MATH 393C: Fast Methods in Scientific Computing

Lecture on March 13, 2019.

Supplementary material on adaptive FMM – new material on page 25 onwards.

P.G. Martinsson

The University of Texas at Austin

The outgoing expansion

Let τ be a box (green). Let \mathbf{c}_{τ} be the center of τ (black). Let \mathbf{y}_j be source locations in τ (red). Let q_j be the strength of source j. Let \mathbf{x}_i be targets well separated from τ (blue). Let u denote the potential

$$u(\mathbf{x}_i) = \sum_j q_j \log(\mathbf{x}_i - \mathbf{y}_j).$$

The *outgoing expansion* of τ is a vector $\hat{\mathbf{q}} = [\hat{q}_{\rho}]_{\rho=0}^{P}$ of complex numbers such that

(1)
$$u(\mathbf{x}) \approx \hat{q}_0 \log |\mathbf{x} - \mathbf{c}_{\tau}| + \sum_{p=1}^{P} \hat{q}_p \frac{1}{(\mathbf{x} - \mathbf{c}_{\tau})^p}, \qquad \mathbf{x} \in \Omega_{\tau}^{\text{far}}.$$

The outgoing expansion is a compact representation of the sources inside τ (it encodes both the source locations and the magnitudes).

The incoming expansion

Let τ be a box (green).

Let \mathbf{c}_{τ} be the center of τ (black).

Let \mathbf{y}_j be sources well-separated from τ (red).

Let q_j be strength of source j.

Let \mathbf{x}_i be targets inside τ (blue).

Let *u* denote the potential

$$u(\mathbf{x}_i) = \sum_j q_j \log(\mathbf{x}_i - \mathbf{y}_j).$$

The *incoming expansion* of τ is a vector $\hat{\mathbf{u}} = [\hat{u}_{p}]_{p=0}^{P}$ of complex numbers such that

$$u(\mathbf{x}) pprox \sum_{oldsymbol{p}=oldsymbol{0}}^{oldsymbol{P}} \hat{u}_{oldsymbol{p}}(\mathbf{x}-\mathbf{c}_{ au})^{oldsymbol{p}}, \qquad \mathbf{x}\in\Omega_{ au}.$$

The incoming expansion is a compact representation of the sources well-separated from

au

(2)

(it encodes both the source locations and the magnitudes).

The *outgoing-from-sources* translation operator $T_{\tau}^{(ofs)}$

Let τ be a box (green).

Let \mathbf{c}_{τ} be the center of τ (black).

Let $\{\mathbf{y}_j\}_j^{N_{\tau}}$ be source locations in τ (red).

Let q_j be strength of source j.

The operator $\mathbf{T}_{\tau}^{(\text{ofs})}$ constructs the outgoing expansion directly from the vector of charges.

 $\hat{\mathbf{q}}_{ au} = \mathbf{T}_{ au}^{ ext{(ofs)}} \mathbf{q}$ $(P+1) imes \mathbf{1} \quad (P+1) imes N_{ au} N_{ au} imes \mathbf{1}$

$$\begin{aligned} \mathbf{T}_{\tau,0,j}^{(\text{ofs})} &= 1 & 1 \leq j \leq N_{\tau} \\ \mathbf{T}_{\tau,p,j}^{(\text{ofs})} &= -\frac{1}{p} (\mathbf{y}_j - \mathbf{c}_{\tau})^p & 1 \leq p \leq P & 1 \leq j \leq N_{\tau}. \end{aligned}$$

The *outgoing-from-outgoing* translation operator $T_{\tau,\sigma}^{(ofo)}$

- Let τ be a box (green).
- Let \mathbf{c}_{τ} be the center of \mathbf{c}_{τ} (black).
- Let σ denote a box contained in $\tau.$
- Let \mathbf{c}_{σ} denote the center of σ (red).
- Let $\hat{\mathbf{q}}_{\sigma}$ be outgoing expansion of σ .

