Input: An m x n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ~ UDV*.

(1) Draw an n x k random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x k sample matrix Y = AR. |(5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix Q@ s.t. Y = QQ*Y. (6) Form U = QU.

Question: What is the error ¢, = ||A — UDV*||? (Recall that ¢, = ||A — QQ*A||.)

Input: An m x n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ~ UDV*.

(1) Draw an n x k random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x k sample matrix Y = AR. |(5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix Q@ s.t. Y = QQ*Y. (6) Form U = QU.

Question: What is the error ¢, = ||A — UDV*||? (Recall that ¢, = ||A — QQ*A||.)

Eckart-Young theorem: ¢, is bounded from below by the singular value o, 4 of A.

Input: An m x n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ~ UDV*.

(1) Draw an n x k random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x k sample matrix Y = AR. |(5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix Q@ s.t. Y = QQ*Y. (6) Form U = QU.

Question: What is the error ¢, = ||A — UDV*||? (Recall that ¢, = ||A — QQ*A||.)
Eckart-Young theorem: ¢, is bounded from below by the singular value o, 4 of A.

Question: Is g, close to oy 17

Input: An m x n matrix A and a target rank k.

Output: Rank-k factors U, D, and V in an approximate SVD A ~ UDV*.

(1) Draw an n x k random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x k sample matrix Y = AR. |(5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix Q@ s.t. Y = QQ*Y. (6) Form U = QU.

Question: What is the error ¢, = ||A — UDV*||? (Recall that ¢, = ||A — QQ*A||.)
Eckart-Young theorem: ¢, is bounded from below by the singular value o, 4 of A.

Question: Is g, close to oy 17

€k

T is large, and has very large variance.

Answer: Lamentably, no. The expectation of

Input: An m x n matrix A and a target rank k.

Output: Rank-k factors U, D, and V in an approximate SVD A ~ UDV*.

(1) Draw an n x k random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x k sample matrix Y = AR. |(5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix Q@ s.t. Y = QQ*Y. (6) Form U = QU.

Question: What is the error ¢, = ||A — UDV*||? (Recall that ¢, = ||A — QQ*A||.)
Eckart-Young theorem: ¢, is bounded from below by the singular value o, 4 of A.

Question: Is g, close to oy 17

€k

Answer: Lamentably, no. The expectation of T

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
t turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m x n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ~ UDV"*.

(1) Draw an n x (k + p) random matrix R. (4) Form the small matrix B = Q* A.
(2) Form the m x (k + p) sample matrix Y = AR. | (5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix @ s.t. Y = QQ*Y. (6) Form U = QU.

Bound on the expectation of the error for Gaussian test matrices

_et A denote an m x n matrix with singular values {aj}gq(m’n).

_et k denote a target rank and let p denote an over-sampling parameter.
_Let R denote an n x (k + p) Gaussian matrix.

et Q denote the m x (k + p) matrix Q = orth(AR).

fp> 2, then
e\ 1/2 (min(m.n) 1/2
EHA — QQ*A”Frob < (1 + F) Z (7/-2 :
Jj=Kk+1
and /2
P . min(m,n)
E|A-QQA| < [1+ /| g+ VP ST 42
p—1 P j=k+1 j

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Large deviation bound for the error for Gaussian test matrices

_et A denote an m x n matrix with singular values {aj}gq(m’n).

_Let R denote an n x (k + p) Gaussian matrix.
et Q denote the m x (k + p) matrix Q = orth(AR).
fp>4,anduandt are suchthatu > 1andt > 1, then

_et k denote a target rank and let p denote an over-sampling parameter.

|

|A—QQ*A|| < [1+t i+utevk+p ak+1+te vkip
Vp+

p+ 1 P —+

: - 2
except with probability at most 2t P + e~ U"/2,
Ref: Halko, Martinsson, Tropp, 2009 & 2011, Martinsson, Rokhlin, Tygert (2006)

1

ZO’

1/2

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

A—QQ'A| < [1+164/1+—— 8
| I< {1+ \/+ o + 8

except with probability at most 3e~P.

