
Open topics in applied mathematics:

Fast Methods in Scientific Computation
MAT 393 C

Gunnar Martinsson

(These notes will be posted on the class webpage.)

Purpose of class:

• The central theme is “fast” methods for solving elliptic PDEs such as:
• The Laplace and Poisson equations.
• Helmholtz’ equation.
• Time-harmonic Maxwell’s equation.
• The equations of linear elasticity.
• The Stokes equation.

• We will also cover other computational methods, including:
• FFT and other expansion based fast solvers.
• Fast methods for N-body problems such as the Fast Multipole Method (FMM).
• Techniques for accelerating matrix computations — randomized methods for factorizing matrices,

sparse solvers, Krylov methods, “rank-structured” matrix computations, etc.

• Light emphasis on proofs and theory. Stronger emphasis on practical computing.

• Focus is on numerical methods and scientific computing, but connections to
applications will be discussed as well.

Definition of the term “fast”:

We say that a numerical method is fast if its execution time scales as O(N) as the
problem size N grows.

Methods whose complexity is O(N logN) or O(N log2N) are also called “fast”.

Growth of computing power and the importance of algorithms

1980 2000

1000

100

10

1
Year

CPU speed

Consider the task of solving a linear algebraic system Ax = b of N equations
with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

1980 2000

106

105

104

103

O(N3) method

Year

Problem size

Using an O(N3) method, an increase in computing power by a factor of 1000,
enables the solution of problems that are 10001/3 = 10 times larger.

O(N) method!

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1000

100

10

1
Year

CPU speed

Consider the task of solving a linear algebraic system Ax = b of N equations
with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

1980 2000

106

105

104

103

O(N3) method

Year

Problem size

Using an O(N3) method, an increase in computing power by a factor of 1000,
enables the solution of problems that are 10001/3 = 10 times larger.

O(N) method!

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1000

100

10

1
Year

CPU speed

Consider the task of solving a linear algebraic system Ax = b of N equations
with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

1980 2000

106

105

104

103

O(N3) method

Year

Problem size

Using an O(N3) method, an increase in computing power by a factor of 1000,
enables the solution of problems that are 10001/3 = 10 times larger.

O(N) method!

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1000

100

10

1
Year

CPU speed

Consider the task of solving a linear algebraic system Ax = b of N equations
with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

1980 2000

106

105

104

103

O(N3) method

Year

Problem size

Using an O(N3) method, an increase in computing power by a factor of 1000,
enables the solution of problems that are 10001/3 = 10 times larger.

O(N) method!

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1000

100

10

1
Year

CPU speed

Consider the task of solving a linear algebraic system Ax = b of N equations
with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

1980 2000

106

105

104

103

O(N3) method

Year

Problem size

Using an O(N3) method, an increase in computing power by a factor of 1000,
enables the solution of problems that are 10001/3 = 10 times larger.

O(N) method!

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Caveat: It appears that Moore’s law is no longer operative.

Processor speed is currently increasing quite slowly.

The principal increase in computing power is coming from parallelization.

In consequence, successful algorithms must scale well both with problem size and with
the number of processors that a computer has.

To slightly offset the difficulty of parallelization, the cost of storage is decreasing.
However, the speed of access is increasing only slowly, again reinforcing the need to
keep data local in designing algorithms.

Laplace’s equation (in two dimensions for simplicity)

Let u = u(x) denote a differentiable function of the vector valued variable x = (x1, x2).
The Laplace operator is defined by

∆u =
∂2u
∂x21

+
∂2u
∂x22

.

Let Ω denote a domain with boundary Γ. Then the Poisson equation on Ω is

(1)

−∆u(x) = f (x), x ∈ Ω,

u(x) = g(x), x ∈ Γ.

The function f is a given body load and g is a given boundary data. If f = 0, we call (1)
the Laplace equation.

The Poisson and Laplace equations are the simplest equations in a large class of so
called elliptic PDEs. Other examples include Helmholtz, elasticity, Maxwell (for the
“time-harmonic case”).