 $\mathbf{T}_{ au,\sigma}^{(ofo)}$ constructs the outgoing expansion of au from the outgoing expansion of σ

$$\hat{\mathbf{q}}_{ au} = \mathbf{T}^{(ext{ofo})}_{ au,\sigma} \quad \hat{\mathbf{q}}_{\sigma}$$
 $(P+1) imes 1 \quad (P+1) imes (P+1) \quad (P+1) imes 1$

With $\mathbf{d} = \mathbf{c}_{\sigma} - \mathbf{c}_{\tau}$, $\mathbf{T}_{\tau,\sigma}^{\text{(ofo)}}$ is a lower tridiagonal matrix with entries

$$\begin{aligned} \mathbf{T}_{\tau,\sigma,\mathbf{0},\mathbf{0}}^{\text{(ofo)}} &= \mathbf{1} \\ \mathbf{T}_{\tau,\sigma,\mathbf{p},\mathbf{0}}^{\text{(ofo)}} &= -\frac{1}{p} \mathbf{d} \\ \mathbf{T}_{\tau,\sigma,\mathbf{p},\mathbf{q}}^{\text{(ofo)}} &= \begin{pmatrix} p \\ q \end{pmatrix} \mathbf{d}^{p-q} \\ \mathbf{1} \leq q \leq p \leq P. \end{aligned}$$

The *incoming-from-outgoing* translation operator $T_{\tau,\sigma}^{(ifo)}$

Let σ be a source box (red) with center \mathbf{c}_{σ} .

Let τ be a target box (blue) with center \mathbf{c}_{τ} .

Let $\hat{\mathbf{q}}_{\sigma}$ be the outgoing expansion of σ .

Let $\hat{\mathbf{u}}_{\tau}$ represent the potential in τ caused by sources in σ .

$$\hat{\mathbf{u}}_{ au} = \mathbf{T}_{ au,\sigma}^{(ext{ifo})} \hat{\mathbf{q}}_{\sigma}$$

 $(P+1) imes 1 \quad (P+1) imes (P+1) \ (P+1) imes 1$

With $\mathbf{d} = \mathbf{c}_{\sigma} - \mathbf{c}_{\tau}$, $\mathbf{T}_{\tau,\sigma}^{(\text{ifo})}$ is a matrix with entries

$$\mathbf{T}^{(\text{ofo})}_{\tau,\sigma,\boldsymbol{p},\boldsymbol{q}}=?$$

The *incoming-from-incoming* translation operator $T_{\tau,\sigma}^{(ifi)}$

Let τ be a box (green) with center \mathbf{c}_{τ} (black).

Let σ be a box (blue) containing τ with center

 \mathbf{C}_{σ} .

Let $\hat{\mathbf{u}}_{\sigma}$ be an incoming expansion for σ .

 $\mathbf{T}_{\tau,\sigma}^{(ifi)}$ constructs the incoming expansion of τ from the incoming expansion of σ

$$\hat{\mathbf{u}}_{\tau} = \mathbf{T}_{\tau,\sigma}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\sigma}$$

 $(P+1) \times 1 \quad (P+1) \times (P+1) \ (P+1) \times 1$

With $\mathbf{d} = \mathbf{c}_{\sigma} - \mathbf{c}_{\tau}$, $\mathbf{T}_{\tau,\sigma}^{(ifi)}$ is a matrix with entries

$$\mathbf{T}^{(\mathrm{ifi})}_{\tau,\sigma,\boldsymbol{p},\boldsymbol{q}} = ?$$

The *targets-from-incoming* translation operator $T_{ au}^{(tfi)}$

Let τ be a box (green).

Let \mathbf{c}_{τ} be the center of τ (black).

Let $\{\mathbf{x}_i\}_i^{N_{\tau}}$ be target locations in τ (blue).

Let $\hat{\mathbf{u}}_{\tau}$ be the incoming expansion of τ .

 $\mathbf{T}_{ au}^{(\mathrm{tfi})}$ constructs the potentials in au from the incoming expansion

$$\mathbf{u}_{ au} = \mathbf{T}_{ au}^{ ext{(tfi)}} \hat{\mathbf{u}}_{ au}$$

 $N_{ au} imes \mathbf{1} \quad N_{ au} imes (P+1) \ (P+1) imes \mathbf{1}$

$$\mathbf{T}_{\tau,i,p}^{(\mathrm{tfi})} = (\mathbf{x}_i - \mathbf{c}_{\tau})^p \qquad \qquad \mathbf{1} \le i \le N_{\tau} \quad \mathbf{0} \le p \le P.$$

How do you compute the expansions of a box?

Computing the outgoing expansion of a leaf

Let τ be a box (green).

Let \mathbf{c}_{τ} be the center of τ (black). Let $\{\mathbf{y}_j\}_j^{N_{\tau}}$ be source locations in τ (red). Let q_j be strength of source j.

