Open topics in applied mathematics:
Fast Methods in Scientific Computation MAT 393 C

Gunnar Martinsson
(These notes will be posted on the class webpage.)

Purpose of class:

- The central theme is "fast" methods for solving elliptic PDEs such as:
- The Laplace and Poisson equations.
- Helmholtz' equation.
- Time-harmonic Maxwell's equation.
- The equations of linear elasticity.
- The Stokes equation.
- We will also cover other computational methods, including:
- FFT and other expansion based fast solvers.
- Fast methods for N-body problems such as the Fast Multipole Method (FMM).
- Techniques for accelerating matrix computations - randomized methods for factorizing matrices, sparse solvers, Krylov methods, "rank-structured" matrix computations, etc.
- Light emphasis on proofs and theory. Stronger emphasis on practical computing.
- Focus is on numerical methods and scientific computing, but connections to applications will be discussed as well.

Definition of the term "fast":

We say that a numerical method is fast if its execution time scales as $O(N)$ as the problem size N grows.

Methods whose complexity is $O(N \log N)$ or $O\left(N \log ^{2} N\right)$ are also called "fast".

Growth of computing power and the importance of algorithms

Growth of computing power and the importance of algorithms

Consider the task of solving a linear algebraic system $A x=b$ of N equations with N unknowns.

Growth of computing power and the importance of algorithms

Consider the task of solving a linear algebraic system $A x=b$ of N equations with N unknowns.

Classical methods such as Gaussian elimination require $O\left(N^{3}\right)$ operations.

Growth of computing power and the importance of algorithms

Consider the task of solving a linear algebraic system $A x=b$ of N equations with N unknowns.

Classical methods such as Gaussian elimination require $O\left(N^{3}\right)$ operations.
Using an $O\left(N^{3}\right)$ method, an increase in computing power by a factor of 1000, enables the solution of problems that are $1000^{1 / 3}=10$ times larger.

Growth of computing power and the importance of algorithms

Consider the task of solving a linear algebraic system $A x=b$ of N equations with N unknowns.

Classical methods such as Gaussian elimination require $O\left(N^{3}\right)$ operations.
Using an $O\left(N^{3}\right)$ method, an increase in computing power by a factor of 1000, enables the solution of problems that are $1000^{1 / 3}=10$ times larger.

Using a method that scales as $O(N)$, problems that are 1000 times larger can be solved.

Caveat: It appears that Moore's law is no longer operative.
Processor speed is currently increasing quite slowly.
The principal increase in computing power is coming from parallelization.
In consequence, successful algorithms must scale well both with problem size and with the number of processors that a computer has.

To slightly offset the difficulty of parallelization, the cost of storage is decreasing. However, the speed of access is increasing only slowly, again reinforcing the need to keep data local in designing algorithms.

Laplace's equation (in two dimensions for simplicity)

Let $u=u(\boldsymbol{x})$ denote a differentiable function of the vector valued variable $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$.
The Laplace operator is defined by

$$
\Delta u=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}
$$

Let Ω denote a domain with boundary Γ. Then the Poisson equation on Ω is

$$
\left\{\begin{align*}
-\Delta u(\boldsymbol{x}) & =f(\boldsymbol{x}), & & \boldsymbol{x} \in \Omega \tag{1}\\
u(\boldsymbol{x}) & =g(\boldsymbol{x}), & & \boldsymbol{x} \in \Gamma
\end{align*}\right.
$$

The function f is a given body load and g is a given boundary data. If $f=0$, we call (1) the Laplace equation.

The Poisson and Laplace equations are the simplest equations in a large class of so called elliptic PDEs. Other examples include Helmholtz, elasticity, Maxwell (for the "time-harmonic case").

The Laplace and Poisson equations:

Electrostatics:

$$
\left\{\begin{aligned}
-\Delta u(\boldsymbol{x})=f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x})=g(\boldsymbol{x}), & \boldsymbol{x} \in \Gamma
\end{aligned}\right.
$$

u is the electric potential
f is the electric charge density
g is a fixed potential on the boundary (Neumann b.c. \Rightarrow fixed fluxes)
Examples of applications:

- Design of electric engines / turbines / etc.
- Biochemical modeling.
- Design of electronic circuits.
("Magnetostatics" is entirely analogous.)