The Laplace and Poisson equations:

Electrostatics: −∆u(x) = f (x), x ∈ Ω,

u(x) = g(x), x ∈ Γ.

u is the electric potential
f is the electric charge density
g is a fixed potential on the boundary (Neumann b.c. ⇒ fixed fluxes)

Examples of applications:
• Design of electric engines / turbines / etc.
• Biochemical modeling.
• Design of electronic circuits.

(“Magnetostatics” is entirely analogous.)

The Laplace and Poisson equations:

Gravity:
−∆u(x) = f (x), x ∈ R3,

u is the gravitational potential
f is the mass density

Examples of applications:
• Astrophysics

A “hidden” Laplace problem: Consider a situation with N gravitational bodies in R3.
Each body has mass mi and location xi. Then the force on body i resulting from
interactions with the other bodies is

Fi =
∑
j 6=i

Gmi mj
xi − xj
|xi − xj|3

,

where G ≈ 6.67428 · 10−11m3/(kg s2) is the gravitational constant.

We now observe that the force Fi can be expressed as

Fi = −mi
∑
j 6=i
∇uj(xi),

where uj = uj(x) is the gravitational potential generated by the j ’th charge

uj(x) =
∑
j 6=i

Gmj
1

|x − xj|
.

The potential uj satisfies
−∆uj(x) = mj δ(x − xj).

The total field u =
∑

i ui satisfies

−∆u(x) = f (x) =
∑
i

mj δ(x − xj).

The problem of computing a sum such as

Fi =
∑
j 6=i

Gmi mj
xi − xj
|xi − xj|3

,

arises directly in many applications:
• Astrophysics.
• Biochemical simulations (each “particle” is a charged part of a molecule).
• Modeling of semi-conductors (each “particle” is an ion).
• Fluid dynamics (each “particle” is an “vortex”).

It also arises indirectly in many “fast” methods for solving elliptic PDEs.

The naïve computation of {Fi}Ni=1 requires O(N2) operations since there are N (N − 1)/2
“pair-wise interactions.”

We will study in some detail a method that requires only O(N) operations;
the so called Fast Multipole Method or FMM.

The Laplace and Poisson equations:

Thermostatics: −∆u(x) = f (x), x ∈ Ω,

u(x) = g(x), x ∈ Γ.

u is the temperature
f is the heat source density
g is a fixed temperature on the boundary (Neumann b.c. ⇒ fixed flows)

Examples of applications:
• . . .

The Helmholtz equation:

Recall the wave equation:
∂2u
∂x21

+
∂2u
∂x22

=
∂2u
∂t2

.

The wave equation models vibrations in membranes, acoustic waves, certain
electro-magnetic waves, and many other phenomena.

Now assume that the time dependence is “time harmonic”:

u(x, t) = v(x) cos(ωt).

Then ∂2u
∂t2 = −ω2 u and so the wave equation becomes the Helmholtz equation:

∂2v
∂x21

+
∂2v
∂x22

= −ω2v.

The Maxwell equations
∇ · E = ρ ∇× E = − ∂B

∂t
∇ · B = 0 ∇× B = J +

∂E
∂t

model electromagnetism. E is the electric field, and B is the magnetic field.

Consider the stationary case where ∂E/∂t = 0 and ∂B/∂t = 0. Since E is curl-free, there
exists a function u = u(x) such that

E = −∇u.

(The function u is the electric potential.) We now find that

ρ = ∇ · E = ∇ · (−∇u) = −∆u,

and we recover the Poisson equation we saw earlier:

−∆u = ρ.

The Maxwell equations
∇ · E = ρ ∇× E = − ∂B

∂t
∇ · B = 0 ∇× B = J +

∂E
∂t

model electromagnetism. E is the electric field, and B is the magnetic field.

Now consider another simplification: the “time-harmonic” case where

E(x, t) = E(x)eiωt, B(x, t) = B(x)eiωt.