There is an analytic formula:

$$\hat{q}_0 = \sum_{j=1}^{N_{\tau}} q_j$$
 $\hat{q}_p = -\frac{1}{p} \sum_{j=1}^{N_{\tau}} q_j (\mathbf{y}_j - \mathbf{c}_{\tau})^p, \quad p = 1, 2, ..., P.$

We write the formula compactly as

$$\hat{\mathbf{q}}_{\tau} = \mathbf{T}_{\tau}^{(\text{ofs})} \mathbf{q}_{\tau}.$$

Computing the outgoing expansion of a parent

Let τ be a box (green).

Let \mathbf{c}_{τ} be the center of τ (black).

Let $\mathcal{L}_{\tau}^{\text{(child)}}$ denote the children of τ .

Let \mathbf{c}_{σ} be the center of child σ .

Let $\hat{\mathbf{q}}_{\sigma}$ be the outgoing expansion of child σ .

The outgoing expansion of τ can be computed from the outgoing expansions of its children:

$$\hat{\mathbf{q}}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{\text{(child)}}} \mathbf{T}_{\tau,\sigma}^{\text{(ofo)}} \hat{\mathbf{q}}_{\sigma}.$$

Computing the incoming expansions on level 2

Let τ be a box on level 2 (green).

Let \mathbf{c}_{τ} be the center of τ (black).

The well-separated boxes on level 2 are red.

The incoming expansion of τ is computed from the outgoing expansions of boxes in its interaction list

$$\hat{\mathbf{u}}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{(\text{int})}} \mathbf{T}_{\tau,\sigma}^{(\text{ifo})} \hat{\mathbf{q}}_{\sigma}.$$

Computing the incoming expansions on level ℓ when $\ell > 2$ Let τ be a box on level $\ell = 3$ (green).

Let ν be the parent of τ (blue).

Let u_{in}^{τ} denote the potential caused by charges that are well-separated from τ these are charges in the boxes marked with red dots and crosses. We have

$$\boldsymbol{u}_{\mathrm{in}}^{\tau} = \boldsymbol{u}_{\mathrm{in}}^{\nu} + \boldsymbol{v},$$

where u_{in}^{ν} is the incoming field for τ 's parent (caused by the boxes with red crosses), and v is the field caused by boxes in the interaction list of τ (boxes with a red dot).

The field u_{in}^{ν} was computed on the previous level and is represented by $\hat{\mathbf{u}}_{\nu}$.

The field *v* is computed by transferring the outgoing expansions $\hat{\mathbf{q}}_{\sigma}$ for $\sigma \in \mathcal{L}_{\tau}^{(int)}$.

$$\hat{\mathbf{u}}_{\tau} = \mathbf{T}_{\tau,\nu}^{\text{(ifi)}} \hat{\mathbf{u}}_{\nu} + \sum_{\sigma \in \mathcal{L}_{\tau}^{\text{(int)}}} \mathbf{T}_{\tau,\sigma}^{\text{(ifo)}} \hat{\mathbf{q}}_{\sigma}$$

$$\sim \mathbf{U}_{\text{in}}^{\tau} \sim \mathbf{U}_{\text{in}}^{\nu} \sim \mathbf{V}$$

The classical Fast Multipole Method in \mathbb{R}^2

- 1. Construct the tree and all "interaction lists."
- 2. For each leaf node, compute its outgoing expansion directly from the charges in the box via the *outgoing-from-sources operator*.
- **3**. For each parent node, compute its outgoing expansion by merging the expansions of its children via the *outgoing-from-outgoing operator*.
- 4. For each node, compute its incoming expansion by transferring the incoming expansion of its parent (via the *incoming-from-incoming operator*), and then add the contributions from all charges in its interaction list (via the *incoming-from-outgoing operator*).
- 5. For each leaf node, evaluate the incoming expansion at the targets (via the *targets-from-incoming operator*), and compute near-field interactions directly.

Construct the tree and all interaction lists.

Let *L* denote the number of levels in the tree.

Set all potentials to zero:

For all boxes τ

$$\hat{\mathbf{u}}_{ au} = \mathbf{0}$$

 $\hat{\mathbf{q}}_{ au} = \mathbf{0}.$

Set the potential to zero:

u = **0**.

Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators:*

loop over all leaf nodes τ

$$\hat{\mathbf{q}}_{ au} = \mathbf{T}_{ au}^{(ext{ofs})} \, \mathbf{q}(J_{ au})$$

Compute the outgoing expansion of each parent by merging the expansions of its children via application of the *outgoing-from-outgoing operators:*

loop over levels $\ell = L - 1, L - 2, \ldots, 2$

loop over all nodes τ on level ℓ

$$\hat{\mathbf{q}}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{\text{(child)}}} \mathbf{T}_{\tau,\sigma}^{\text{(ofo)}} \hat{\mathbf{q}}_{\sigma}$$

end loop

Add contributions from boxes in the interaction list of each box via the *incoming-from-outgoing operators:*

loop over all nodes τ

$$\hat{\mathbf{u}}_{\tau} = \hat{\mathbf{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(\text{int})}} \mathbf{T}_{\tau,\sigma}^{(\text{ifo})} \hat{\mathbf{q}}_{\sigma}.$$

Add contributions from boxes in the interaction list of each box via the *incoming-from-outgoing operators:*

loop over all nodes τ

$$\hat{\mathbf{u}}_{\tau} = \hat{\mathbf{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(\text{int})}} \mathbf{T}_{\tau,\sigma}^{(\text{ifo})} \hat{\mathbf{q}}_{\sigma}.$$

•	٩	٩	•	•	•	
•	<i> • </i>	\square			•	
•	•				•	
•	•			\mathbb{N}	` •	
•		/•	•	$\left \right\rangle$	•	
•	•	•	•	•	•	

Add contributions from the parent of each box via via the *incoming-from-incoming* operators:

loop over levels $\ell = 2, 3, 4, \dots, L - 1$ loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{u}_{\sigma} = \hat{u}_{\sigma} + T^{(ifi)}_{\sigma,\tau} \hat{u}_{\tau}.$ end loop end loop end loop

	•		
•	•		

Compute the potential on every leaf by expanding its incoming potential via the *targets-from-incoming operators:*

loop over all leaf nodes τ

$$\mathsf{u}(J_{ au}) = \mathsf{u}(J_{ au}) + \mathsf{T}_{ au}^{ ext{(tfi)}}\,\hat{\mathsf{u}}_{ au}$$

Add to the leaf potentials the interactions from direct neighbors:

loop over all leaf nodes τ

$$\mathbf{u}(J_{ au}) = \mathbf{u}(J_{ au}) + \mathbf{A}(J_{ au}, J_{ au}) \, \mathbf{q}(J_{ au}) + \sum_{\sigma \in \mathcal{L}_{ au}^{(ext{nei})}} \, \mathbf{A}(J_{ au}, J_{\sigma}) \, \mathbf{q}(J_{\sigma})$$

Set $\hat{\mathbf{u}}_{\tau} = \mathbf{0}$ and $\hat{\mathbf{q}}_{\tau} = \mathbf{0}$ for all τ .

 \mathbf{loop} over all leaf nodes τ

$$\hat{\mathbf{q}}_{ au} = \mathbf{T}_{ au}^{(ext{ofs})} \, \mathbf{q}(J_{ au})$$

end loop

loop over levels
$$\ell = L, L - 1, ...,$$

loop over all nodes τ on level ℓ
 $\hat{\mathbf{q}}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{child})}} \mathbf{T}_{\tau,\sigma}^{(\mathrm{ofo})} \hat{\mathbf{q}}_{\sigma}$
end loop
end loop

loop over all nodes τ

$$\hat{\mathbf{u}}_{\tau} = \hat{\mathbf{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(\text{int})}} \mathbf{T}_{\tau,\sigma}^{(\text{ifo})} \hat{\mathbf{q}}_{\sigma}$$

end loop

loop over levels $\ell = 2, 3, 4, \dots, L - 1$ loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{u}_{\sigma} = \hat{u}_{\sigma} + T_{\sigma,\tau}^{(ifi)} \hat{u}_{\tau}.$ end loop end loop end loop

loop over all leaf nodes τ $\mathbf{u}(J_{\tau}) = \mathbf{T}_{\tau}^{(\mathrm{tfi})} \hat{\mathbf{u}}_{\tau}$ end loop

2

loop over all leaf nodes τ $\mathbf{u}(J_{\tau}) = \mathbf{u}(J_{\tau}) + \mathbf{A}(J_{\tau}, J_{\tau}) \mathbf{q}(J_{\tau})$ $+ \sum_{\sigma \in \mathcal{L}_{\tau}^{(\text{nei})}} \mathbf{A}(J_{\tau}, J_{\sigma}) \mathbf{q}(J_{\sigma})$ end loop Now let us consider a non-uniform tree.

