe that
zi = yi −QQ∗yi = Ari −QQ∗Ari =

(
A−QQ∗A

)
ri.

In consequence, since ri is Gaussian,

E
[
‖zi‖2

]
= ‖A−QQ∗A‖2Fro.

Observation 1: Once you observe several consecutive zi such that, say, ‖zi‖ ≤ ε/2, it
will “likely” be the case that ‖A−QQA‖Fro ≤ ε.
Observation 2: You need to block the algorithm for computational efficiency.

Adaptive rank determination — vector-by-vector technique
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance. We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . . , ???
(*) Draw an n× 1 Gaussian random vector ri.
(*) Compute an m× 1 sample vector yi = Ari.
(*) Project the sample vector away from the basis computed zi = yi −QQ∗yi.
(*) Add the new element to the basis Q =

[
Q zi
‖zi‖
]
.

(*) end for

Observe that
zi = yi −QQ∗yi = Ari −QQ∗Ari =

(
A−QQ∗A

)
ri.

In consequence, since ri is Gaussian,

E
[
‖zi‖2

]
= ‖A−QQ∗A‖2Fro.

Observation 1: Once you observe several consecutive zi such that, say, ‖zi‖ ≤ ε/2, it
will “likely” be the case that ‖A−QQA‖Fro ≤ ε.
Observation 2: You need to block the algorithm for computational efficiency.

Adaptive rank determination
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(*) Q = [];
(*) for i = 1, 2, 3, . . .
(*) Draw an n× b Gaussian random matrix Ri.
(*) Compute an m× b sample matrix Yi = ARi.
(*) Project the sample columns away from the basis computed Zi = Yi −QQ∗Yi.
(*) Orthonormalize the samples [Qi, Ri] = qr(Zi,0). (Unpivoted QR factorization!)
(*) if

[
“several consecutive columns of Ri are small”

]
then

(*) Add the appropriate number of columns of Qi to Q.
(*) break
(*) else
(*) Add the new element to the basis Q =

[
Q Qi

]
.

(*) end if
(*) end for

Warning: Re-orthogonalization is often needed to combat floating point errors.

Adaptive rank determination — with updating
Consider the special case that A can be updated, e.g. if it is dense and stored in RAM.
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× b Gaussian matrix Ri.
(4) Compute the m× b matrix [Qi,∼] = qr(ARi,0).
(5) Bi = Q∗i A
(6) Q = [Q Qi]

(7) B =

[
B
Bi

]
(8) A = A−QiBi
(9) end while

A blocked and randomized variation of the classical “modified Gram-Schmidt” algorithm.
Warning: Re-orthogonalization is often needed to combat floating point errors.

Adaptive rank determination — with updating
Consider the special case that A can be updated, e.g. if it is dense and stored in RAM.
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× b Gaussian matrix Ri.
(4) Compute the m× b matrix Qi = qr(ARi,0).
(5) Bi = Q∗i A
(6) Q = [Q Qi]

(7) B =

[
B
Bi

]
(8) A = A−QiBi
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.

This algorithm is ideal for running on modern CPUs and GPUs!

Adaptive rank determination — with updating
Consider the special case that A can be updated, e.g. if it is dense and stored in RAM.
Let A be an m× n matrix whose singular values decay, but do not hit zero.
Let ε > 0 be a given tolerance, and let b be a “block size.”
We seek an m× k ON matrix Q s.t. ‖A−QQ∗A‖Fro ≤ ε.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× b Gaussian matrix Ri.
(4) Compute the m× b matrix Qi = qr(ARi,0).
(5) Bi = Q∗i A
(6) Q = [Q Qi]

(7) B =

[
B
Bi

]
(8) A = A−QiBi
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.
This algorithm is ideal for running on modern CPUs and GPUs!

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

n

Time for compression of n x n matrix. k=100 kstep=20

column pivoted QR

randomized QB (q=0)

randomized QB (q=1)

randomized QB (q=2)

randomized QB on GPU (q=0)

randomized QB on GPU (q=1)

randomized QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

n

Time for compression of n x n matrix. k=200 kstep=40

column pivoted QR

rand− QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

rand−QB on GPU (q=0)

rand−QB on GPU (q=1)

rand−QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

Randomized algorithms for FULL factorizations: Column pivoted QR

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

N N

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an N ×N matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