Za

1/2

Large deviation bound for the error for Gaussian test matrices

_et A denote an m x n matrix with singular values {aj}gq(m’n).

_et k denote a target rank and let p denote an over-sampling parameter.
_Let R denote an n x (k + p) Gaussian matrix.

et Q denote the m x (k + p) matrix Q = orth(AR).
fp>4,anduandt are suchthatu > 1andt > 1, then

/ 3k e /K te k

p+1 p+1

1/2

: - 2
except with probability at most 2t P + e~ U"/2,
Ref: Halko, Martinsson, Tropp, 2009 & 2011, Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,
1/2

|A-QQ"A| < (1+6\/(k+p) -plogp) o1 +3Vk+p| > o? |
i>K

except with probability at most 3p~P.

Proofs — Overview:

_et A denote an m x n matrix with singular values {aj}jf'iq(m’”)

_et k denote a target rank and let p denote an over-sampling parameter. Set ¢/ = k + p.
_et R denote an n x ¢ “test matrix”, and let Q denote the m x ¢ matrix Q = orth(AR).

We seek to bound the error e, = (A, R) = |A — QQ*A||, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form
IA - QQ*A|| <---A---R---

2. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E[|A - QQ*A|] <---A--.

3. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that
IA—QQ*A|| < ---A--.

holds with probability at least - - - .

Part 1 (out of 3) — deterministic bound:

_et A denote an m x n matrix with singular values {aj}jf'iq(m’”)

_et k denote a target rank and let p denote an over-sampling parameter. Set ¢/ = k + p.
_et R denote an n x ¢ “test matrix”, and let Q denote the m x ¢ matrix Q = orth(AR).

Partition the SVD of A as follows:

K n—K
Ay | D Vil ok
] D, | _VZ_ n—kK
Define Ry and R5 via
R = V] R R = V3 R.
1 1 and 2 2
kx(k+p) kxnnx(k+p) (n—KkK)x(k+p) (n—Kk)xnnx(k+p)

Theorem: [HMT2009,HMT2011] Assuming that R4 is not singular, it holds that

A —QQ*A|||° < [DalI2 + [|ID2RoR] |2
theoretically minimal error

Here, ||| - ||| represents either ¢2-operator norm, or the Frobenius norm.

Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).

D, 0| [Vv:] [R VR |
Recal: A=U| 1,177 =] 17|, Y =AR,P proj* onto Ran(Y).
i 0 D2_ _VE_ R, _VZR_

Thm: Suppose D4R has full rank. Then ||A — PA|[2 < |D,|2 + |D,R,R! |12

Proof: The problem is rotationally invariant = We can assume U =1 and so A = DV*.

Simple calculation: ||(I — P)A||? = ||A*(1 — P)?A|| = |D(1 — P)D|].

DR, ' | ' i | '
Ran(Y) = Ran Bl = Ran ! DR, | =Ran ;
' DyR, ' D,R,R!D; D,R,R!Dy

| 1 0]

Set F = DoR,RID; . Then P = o[F*F)~ 1[I F*]. (Compare to P, = P
. F'F —(1+FF)~1F*
Use properties of psd matrices: | - P < --- < 1 I+)
—F(I+F*F)~ | _
' D,F*FD _D4(1+ F*F)"1F*D, |
Conjugate by D to get D(I - P)D < 1 1 1 11+ ,) 2
—D,F(I+ F*F)~ "D, D3 _

Diagonal dominance: ||D(I — P)D|| < ||D;F*FD;]| + [|D3]| = |DaRoR! |12 + [|D5||2

Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

_et A denote an m x n matrix with singular values {aj}jf'iq(m’”)

_et k denote a target rank and let p denote an over-sampling parameter. Set ¢/ = k + p.
_et R denote an n x ¢ “test matrix”, and let Q denote the m x ¢ matrix Q = orth(AR).

Recall: |||A — QQ*A||[? < ||[Dy]||? + ||[DaR2R!|||%, where Ry = Vi R and Ry = V5 R.
Assumption: R is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices Ry and R5 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(o4, oo, ...).)

What is the distribution of R;f when Ry is a k x (k + p) Gaussian matrix?

If p =0, then HI?J1r | is typically large, and is very unstable.

Scatter plot showing distribution of 1/0,,;, for k x (k 4+ p) Gaussian matrices. p = 0
p=0

4 I

10 ¢

n

N

o
IIIII|

10

10° b A
e °
o0 ® ’.. °® °
o° oo .. ° °

° :, :’: .‘s. e <

° o ° %%

I ey

° ..'o'.. ¢
L S .}.. o J.?o.}o.. [.

oo Vo °

1/ssmin

T
o °
L]
e
L[]
L]

10

10"

8 10 12 14 16 18
ssmax

1 /0.0 IS plotted against o, ..

Scatter plot showing distribution of 1/o,,;, for k x (k + p) Gaussian matrices. p = 2

p=2
4 I
10 : . k:20_§
i x k=40|7
- O k=60|
10° E
2
c 10 ¢ E
& i]
7)) L i
n
= - . I
10" E
o]
10° E
| | | | |]
8 10 12 14 16 18

ssmax

1 /0.0 IS plotted against o, ..

Scatter plot showing distribution of 1/o,,;;, for k x (k + p) Gaussian matrices. p = 5

p=5

4 I
10 — . k:ZO_E
i < k=407
- O k=60|
10° E

2

c 10 ¢ E
e i]
(7)) L i
v I i
H -
10" E
10° - E
| | | | | L]

8 10 12 14 16 18
ssmax

1 /0.0 IS plotted against o, ..

Scatter plot showing distribution of 1/o,,;, for k x (k + p) Gaussian matrices. p = 10

p=10
4 I
10 : . k:zo?
x k=40
O k=60
10° E
2
c 10 =
=
0
2
—
10" E
100 - =
| | | | | |
8 10 12 14 16 18

ssmax

1 /0.0 IS plotted against o, ..

|_______ T T _______ T T _______

o
O AN O v~

A1l
Q. Q O Q

Scatter plot showing distribution of k x (k + p) Gaussian matrices.

UIWISS/T

14 16 18

12
ssmax

1 /0.0 IS plotted against o, ..

Simplistic proof that a rectangular Gaussian matrix is well-conditioned:

Let G denote a k x ¢ Gaussian matrix where k < /.
Let “g” denote a generic A/(0, 1) variable and “r2” denote a generic ij variable. Then

J
99999 g - rn 0000 O
99999 g - 99999 9 -
G~lgggg9gg9g9 ~--|~|99999 9 -
99999 g - 99999 9 -
r, 00000 -] | r 0000
k-1 9999 g - rk—1 re-4+ 000 ---
~1 0 gggg g - |~| 0 g ggg- -
0 gggg g - 0 g ggg -
0 000 - ', 0 0 0 0
re—1 r—1 000 --- re—1 r—1 O O 0.
~1 0 2999 |~ "~ 0 rkoro 0 0
0 0 ggg - O 0 rs3rs30-
Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ¢ = 2k.

More sophisticated methods are required to getto ¢/ = k + 2.

Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then

1/2
(E[ISGT(Z])"* <|IS||r |IT]ls
E[|SGT|] <||S|| [IT|ls + IS]¢ I T|

Proposition 2: Let G be a Gaussian matrix of size k x k + p where p > 2. Then

1 1/2
(ElISE) " <2

E|ai|] <SVEEP

p

Recall: |A — QQ*A||? < ||D,||% + ||D2R2RJ1f |2, where Ry and R, are Gaussian and Ry is

K xK-+p.
. 1/2
min(m,n)
Theorem: E||A — QQ*A|]] < | 1+ L Okiq + e vktp Z o2 _
p—1 P j=k+1 /

Proof: First observe that
1/2
E||A — QQ@*A| = E(||D,||? + |D;R2R!|2) '/ < |Dy| + E|IDoR,R] ||
Condition on Ry and use Proposition 1:

E[DoRoR! || < E[|IDy]| IR || + 1Dl R
. 1/2
< {Holder} < ||D,|| (B[R ()2 + |Dy|ls E[RL .

Proposition 2 now provides bounds for IE||RJ1F| % and EHR‘; | and we get

1/2
e k+ e k+
EHDzRQRTH < \/ 711D + = \/ T0k+1 T CZU) -

Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then

1/2
(E[ISGT(Z])"* <|IS||r |IT]ls
E[|SGT|] <||S|| [IT|ls + IS]¢ I T|

Proposition 2: Let G be a Gaussian matrix of size k x k + p where p > 2. Then

1 1/2
(ElISE) " <2

E|ai|] <SVEEP

p

Proposition 3: Suppose h is Lipschitz |h(X) — h(Y)| < L||X — Y||r and G is Gaussian. Then
P[h(G) > E[h(G)] + Lu] < e “/2.

Proposition 4: Suppose G is Gaussian of size k x k + p withp > 4. Then fort > 1:

HGTHF ¢ <t—P

p +
e/ kK +
p+1

5

f <t—(P+1)

bGW>

Recall: |A — QQ*A|? < ||Dy||2 + ||D2R2R! %, where Ry and R, are Gaussian and Ry is k x k + p.
Theorem: With probability at least 1 — 21 P — e~°/2 it holds that

1/2
3k JK te Jk1p
AQQ*A<(1+1‘ AP +p> iy + S VEEP (ZJ) |

p—+1 p+1 p+1 =

Proof: Set E; = {\|R1|\ < epvﬁ t and HR‘;HF < %t}. By Proposition 4: P(Ef) < 2t7P.
Set h(X) = ||D2XR!|. A direct calculation shows
h(X) — h(Y)| < [ID2| R}]| X — ¥l
Hold R, fixed and take the expectation on R,. Then Proposition 1 applies and so
E[h(Re) | Re] < D2l [R}llr + [ID2|r IR}

Now use Proposition 3 (concentration of measure)

12
P[|DzRaRY| > [Dall IR + Dz IRY), + [Pz R} u | &] < &2
~h(R,) ~E[h(Ry)] -1

When E; holds true, we have bounds on the “badness” of RT:

e\/k+ ev K+ B
P{IDRR}| > [ID2] /=5t + 1Dl Do “Y 4P ut | E] < e

The theorem is obtained by using P(E;) < 2t to remove the conditioning of E;.

Example 1:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

107 | 'The red line indicates the
singular values oy_ 1 of A.
These indicate the theo-

107 1 retically minimal approxi-
mation error.

107} -

S
107°F l

0 10 20 30 40 50 60 70 80

K

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =

Example 1:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

10 N\ n

The red line indicates the
o singular values oy_ 1 of A.
&“ These indicate the theo-

10_ | ‘ — n n . .
x : retically minimal approxi-

P

mation error.

P
P
P

P

P

107"k

P

The blue line indicates the
actual errors e, incurred

Ok+1

o by one instantiation of the

_15 \V :% N

10 7 O TR0 -
proposed method.

vvvvvvv

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =

Example 1:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

The red line indicates the
singular values oy 1 of A.
These indicate the theo-

0 retically minimal approxi-

mation error.

107} o -

A The blue line indicates the

P

actual errors e, incurred

Ok+1

by a different instantiation
10_15‘ © ’ DOR0000000 7]

of the proposed method.

vvvvvvv

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =

Example 1:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

0 . | The red line indicates the
&v“ singular values oy, 1 of A.

*x‘ These indicate the theo-

= T S 1 Iretically minimal approxi-

-10

&“ mation error.
%

1077 : | [The blue line indicates the
¥ actual errors e, incurred
° X by a different instantiation

107} "y 1 lof the proposed method.

vvvvvvv

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =

Example 1:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

The red line indicates the
singular values oy 1 of A.
These indicate the theo-

& retically minimal approxi-
mation error.

The blue lines indicate the

T N -
= N actual errors e, incurred
S by 20 instantiations of the

107} g E— -
o proposed method.

vvvvvvv

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =

Example 2:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

107 oo, .

10 7

107 F -

-10

107"t -

Ok+1

~12

107" F -

107 .

107"° ' '
0 50 100 150

K

The red line indicates the
singular values oy_ 1 of A.
These indicate the theo-
retically minimal approxi-

mation error.

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o;

min(m,n)
j=1

Example 2:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

10

10

10"

10"

10

-10

10

Ok+1

~12

10

_14

10

107"°

50

K

100

150

The red line indicates the
singular values oy_ 1 of A.
These indicate the theo-
retically minimal approxi-

mation error.

The blue line indicates the
actual errors e, incurred
by one instantiation of the

proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o;

min(m,n)
j=1

Example 2:

We consider a 1 000 x 1000 matrix A whose singular values are shown below:

O r—— B N The red line indicates the
)\ .
107 1 §;§3\\ { singular values oy _ ¢ of A.
} N These indicate the theo-

10 F N 1 . . .
S retically minimal approxi-

107 1 'mation error.

10° | 3 |

\

| The blue lines indicate the
i ! | .
& \ actual errors e, incurred
© 12| % i . .

10 Ny by 20 instantiations of the

p— “‘ proposed method.

107"° | |

0 50 100 150

K

A is a discrete approximation of a certain compact integral operator normalized so that ||A|| = 1.

min(m,n)

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {o; =

Example 3:

The matrix A being analyzed is a 9025 x 9025 matrix arising in a diffusion geometry

approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3 x 3 patches.

Joint work with Francois Meyer of the University of Colorado at Boulder.

Magnitude

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Approximation error e

20

40

60

80

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Estimated Eigenvalues)

x “Exact”’ eigenvalues

o Aforg=3

-
‘ O Aforg=1

I \ * Nforg=0 |

A

- "%y 4

V ‘ ‘
‘v;,
Ve.\:"(:‘

i VoSG

\"g N

é L

i _é

]]]
40 60 80 100

The pink lines illustrates the performance of the basic random sampling scheme.

The errors are huge, and the estimated eigenvalues are much too small.

Example 4: “Eigenfaces”
We next process a data base containing m = 7 254 pictures of faces
Each image consists of n = 384 x 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304 x 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

Approximation error e Estimated Eigenvalues)

10 I I I I 10 I I I I
I _ “Exact” eigenvalues |7 I

—%— Ajforg=0
—&— M\forg=1

—8—) forqg=3

Magnitude

10

0 20 40 60 80 100

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

K e\/lT min(m,n) 1/2
EHA — QQ*AH < (1 +) Ok4q T p(Z (72) .

_ /
p—1 P j=k+1

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (A A*)9 A has the same left singular vectors as A, and singular values
o(AA*)TA) = (0j(A)297.
Much faster decay — so let us use the sample matrix
Y=(AA")YAR

instead of
Y =AR.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also

similar to “block power method,” “block Lanczos,” “subspace iteration.”

Input: An m x n matrix A, a target rank ¢, and a small integer q.
Output: Rank-/ factors U, D, and V in an approximate SVD A ~ UDV".

(1) Draw an n x ¢ random matrix R. (4) Form the small matrix B = Q" A.
(2) Form the m x ¢ sample matrix Y = (A A*)? AR. | (5) Factor the small matrix B = UDV*.
(3) Compute an ON matrix @ s.t. Y = QQ*Y. (6) Form U = QU.

e Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed — ypv*, the expectation of the error satisfies:

. 1/(2g+1)
(1) F [HA L ACOmpUtedH} S (1 _|_4\/2 mln(m;n)>

Reference: Halko, Martinsson, Tropp (2011).

e The improved accuracy from the modified scheme comes at a cost;
29 + 1 passes over the matrix are required instead of 1.
However, g can often be chosen quite small in practice, g = 2 or g = 3, say.

e The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.

A numerically stable version of the “power method”:

Input: An m x n matrix A, a target rank ¢, and a small integer q.
Output: Rank-/ factors U, D, and V in an approximate SVD A ~ UDV*.

Draw an n x ¢ Gaussian random matrix R.
Set Q = orth(AR)
fori=1,2 ..., 9

W = orth(A*Q)

Q = orth(AW)
end for
B-=Q"A
[U, D, V] = svd(B)
U=aqu.

Note: Algebraically, the method with orthogonalizations is identical to the “original”
method where Q = orth((AA*)9AR).

Note: This is a classic subspace iteration.

The novelty is the error analysis, and the finding that using a very small g is often fine.
(In fact, our analysis allows g to be zero...)

ADAPTIVE RANK DETERMINATION

How to proceed when the rank of a matrix is not known in advance.

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.
We seek an m x k matrix Q whose columns form an ON basis for col(A).

Q=[]
fori=1,23,.... 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q 2.

Iz

end for

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.

We seek an m x k matrix Q whose columns form an ON basis for col(A).

Q=1[1;

fori=1,23,..., 777

Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.

Project the sample vector away from the basis computed z; = y; — QQ™y;.

Add the new element to the basis Q = [Q H:—’H}
/

end for

Observation 1: While i < k, we know that z; # 0 with probability 1.

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.
We seek an m x k matrix Q whose columns form an ON basis for col(A).

Q=[]
fori=1,23,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q H:—;H}
end for

Observation 1: While i < k, we know that z; # 0 with probability 1.

Observation 2: Once you come to step i = k + 1, the vector z,_ 4 must be zero!

Adaptive rank determination — vector-by-vector technique

Let us again start by considering the simplistic case where A is exactly rank-deficient.
Let A be an m x n matrix of exact rank k, where k is unknown.

We seek an m x k matrix Q whose columns form an ON basis for col(A).
Q=[];
fori=1,2, 3,...

Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
if |z; = 0| then
Therankisk =i —1.
break
else
Add the new element to the basis Q = [Q ﬁ]
end if

end for

Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[]
fori=1,23, ... 777

Draw an n x 1 Gaussian random vector ;.

Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.

Add the new element to the basis Q = [Q ﬁ}
/

end for

Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[];
fori=1,2,3,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q ﬁ}
end for

Observe that
Zi =Y — QQ*y, — Ar,- — QQ*AI’,' — (A — QQ*A) K.

Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[];
fori=1,2,3,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q ﬁ}
end for

Observe that
Zi =Y — QQ*y, — Ar,- — QQ*AI’,' — (A — QQ*A) K.

In consequence, since r; is Gaussian,

E[|z]?] = |A — QQ*A|2.

Adaptive rank determination — vector-by-vector technique
Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let £ > 0 be a given tolerance. We seek an m x k ON matrix Q s.t. ||A — QQ*A||p,, < e.

Q=[];
fori=1,2,3,..., 777
Draw an n x 1 Gaussian random vector ;.
Compute an m x 1 sample vector y; = Ar;.
Project the sample vector away from the basis computed z; = y; — QQ™y;.
Add the new element to the basis Q = [Q ﬁ}
end for

Observe that
Zi =Y — QQ*y, — Ar,- — QQ*AI’,' — (A — QQ*A) K.

In consequence, since r; is Gaussian,
2 2
Ellzi]°] = [|A — QQ"A|I%,,.

Observation 1: Once you observe several consecutive z; such that, say, ||z;|| <¢e/2, it

will “likely” be the case that ||A — QQA||g,, < e.
Observation 2: You need to block the algorithm for computational efficiency.

Adaptive rank determination

Let A be an m x n matrix whose singular values decay, but do not hit zero.
Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q s.t. |A — QQ*A||p,, < e.

Q=[]
fori=1,2 3,...
Draw an n x b Gaussian random matrix R;.
Compute an m x b sample matrix Y; = AR,;.
Project the sample columns away from the basis computed Z; = Y; — QQ™Y;.
Orthonormalize the samples [Q;, R;| = qr(Z;, 0). (Unpivoted QR factorization!)
if |“several consecutive columns of R; are small”| then
Add the appropriate number of columns of Q; to Q.
break
else
Add the new element to the basis Q = [Q Q;].
end if
end for

Warning: Re-orthogonalization is often needed to combat floating point errors.

Adaptive rank determination — with updating

Consider the special case that A can be updated, e.qg. if it is dense and stored in RAM.
Let A be an m x n matrix whose singular values decay, but do not hit zero.

Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q@ s.t. |A — QQ*A||p,, < e.

(1) Q@=[];B=[];
(2) while |A|| > ¢
(3) Draw an n x b Gaussian matrix R;.
(4) Compute the m x b matrix [Q;, ~| = qr(AR;, 0).
(5) B; = QA
(6) Q=[QQ]
(7) B = B
Bi
(8) A=A-QB;
(9) end while

A blocked and randomized variation of the classical “modified Gram-Schmidt” algorithm.
Warning: Re-orthogonalization is often needed to combat floating point errors.

Adaptive rank determination — with updating

Consider the special case that A can be updated, e.qg. if it is dense and stored in RAM.
Let A be an m x n matrix whose singular values decay, but do not hit zero.

Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q@ s.t. |A — QQ*A||p,, < e.

(1) Q=[] B=[]
(2) while |A|| > ¢
(3) Draw an n x b Gaussian matrix R;.
(4) Compute the m x b matrix Q; = qr(AR;, 0).
(5) B; = QA
(6) Q=[QQ]
AT
Bi_
(8) A=A-QB;
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.

Adaptive rank determination — with updating

Consider the special case that A can be updated, e.qg. if it is dense and stored in RAM.
Let A be an m x n matrix whose singular values decay, but do not hit zero.

Let = > 0 be a given tolerance, and let b be a “block size.”

We seek an m x k ON matrix Q@ s.t. |A — QQ*A||p,, < e.

(1) Q=[] B=[]
(2) while |A|| > ¢
(3) Draw an n x b Gaussian matrix R;.
(4) Compute the m x b matrix Q; = qr(AR;, 0).
(5) B; = QA
(6) Q=[QQ]
AT
Bi_
(8) A=A-QB;
(9) end while

Observation: Almost all the work is done by matrix-matrix multiplies.
@ This algorithm is ideal for running on modern CPUs and GPUS!

Time for compression of n x n matrix. k=100 kstep=20

column pivoted QR

100 ¢ randomized QB (q=0) E
: randomized QB (g=1) :
randomized QB (q=2)
102 L =mmme randomized QB on GPU (g=0)

full gr using LAPACK

—h
O_L

Time in seconds
(@]

—
)

e =

Everything is implemented in Matlab. The “full gr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

Time for compression of n x n matrix. k=200 kstep=40

column pivoted QR

107 rand— QB (g=0) E
: rand-QB (g=1) :
[rand—-QB (g=2)

102 Ll ==="" rand-QB on GPU (g=0)

q=0
| === rand-QB on GPU (g=1)
[rand-QB on GPU (g=2
full gr using LAPACK

—

—i
o

Time in seconds
o

—i
o

L b

Everything is implemented in Matlab. The “full gr” line refers to Matlab built in qr.
CPU = Intel Xeon E-1660 (6 cores, 3.3GHz). GPU = Tesla K40c (2880 cores, 12GB).
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

Randomized algorithms for FULL factorizations: Column pivoted QR

Versus netlib dgeqp3 Versus Intel MKL dgeqp3
7 | 7 |

?,
o 0 O
o
o))
© = 5
d))
>
A Al 11
=
> | D B
= 3 3
"6 2 I —e— 1 core 9 | —e— 1 core
o} —m— 4 cores —m— 4 cores
Ij 1 —@®— 8 cores || 11 —@®— 8 cores ||
8 —x— 14 cores —x— 14 cores
O | | | | | | | |
o) -))) -))))))
n = 8 = = = 8 S = =

N <t e} O o N . N} o0 o

— —
N N

Speedup attained by our randomized algorithm HGRRP for computing a full column pivoted
QR factorization of an N x N matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Orti, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