Construct the tree and all interaction lists.

Let *L* denote the number of levels in the tree.

Set all potentials to zero:

For all boxes τ

$$\hat{\mathbf{u}}_{ au} = \mathbf{0}$$

 $\hat{\mathbf{q}}_{ au} = \mathbf{0}.$

Set the potential to zero:

u = **0**.

Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators:*

 \mathbf{loop} over all leaf nodes τ

$$\hat{\mathbf{q}}_{ au} = \mathbf{T}_{ au}^{(ext{ofs})} \, \mathbf{q}(J_{ au})$$

Compute the outgoing expansion on each leaf via application of the *outgoing-from-source operators:*

 \mathbf{loop} over all leaf nodes τ

$$\hat{\mathbf{q}}_{ au} = \mathbf{T}_{ au}^{(ext{ofs})} \, \mathbf{q}(J_{ au})$$

Compute the outgoing expansion of each parent by merging the expansions of its children via application of the *outgoing-from-outgoing operators:*

loop over levels $\ell = L - 1, L - 2, \ldots, 2$

loop over all nodes τ on level ℓ

$$\hat{\mathbf{q}}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{\text{(child)}}} \mathbf{T}_{\tau,\sigma}^{\text{(ofo)}} \hat{\mathbf{q}}_{\sigma}$$

end loop

Add contributions from the parent of each box via via the *incoming-from-incoming* operators:

loop over levels $\ell = 2, 3, 4, \dots, L - 1$ loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{u}_{\sigma} = \hat{u}_{\sigma} + T_{\sigma,\tau}^{(ifi)} \hat{u}_{\tau}.$ end loop end loop end loop

New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the *targets-from-outgoing operator:*

loop over all nodes leaf τ

 $\mathbf{u}(J_{\tau}) = \mathbf{u}(J_{\tau}) + \sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathbf{T}_{\tau,\sigma}^{(ext{tfo})} \, \hat{\mathbf{q}}_{\sigma}.$

New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the *targets-from-outgoing operator:*

loop over all nodes leaf τ

 $\mathbf{u}(J_{\tau}) = \mathbf{u}(J_{\tau}) + \sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathbf{T}_{\tau,\sigma}^{(ext{tfo})} \, \hat{\mathbf{q}}_{\sigma}.$

New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the *incoming-from-sources operator:*

loop over all nodes τ

$$\hat{\mathbf{u}}_{\tau} = \hat{\mathbf{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathbf{T}_{\tau,\sigma}^{(\mathrm{ifs})} \, \mathbf{q}(J_{\sigma})$$

New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the *incoming-from-sources operator:*

loop over all nodes τ

$$\hat{\mathbf{u}}_{\tau} = \hat{\mathbf{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathbf{T}_{\tau,\sigma}^{(\mathrm{ifs})} \, \mathbf{q}(J_{\sigma})$$

Add contributions from the parent of each box via via the *incoming-from-incoming* operators:

loop over levels $\ell = 2, 3, 4, ..., L - 1$ loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{u}_{\sigma} = \hat{u}_{\sigma} + T_{\sigma,\tau}^{(ifi)} \hat{u}_{\tau}.$ end loop end loop end loop

Compute the potential on every leaf by expanding its incoming potential via the *targets-from-incoming operators:*

loop over all leaf nodes τ

$$\mathsf{u}(J_{ au}) = \mathsf{u}(J_{ au}) + \mathsf{T}^{ ext{(tfi)}}_{ au}\,\hat{\mathsf{u}}_{ au}$$

Add to the leaf potentials the interactions from direct neighbors:

loop over all leaf nodes τ

$$\mathbf{u}(J_{ au}) = \mathbf{u}(J_{ au}) + \mathbf{A}(J_{ au}, J_{ au}) \, \mathbf{q}(J_{ au}) + \sum_{\sigma \in \mathcal{L}_{ au}^{(ext{nei})}} \, \mathbf{A}(J_{ au}, J_{\sigma}) \, \mathbf{q}(J_{\sigma})$$