Then
∂

∂tE = iωE, and ∂

∂tB = iωB.

Inserting these relations into the Maxwell equations, we obtain a system of
“Helmholtz-like” equations ∇ · E = ρ ∇× E = − iωB

∇ · B = 0 ∇× B = J + iωE

In special cases, the system simplifies to the plain Helmholtz equation . . .

Recall: ∇ · E = ρ ∇× E = − iωB
∇ · B = 0 ∇× B = J + iωE

Suppose ρ = 0 and J = 0. Then

∇×∇× E = ∇× (−iωB) = −iω(∇× B) = −iω(iωE) = ω2E.

Now recall that for any vector field F we have

∇×∇× F = ∇(∇ · F)−∆F.

Consequently:
∇(∇ · E)−∆E = ω2E.

Finally recall that ∇ · E = 0 to obtain the “Helmholtz-like” equation

−∆E = ω2E.

The equations of linear elasticity in Rd:
d∑

j,k,l=1

1
2Eijkl

(
∂2uk
∂xl∂xj

+
∂2ul
∂xk∂xj

)
= fi, i = 1, 2, . . . , d.

The function u = u(x) = (u1(x), u2(x), . . . , ud(x)) is the displacement of an elastic
material subjected to the body load f = f (x) at the point x.
(Eijkl)

d
i,j,k,l=1 is the stiffness tensor which describes the material properties.

Many simplifications can be derived from the basic equilibrium equation. For instance, if
the material is isotropic, and if f = 0, then the displacements satisfy the biharmonic
equation

(−∆)2u = 0.

Another simplification is the displacement of a thin elastic membrane:
(−∆)2 u(x) = f (x), x ∈ Ω,

u(x) = g(x), x ∈ Γ,

un(x) = h(x), x ∈ Γ.

Here f is the body load (e.g. gravity), h is the prescribed deflection at the boundary, and
h is the prescribed normal derivative. (Since the equation has order four, we need two
boundary conditions.)

Outline:

Week: Material covered:
1: Introduction: Objectives of the course. Quick review of basic elliptic PDEs and their connec-

tions to physical applications. Analytic solution formulas, and their relationship to numerical
methods. Fast algorithms for global operators.

2: Linear algebra: Review of basic matrix factorizations. Techniques for computing low-rank
approximations to matrices. Randomized methods for matrix computations.

4: Rank-structured matrices: What they are, where they arise in applications, how they enable
fast solvers (and fast matrix algebra more generally).

5: Krylov methods for solving linear systems and computing partial spectral decompositions.
7: Fast solvers for elliptic PDEs based on the FFT and related techniques.
8: Direct solvers for elliptic PDEs based on Gaussian elimination combined with nested dissec-

tion ordering of the nodes (“multifrontal methods”). Sweeping solvers.
10: Boundary integral equations. How a PDE can be rewritten as an integral equation. Advan-

tages and disadvantages. Second kind Fredholm equations. Reduction of dimensionality.
12: The Fast Multipole Method, and fast summation techniques. The kernel evaluation map.

Kernel-independent FMMs and H-matrices.
14: Fast direct solvers for integral equations.
15: (If time permits. . .) Johnson-and-Lindenstrauss theory, and connections to analysis of com-

plex high dimensional data sets.

Practicalities:

Text: There is no “official” text. The syllabus is defined by the material covered in class.
Extensive latexed notes will be made available on the course website:

http://users.ices.utexas.edu/∼pgm/Teaching/2019_393C

Comments, errata, suggestions, . . . , are highly appreciated!

Attendance: Strongly encouraged.

Computer programming: Matlab will be used. If you do not have access to a computer
with Matlab, please contact the instructor.

Grading: No exam. Final grade is based on homeworks and a project:
• 50%: Five homework problems worth 10% each.
• 10%: Handing in a carefully latexed “reference solution”.
• 40%: Final project.