The Laplace and Poisson equations:

Gravity:

$$
-\Delta u(\boldsymbol{x})=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^{3}
$$

u is the gravitational potential
f is the mass density
Examples of applications:

- Astrophysics

A "hidden" Laplace problem: Consider a situation with N gravitational bodies in \mathbb{R}^{3}. Each body has mass m_{i} and location \boldsymbol{x}_{i}. Then the force on body i resulting from interactions with the other bodies is

$$
\boldsymbol{F}_{i}=\sum_{j \neq i} G m_{i} m_{j} \frac{\boldsymbol{x}_{i}-\boldsymbol{x}_{j}}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|^{3}}
$$

where $G \approx 6.67428 \cdot 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{s}^{2}\right)$ is the gravitational constant.
We now observe that the force $\boldsymbol{F}_{\boldsymbol{i}}$ can be expressed as

$$
\boldsymbol{F}_{i}=-m_{i} \sum_{j \neq i} \nabla u_{j}\left(\boldsymbol{x}_{i}\right),
$$

where $u_{j}=u_{j}(\boldsymbol{x})$ is the gravitational potential generated by the j 'th charge

$$
u_{j}(\boldsymbol{x})=\sum_{j \neq i} G m_{j} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}_{j}\right|}
$$

The potential u_{j} satisfies

$$
-\Delta u_{j}(\boldsymbol{x})=m_{j} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right) .
$$

The total field $u=\sum_{i} u_{i}$ satisfies

$$
-\Delta u(\boldsymbol{x})=f(\boldsymbol{x})=\sum_{i} m_{j} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)
$$

The problem of computing a sum such as

$$
\boldsymbol{F}_{i}=\sum_{j \neq i} G m_{i} m_{j} \frac{\boldsymbol{x}_{i}-\boldsymbol{x}_{j}}{\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|^{3}},
$$

arises directly in many applications:

- Astrophysics.
- Biochemical simulations (each "particle" is a charged part of a molecule).
- Modeling of semi-conductors (each "particle" is an ion).
- Fluid dynamics (each "particle" is an "vortex").

It also arises indirectly in many "fast" methods for solving elliptic PDEs.
The naïve computation of $\left\{F_{i}\right\}_{i=1}^{N}$ requires $O\left(N^{2}\right)$ operations since there are $N(N-1) / 2$ "pair-wise interactions."

We will study in some detail a method that requires only $O(N)$ operations; the so called Fast Multipole Method or FMM.

The Laplace and Poisson equations:

Thermostatics:

$$
\left\{\begin{aligned}
-\Delta u(\boldsymbol{x})=f(\boldsymbol{x}), & \boldsymbol{x} \in \Omega, \\
u(\boldsymbol{x})=g(\boldsymbol{x}), & \boldsymbol{x} \in \Gamma
\end{aligned}\right.
$$

u is the temperature
f is the heat source density
g is a fixed temperature on the boundary (Neumann b.c. \Rightarrow fixed flows)

Examples of applications:

- ...

The Helmholtz equation:

Recall the wave equation:

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

The wave equation models vibrations in membranes, acoustic waves, certain electro-magnetic waves, and many other phenomena.

Now assume that the time dependence is "time harmonic":

$$
u(\boldsymbol{x}, t)=v(\boldsymbol{x}) \cos (\omega t) .
$$

Then $\frac{\partial^{2} u}{\partial t^{2}}=-\omega^{2} u$ and so the wave equation becomes the Helmholtz equation:

$$
\frac{\partial^{2} v}{\partial x_{1}^{2}}+\frac{\partial^{2} v}{\partial x_{2}^{2}}=-\omega^{2} v
$$

The Maxwell equations

$$
\begin{cases}\nabla \cdot \mathbf{E}=\rho & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}\end{cases}
$$

model electromagnetism. \mathbf{E} is the electric field, and \mathbf{B} is the magnetic field.
Consider the stationary case where $\partial \mathbf{E} / \partial t=0$ and $\partial \mathbf{B} / \partial t=0$. Since \mathbf{E} is curl-free, there exists a function $u=u(\boldsymbol{x})$ such that

$$
\mathbf{E}=-\nabla u .
$$

(The function u is the electric potential.) We now find that

$$
\rho=\nabla \cdot \mathbf{E}=\nabla \cdot(-\nabla u)=-\Delta u,
$$

and we recover the Poisson equation we saw earlier:

$$
-\Delta u=\rho .
$$

The Maxwell equations

$$
\begin{cases}\nabla \cdot \mathbf{E}=\rho & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mathbf{J}+\frac{\partial \mathbf{E}}{\partial t}\end{cases}
$$

model electromagnetism. \mathbf{E} is the electric field, and \mathbf{B} is the magnetic field.
Now consider another simplification: the "time-harmonic" case where

$$
\mathbf{E}(\boldsymbol{x}, t)=\mathbf{E}(\boldsymbol{x}) e^{i \omega t}, \quad \mathbf{B}(\boldsymbol{x}, t)=\mathbf{B}(\boldsymbol{x}) e^{i \omega t} .
$$

Then

$$
\frac{\partial}{\partial t} \mathbf{E}=i \omega \mathbf{E}, \quad \text { and } \quad \frac{\partial}{\partial t} \mathbf{B}=i \omega \mathbf{B} .
$$

Inserting these relations into the Maxwell equations, we obtain a system of "Helmholtz-like" equations

$$
\begin{cases}\nabla \cdot \mathbf{E}=\rho & \nabla \times \mathbf{E}=-i \omega \mathbf{B} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mathbf{J}+i \omega \mathbf{E}\end{cases}
$$

In special cases, the system simplifies to the plain Helmholtz equation ...

Recall:

$$
\begin{cases}\nabla \cdot \mathbf{E}=\rho & \nabla \times \mathbf{E}=-i \omega \mathbf{B} \\ \nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\mathbf{J}+i \omega \mathbf{E}\end{cases}
$$

Suppose $\rho=0$ and $\mathbf{J}=\mathbf{0}$. Then

$$
\nabla \times \nabla \times \mathbf{E}=\nabla \times(-i \omega \mathbf{B})=-i \omega(\nabla \times \mathbf{B})=-i \omega(i \omega \mathbf{E})=\omega^{2} \mathbf{E} .
$$

Now recall that for any vector field \mathbf{F} we have

$$
\nabla \times \nabla \times \mathbf{F}=\nabla(\nabla \cdot \mathbf{F})-\Delta \mathbf{F} .
$$

Consequently:

$$
\nabla(\nabla \cdot \mathbf{E})-\Delta \mathbf{E}=\omega^{2} \mathbf{E} .
$$

Finally recall that $\nabla \cdot \mathbf{E}=0$ to obtain the "Helmholtz-like" equation

$$
-\Delta \mathbf{E}=\omega^{2} \mathbf{E} .
$$

The equations of linear elasticity in \mathbb{R}^{d} :

$$
\sum_{j, k, l=1}^{d} \frac{1}{2} E_{i j k l}\left(\frac{\partial^{2} u_{k}}{\partial x_{l} \partial x_{j}}+\frac{\partial^{2} u_{l}}{\partial x_{k} \partial x_{j}}\right)=f_{i}, \quad i=1,2, \ldots, d
$$

The function $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})=\left(u_{1}(\boldsymbol{x}), u_{2}(\boldsymbol{x}), \ldots, u_{d}(\boldsymbol{x})\right)$ is the displacement of an elastic material subjected to the body load $\boldsymbol{f}=\boldsymbol{f}(\boldsymbol{x})$ at the point \boldsymbol{x}.
$\left(E_{i j k l}\right)_{i, j, k, l=1}^{d}$ is the stiffness tensor which describes the material properties.
Many simplifications can be derived from the basic equilibrium equation. For instance, if the material is isotropic, and if $\boldsymbol{f}=0$, then the displacements satisfy the biharmonic equation

$$
(-\Delta)^{2} \boldsymbol{u}=0
$$

Another simplification is the displacement of a thin elastic membrane:

$$
\left\{\begin{aligned}
(-\Delta)^{2} u(\boldsymbol{x}) & =f(\boldsymbol{x}), & & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x}) & =g(\boldsymbol{x}), & & \boldsymbol{x} \in \Gamma \\
u_{n}(\boldsymbol{x}) & =h(\boldsymbol{x}), & & \boldsymbol{x} \in \Gamma
\end{aligned}\right.
$$

Here f is the body load (e.g. gravity), h is the prescribed deflection at the boundary, and h is the prescribed normal derivative. (Since the equation has order four, we need two boundary conditions.)

Outline:

Week:	Material covered:
$1:$	Introduction: Objectives of the course. Quick review of basic elliptic PDEs and their connec- tions to physical applications. Analytic solution formulas, and their relationship to numerical methods. Fast algorithms for global operators.
$2:$	Linear algebra: Review of basic matrix factorizations. Techniques for computing low-rank approximations to matrices. Randomized methods for matrix computations.
$4:$	Rank-structured matrices: What they are, where they arise in applications, how they enable fast solvers (and fast matrix algebra more generally).
$5:$	Krylov methods for solving linear systems and computing partial spectral decompositions.
$7:$	Fast solvers for elliptic PDEs based on the FFT and related techniques.
$8:$	Direct solvers for elliptic PDEs based on Gaussian elimination combined with nested dissec- tion ordering of the nodes ("multifrontal methods"). Sweeping solvers.
$10:$	Boundary integral equations. How a PDE can be rewritten as an integral equation. Advan- tages and disadvantages. Second kind Fredholm equations. Reduction of dimensionality.
$12:$	The Fast Multipole Method, and fast summation techniques. The kernel evaluation map. Kernel-independent FMMs and \mathcal{H}-matrices.
$14:$	Fast direct solvers for integral equations.
$15:$	(If time permits...) Johnson-and-Lindenstrauss theory, and connections to analysis of com- plex high dimensional data sets.

Practicalities:

Text: There is no "official" text. The syllabus is defined by the material covered in class. Extensive latexed notes will be made available on the course website:
http://users.ices.utexas.edu/~pgm/Teaching/2019_393C

Comments, errata, suggestions, ..., are highly appreciated!

Attendance: Strongly encouraged.

Computer programming: Matlab will be used. If you do not have access to a computer with Matlab, please contact the instructor.

Grading: No exam. Final grade is based on homeworks and a project:

- 50\%: Five homework problems worth 10% each.
- 10\%: Handing in a carefully latexed "reference solution".
- 40\%: Final project.