Add to the leaf potentials the interactions from direct neighbors:

loop over all leaf nodes τ

$$\mathbf{u}(J_{ au}) = \mathbf{u}(J_{ au}) + \mathbf{A}(J_{ au}, J_{ au}) \, \mathbf{q}(J_{ au}) + \sum_{\sigma \in \mathcal{L}_{ au}^{(ext{nei})}} \, \mathbf{A}(J_{ au}, J_{\sigma}) \, \mathbf{q}(J_{\sigma})$$

Set $\hat{\mathbf{u}}_{\tau} = \mathbf{0}$ and $\hat{\mathbf{q}}_{\tau} = \mathbf{0}$ for all τ .

loop over all leaf nodes τ

 $\hat{\mathbf{q}}_{ au} = \mathbf{T}^{ ext{(ofs)}}_{ au} \, \mathbf{q}(J_{ au})$

end loop

loop over levels $\ell = L, L - 1, ..., 2$ loop over all nodes τ on level ℓ $\hat{\mathbf{q}}_{\tau} = \sum_{\sigma \in \mathcal{L}_{\tau}^{(child)}} \mathbf{T}_{\tau,\sigma}^{(ofo)} \hat{\mathbf{q}}_{\sigma}$ end loop end loop

loop over all nodes τ

 $\hat{\mathbf{u}}_{ au} = \hat{\mathbf{u}}_{ au} + \sum_{\sigma \in \mathcal{L}_{ au}^{(ext{int})}} \mathbf{T}_{ au,\sigma}^{(ext{ifo})} \, \hat{\mathbf{q}}_{\sigma}.$

end loop

loop over all nodes τ $\hat{\mathbf{u}}_{\tau} = \hat{\mathbf{u}}_{\tau} + \sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathbf{T}_{\tau,\sigma}^{(\text{ifs})} \mathbf{q}(J_{\sigma}).$

end loop

loop over levels $\ell = 2, 3, 4, ..., L - 1$ loop over all nodes τ on level ℓ **loop** over all children σ of τ $\hat{\mathbf{u}}_{\sigma} = \hat{\mathbf{u}}_{\sigma} + \mathbf{T}_{\sigma \tau}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\tau}.$ end loop end loop end loop **loop** over all leaf nodes τ $\mathsf{u}(J_{ au}) = \mathsf{T}_{ au}^{ ext{(tfi)}}\,\hat{\mathsf{u}}_{ au}$ end loop **loop** over all nodes τ $\mathsf{u}(J_{\tau}) = \mathsf{u}(J_{\tau}) + \sum_{\sigma \in \mathcal{L}^{(3)}} \mathsf{T}^{(\mathrm{tfo})}_{\tau,\sigma} \, \hat{\mathsf{q}}_{\sigma}.$ end loop **loop** over all leaf nodes τ $\mathbf{u}(J_{ au}) = \mathbf{u}(J_{ au}) + \mathbf{A}(J_{ au}, J_{ au}) \, \mathbf{q}(J_{ au})$

 $+\sum_{\sigma\in\mathcal{L}_{ au}^{(\mathrm{nei})}}\, \mathsf{A}(J_{ au},J_{\sigma})\,\mathsf{q}(J_{\sigma})$

A summary of the lists needed:

 $\mathcal{L}_{\tau}^{\text{(child)}}$ The children of τ .

 $\mathcal{L}_{\tau}^{(\text{parent})}$ The parent of τ .

For a leaf box τ , this is a list of the leaf boxes that directly border τ . For a non-leaf box, $\mathcal{L}_{\tau}^{(\text{nei})}$ is empty.

$$\mathcal{L}_{\tau}^{(\mathrm{int})}$$

A box $\sigma \in \mathcal{L}_{\tau}^{(\text{int})}$ iff σ and τ are on the same level, σ and τ are well-separated, but the parents of σ and τ are not well-separated.

 $\mathcal{L}_{\tau}^{(3)}$

For a *leaf* box τ , a box $\sigma \in \mathcal{L}_{\tau}^{(3)}$ iff σ lives on a finer level than τ , τ is well-separated from σ , but τ is not well-separated from the parent of σ . For a non-leaf box τ , $\mathcal{L}_{\tau}^{(3)}$ is empty.

 $\mathcal{L}_{\tau}^{(4)}$ The dual of $\mathcal{L}_{\tau}^{(3)}$. In other words, $\sigma \in \mathcal{L}_{\tau}^{(4)}$ if and only if $\tau \in \mathcal{L}_{\sigma}^{(3)}$.

A summary of the translation operators:

