MATH 393C: Fast Methods in Scientific Computing

Lecture on March 13, 2019.
Supplementary material on adaptive FMM - new material on page 25 onwards.
P.G. Martinsson

The University of Texas at Austin

The outgoing expansion

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of τ (black).
Let \mathbf{y}_{j} be source locations in τ (red).
Let q_{j} be the strength of source j.
Let \mathbf{x}_{i} be targets well separated from τ (blue).
Let u denote the potential

$$
u\left(\mathbf{x}_{i}\right)=\sum_{j} q_{j} \log \left(\mathbf{x}_{i}-\mathbf{y}_{j}\right)
$$

The outgoing expansion of τ is a vector $\hat{\mathbf{q}}=\left[\hat{q}_{p}\right]_{p=0}^{P}$ of complex numbers such that

$$
\begin{equation*}
u(\mathbf{x}) \approx \hat{q}_{0} \log \left|\mathbf{x}-\mathbf{c}_{\tau}\right|+\sum_{p=1}^{P} \hat{q}_{p} \frac{1}{\left(\mathbf{x}-\mathbf{c}_{\tau}\right)^{p}}, \quad \mathbf{x} \in \Omega_{\tau}^{\mathrm{far}} \tag{1}
\end{equation*}
$$

The outgoing expansion is a compact representation of the sources inside τ (it encodes both the source locations and the magnitudes).

The incoming expansion

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of τ (black).
Let \mathbf{y}_{j} be sources well-separated from τ (red).
Let q_{j} be strength of source j.
Let \mathbf{x}_{i} be targets inside τ (blue).
Let u denote the potential

$$
u\left(\mathbf{x}_{i}\right)=\sum_{j} q_{j} \log \left(\mathbf{x}_{i}-\mathbf{y}_{j}\right) .
$$

The incoming expansion of τ is a vector $\hat{\mathbf{u}}=\left[\hat{u}_{p}\right]_{p=0}^{P}$ of complex numbers such that

$$
\begin{equation*}
u(\mathbf{x}) \approx \sum_{p=0}^{P} \hat{u}_{p}\left(\mathbf{x}-\mathbf{c}_{\tau}\right)^{p}, \quad \mathbf{x} \in \Omega_{\tau} . \tag{2}
\end{equation*}
$$

The incoming expansion is a compact representation of the sources well-separated from
(it encodes both the source locations and the magnitudes).

The outgoing-from-sources translation operator $\mathbf{T}_{\tau}^{(\mathrm{ffs})}$

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of τ (black).
Let $\left\{\mathbf{y}_{j}\right\}_{j}^{N_{\tau}}$ be source locations in τ (red).
Let q_{j} be strength of source j.

The operator $\mathbf{T}_{\tau}^{\text {(ofs) }}$ constructs the outgoing expansion directly from the vector of charges.

$$
\underset{(P+1) \times 1}{\hat{\mathbf{q}}_{\tau}}=\begin{gathered}
\mathbf{T}_{\tau}^{(\mathrm{ofs})}
\end{gathered} \underset{(P+1) \times N_{\tau} N_{\tau} \times 1}{\mathbf{q}}
$$

$$
\begin{array}{ll}
\mathbf{T}_{\tau, 0, j}^{(0 f s)}=1 & 1 \leq j \leq N_{\tau} \\
\mathbf{T}_{\tau, p, j}^{(\text {(ffs })}=-\frac{1}{p}\left(\mathbf{y}_{j}-\mathbf{c}_{\tau}\right)^{p} & 1 \leq p \leq P \quad 1 \leq j \leq N_{\tau} .
\end{array}
$$

The outgoing-from-outgoing translation operator $\mathbf{T}_{T, \sigma}^{(f f o)}$

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of \mathbf{c}_{τ} (black).
Let σ denote a box contained in τ.
Let \mathbf{c}_{σ} denote the center of σ (red).

Let $\hat{\mathbf{q}}_{\sigma}$ be outgoing expansion of σ.
$\mathbf{T}_{\tau, \sigma}^{(\text {ofo })}$ constructs the outgoing expansion of τ from the outgoing expansion of σ

$$
\begin{gathered}
\hat{\mathbf{q}}_{\tau} \\
(P+1) \times 1
\end{gathered} \begin{array}{cc}
\mathbf{T}_{\tau, \sigma}^{\text {(ofo })} & \hat{\mathbf{q}}_{\sigma} \\
(P+1) \times(P+1) & (P+1) \times 1
\end{array}
$$

With $\mathbf{d}=\mathbf{c}_{\sigma}-\mathbf{c}_{\tau}, \mathbf{T}_{\tau, \sigma}^{(\mathrm{ofo})}$ is a lower tridiagonal matrix with entries

$$
\begin{array}{ll}
\mathbf{T}_{\tau, \sigma, 0,0}^{(\mathrm{ofo})}=1 & \\
\mathbf{T}_{\tau, \sigma, p, 0}^{(\text {ofo })}=-\frac{1}{p} \mathbf{d} & 1 \leq p \leq P \\
\mathbf{T}_{\tau, \sigma, p, q}^{(\text {ofo })}=\binom{p}{q} \mathbf{d}^{p-q} & 1 \leq q \leq p \leq P .
\end{array}
$$

The incoming-from-outgoing translation operator $\mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})}$

Let σ be a source box (red) with center \mathbf{c}_{σ}.
Let τ be a target box (blue) with center \mathbf{c}_{τ}.
Let $\hat{\mathbf{q}}_{\sigma}$ be the outgoing expansion of σ.
Let $\hat{\mathbf{u}}_{\tau}$ represent the potential in τ caused by
 sources in σ.
$\mathbf{T}_{\tau, \sigma}^{(\mathrm{iff})}$ constructs the incoming expansion of τ from the outgoing expansions of σ :

$$
\underset{(P+1) \times 1}{\hat{\mathbf{u}}_{\tau}}=\begin{array}{cc}
\mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} & \hat{\mathbf{q}}_{\sigma} \\
(P+1) \times(P+1) & (P+1) \times 1
\end{array}
$$

With $\mathbf{d}=\mathbf{c}_{\sigma}-\mathbf{c}_{\tau}, \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifos})}$ is a matrix with entries

$$
\mathbf{T}_{\tau, \sigma, p, q}^{(\mathrm{ofo})}=?
$$

The incoming-from-incoming translation operator \mathbf{T}
 τ, σ

Let τ be a box (green) with center \mathbf{c}_{τ} (black).
Let σ be a box (blue) containing τ with center \mathbf{C}_{σ}.
Let $\hat{\mathbf{u}}_{\sigma}$ be an incoming expansion for σ.

$\mathbf{T}_{\tau, \sigma}^{(\text {ifi) }}$ constructs the incoming expansion of τ from the incoming expansion of σ

$$
\underset{(P+1) \times 1}{\hat{\mathbf{u}}_{\tau}}=\begin{array}{cc}
\mathbf{T}_{\tau, \sigma}^{(\text {ifi) }} & \hat{\mathbf{u}}_{\sigma} \\
(P+1) \times(P+1) & (P+1) \times 1
\end{array}
$$

With $\mathbf{d}=\mathbf{c}_{\sigma}-\mathbf{c}_{\tau}, \mathbf{T}_{\tau, \sigma}^{(\text {ifi) }}$ is a matrix with entries

$$
\mathbf{T}_{\tau, \sigma, p, q}^{(\mathrm{ifi})}=?
$$

The targets-from-incoming translation operator $\mathbf{T}_{\tau}^{(\text {tfi) }}$

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of τ (black).
Let $\left\{\mathbf{x}_{i}\right\}_{i}^{N_{\tau}}$ be target locations in τ (blue).
Let $\hat{\mathbf{u}}_{\tau}$ be the incoming expansion of τ.

$\mathbf{T}_{\tau}^{(\mathrm{tfi})}$ constructs the potentials in τ from the incoming expansion

$$
\begin{array}{ccc}
\mathbf{u}_{\tau} & = & \mathbf{T}_{\tau}^{(\mathrm{tfi})}
\end{array} \hat{\mathbf{u}}_{\tau} .
$$

$$
\mathbf{T}_{\tau, i, p}^{(\mathrm{tfi})}=\left(\mathbf{x}_{i}-\mathbf{c}_{\tau}\right)^{p}
$$

$$
1 \leq i \leq N_{\tau} \quad 0 \leq p \leq P
$$

How do you compute the expansions of a box?

Computing the outgoing expansion of a leaf

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of τ (black).
Let $\left\{\mathbf{y}_{j}\right\}_{j}^{N_{\tau}}$ be source locations in τ (red).
Let q_{j} be strength of source j.

There is an analytic formula:

$$
\hat{q}_{0}=\sum_{j=1}^{N_{\tau}} q_{j} \quad \hat{q}_{p}=-\frac{1}{p} \sum_{j=1}^{N_{\tau}} q_{j}\left(\mathbf{y}_{j}-\mathbf{c}_{\tau}\right)^{p}, \quad p=1,2, \ldots, P .
$$

We write the formula compactly as

$$
\hat{\mathbf{q}}_{\tau}=\mathbf{T}_{\tau}^{(\mathrm{ofs})} \mathbf{q}_{\tau} .
$$

Computing the outgoing expansion of a parent

Let τ be a box (green).
Let \mathbf{c}_{τ} be the center of τ (black).
Let $\mathcal{L}_{\tau}^{(\text {child })}$ denote the children of τ.

Let \mathbf{c}_{σ} be the center of child σ.
Let $\hat{\mathbf{q}}_{\sigma}$ be the outgoing expansion of child σ.

The outgoing expansion of τ can be computed from the outgoing expansions of its children:

$$
\hat{\mathbf{q}}_{\tau}=\sum_{\sigma \in \mathcal{L}_{\tau}^{\text {(child) }}} \mathbf{T}_{\tau, \sigma}^{(0 \mathrm{fof})} \hat{\mathbf{q}}_{\sigma} .
$$

Computing the incoming expansions on level 2

Let τ be a box on level 2 (green).
Let \mathbf{c}_{τ} be the center of τ (black).
The well-separated boxes on level 2 are red.

The incoming expansion of τ is computed from the outgoing expansions of boxes in its interaction list

$$
\hat{\mathbf{u}}_{\tau}=\sum_{\sigma \in \mathcal{L}_{\tau}^{\text {(int) }}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} \hat{\mathbf{q}}_{\sigma} .
$$

Computing the incoming expansions on level ℓ when $\ell>2$
Let τ be a box on level $\ell=3$ (green).
Let ν be the parent of τ (blue).
Let $u_{\text {in }}^{\tau}$ denote the potential caused by charges that are well-separated from τ these are charges in the boxes marked with red dots and crosses. We have

$$
u_{\mathrm{in}}^{\tau}=u_{\mathrm{in}}^{\nu}+v
$$

where u_{in}^{ν} is the incoming field for τ 's parent (caused by the boxes with red crosses), and v is the field caused by boxes in the interaction list of τ (boxes with a red dot).

The field u_{in}^{ν} was computed on the previous level and is represented by $\hat{\mathbf{u}}_{\nu}$.
The field v is computed by transferring the outgoing expansions $\hat{\mathbf{q}}_{\sigma}$ for $\sigma \in \mathcal{L}_{\tau}^{\text {(int) }}$.

$$
\begin{equation*}
\hat{\mathbf{u}}_{\tau}=\mathbf{T}_{\tau, \nu}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\nu}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} \hat{\mathbf{q}}_{\sigma} \tag{in}
\end{equation*}
$$

The classical Fast Multipole Method in \mathbb{R}^{2}

1. Construct the tree and all "interaction lists."
2. For each leaf node, compute its outgoing expansion directly from the charges in the box via the outgoing-from-sources operator.
3. For each parent node, compute its outgoing expansion by merging the expansions of its children via the outgoing-from-outgoing operator.
4. For each node, compute its incoming expansion by transferring the incoming expansion of its parent (via the incoming-from-incoming operator), and then add the contributions from all charges in its interaction list (via the incoming-from-outgoing operator).
5. For each leaf node, evaluate the incoming expansion at the targets (via the targets-from-incoming operator), and compute near-field interactions directly.

Construct the tree and all interaction lists.

 \% :242:44:50:52:74:76:82:84 Kin \%io : $38: 40: 46: 48: 70: 72: 78: 80$ 10.0 :27\%:29:35:37:59: $6: 7: 67 \% 69$

 : $233: 25: 37 \div: 33: 55: 57 \%: 63: 65$ \%22:24:30:32:54:56: 52.64

Let L denote the number of levels in the tree.

Set all potentials to zero:

For all boxes τ

$$
\begin{aligned}
& \hat{\mathbf{u}}_{\tau}=\mathbf{0} \\
& \hat{\mathbf{q}}_{\tau}=\mathbf{0} .
\end{aligned}
$$

Set the potential to zero:

$$
\mathbf{u}=\mathbf{0} .
$$

Compute the outgoing expansion on each leaf via application of the outgoing-from-source operators:
loop over all leaf nodes τ

$$
\hat{\mathbf{q}}_{\tau}=\mathbf{T}_{\tau}^{(\mathrm{ofs})} \mathbf{q}\left(J_{\tau}\right)
$$

end loop

Compute the outgoing expansion of each parent by merging the expansions of its children via application of the outgoing-from-outgoing operators:
loop over levels $\ell=L-1, L-2, \ldots, 2$
loop over all nodes τ on level ℓ

$$
\hat{\mathbf{q}}_{\tau}=\sum_{\sigma \in \mathcal{L}_{\tau}^{\text {(child) }}} \mathbf{T}_{\tau, \sigma}^{(\text {ofo) })} \hat{\mathbf{q}}_{\sigma}
$$

end loop

end loop

Add contributions from boxes in the interaction list of each box via the incoming-from-outgoing operators:
loop over all nodes τ

$$
\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} \hat{\mathbf{q}}_{\sigma}
$$

end loop

Add contributions from boxes in the interaction list of each box via the incoming-from-outgoing operators:
loop over all nodes τ

$$
\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} \hat{\mathbf{q}}_{\sigma} .
$$

end loop

Add contributions from the parent of each box via via the incoming-from-incoming operators:
loop over levels $\ell=2,3,4, \ldots, L-1$
loop over all nodes τ on level ℓ
loop over all children σ of τ

$$
\hat{\mathbf{u}}_{\sigma}=\hat{\mathbf{u}}_{\sigma}+\mathbf{T}_{\sigma, \tau}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\tau} .
$$

end loop
end loop
end loop

Compute the potential on every leaf by expanding its incoming potential via the targets-from-incoming operators:
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{T}_{\tau}^{(\mathrm{tfi})} \hat{\mathbf{u}}_{\tau}
$$

end loop

Add to the leaf potentials the interactions from direct neighbors:
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{A}\left(J_{\tau}, J_{\tau}\right) \mathbf{q}\left(J_{\tau}\right)+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \mathbf{A}\left(J_{\tau}, J_{\sigma}\right) \mathbf{q}\left(J_{\sigma}\right)
$$

end loop

Set $\hat{\mathbf{u}}_{\tau}=\mathbf{0}$ and $\hat{\mathbf{q}}_{\tau}=\mathbf{0}$ for all τ.
loop over all leaf nodes τ

$$
\hat{\mathbf{q}}_{\tau}=\mathbf{T}_{\tau}^{(\mathrm{ofs})} \mathbf{q}\left(J_{\tau}\right)
$$

end loop
loop over levels $\ell=L, L-1, \ldots, 2$
loop over all nodes τ on level ℓ

$$
\hat{\mathbf{q}}_{\tau}=\sum_{\sigma \in \mathcal{L}_{\tau}^{(\text {child })}} \mathbf{T}_{\tau, \sigma}^{(\text {ofo })} \hat{\mathbf{q}}_{\sigma}
$$

end loop
end loop
loop over all nodes τ

$$
\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} \hat{\mathbf{q}}_{\sigma} .
$$

end loop

loop over levels $\ell=2,3,4, \ldots, L-1$
loop over all nodes τ on level ℓ loop over all children σ of τ

$$
\hat{\mathbf{u}}_{\sigma}=\hat{\mathbf{u}}_{\sigma}+\mathbf{T}_{\sigma, \tau}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\tau}
$$

end loop
end loop
end loop
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{T}_{\tau}^{(\mathrm{tfi})} \hat{\mathbf{u}}_{\tau}
$$

end loop
loop over all leaf nodes τ

$$
\begin{aligned}
& \quad \mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{A}\left(J_{\tau}, J_{\tau}\right) \mathbf{q}\left(J_{\tau}\right) \\
& \quad+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \mathbf{A}\left(J_{\tau}, J_{\sigma}\right) \mathbf{q}\left(J_{\sigma}\right) \\
& \text { end loop }
\end{aligned}
$$

Now let us consider a non-uniform tree.

Construct the tree and all interaction lists.

Let L denote the number of levels in the tree.

Set all potentials to zero:

For all boxes τ

$$
\begin{aligned}
& \hat{\mathbf{u}}_{\tau}=\mathbf{0} \\
& \hat{\mathbf{q}}_{\tau}=\mathbf{0} .
\end{aligned}
$$

Set the potential to zero:

$$
\mathbf{u}=\mathbf{0} .
$$

Compute the outgoing expansion on each leaf via application of the outgoing-from-source operators:
loop over all leaf nodes τ

$$
\hat{\mathbf{q}}_{\tau}=\mathbf{T}_{\tau}^{(\mathrm{ofs})} \mathbf{q}\left(J_{\tau}\right)
$$

end loop

Compute the outgoing expansion on each leaf via application of the outgoing-from-source operators:
loop over all leaf nodes τ

$$
\hat{\mathbf{q}}_{\tau}=\mathbf{T}_{\tau}^{(\mathrm{ofs})} \mathbf{q}\left(J_{\tau}\right)
$$

end loop

Compute the outgoing expansion of each parent by merging the expansions of its children via application of the outgoing-from-outgoing operators:
loop over levels $\ell=L-1, L-2, \ldots, 2$
loop over all nodes τ on level ℓ

$$
\hat{\mathbf{q}}_{\tau}=\sum_{\sigma \in \mathcal{L}_{\tau}^{\text {(child) }}} \mathbf{T}_{\tau, \sigma}^{(\text {ofo) })} \hat{\mathbf{q}}_{\sigma}
$$

end loop

end loop

Add contributions from the parent of each box via via the incoming-from-incoming operators:
loop over levels $\ell=2,3,4, \ldots, L-1$
loop over all nodes τ on level ℓ
loop over all children σ of τ

$$
\hat{\mathbf{u}}_{\sigma}=\hat{\mathbf{u}}_{\sigma}+\mathbf{T}_{\sigma, \tau}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\tau} .
$$

end loop
end loop
end loop

New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the targets-from-outgoing operator:
loop over all nodes leaf τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathbf{J}_{\tau, \sigma}^{(\mathrm{tfo})} \hat{\mathbf{q}}_{\sigma} .
$$

end loop

New: Some leaves τ (e.g. the green one below) must collect contributions to their potentials from outgoing expansions on boxes σ (red) on finer levels via the targets-from-outgoing operator:
loop over all nodes leaf τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathbf{)}_{\tau, \sigma}^{(\mathrm{tfo})} \hat{\mathbf{q}}_{\sigma} .
$$

end loop

New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the incoming-from-sources operator:
loop over all nodes τ

$$
\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathbf{T}_{\tau, \sigma}^{\mathrm{iffs})} \mathbf{q}\left(J_{\sigma}\right)
$$

end loop

New: Some boxes τ (e.g. the green one) must collect contributions to their incoming expansions directly from the sources in some leaves σ (red) via the incoming-from-sources operator:
loop over all nodes τ

$$
\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathbf{T}_{\tau, \sigma}^{\mathrm{iffs})} \mathbf{q}\left(J_{\sigma}\right)
$$

end loop

Add contributions from the parent of each box via via the incoming-from-incoming operators:
loop over levels $\ell=2,3,4, \ldots, L-1$
loop over all nodes τ on level ℓ
loop over all children σ of τ

$$
\hat{\mathbf{u}}_{\sigma}=\hat{\mathbf{u}}_{\sigma}+\mathbf{T}_{\sigma, \tau}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\tau} .
$$

end loop
end loop
end loop

Compute the potential on every leaf by expanding its incoming potential via the targets-from-incoming operators:
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{T}_{\tau}^{(\mathrm{tfi})} \hat{\mathbf{u}}_{\tau}
$$

end loop

Add to the leaf potentials the interactions from direct neighbors:
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{A}\left(J_{\tau}, J_{\tau}\right) \mathbf{q}\left(J_{\tau}\right)+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \mathbf{A}\left(J_{\tau}, J_{\sigma}\right) \mathbf{q}\left(J_{\sigma}\right)
$$

end loop

Add to the leaf potentials the interactions from direct neighbors:
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{A}\left(J_{\tau}, J_{\tau}\right) \mathbf{q}\left(J_{\tau}\right)+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \mathbf{A}\left(J_{\tau}, J_{\sigma}\right) \mathbf{q}\left(J_{\sigma}\right)
$$

end loop

Set $\hat{\mathbf{u}}_{\tau}=\mathbf{0}$ and $\hat{\mathbf{q}}_{\tau}=\mathbf{0}$ for all τ.
loop over all leaf nodes τ
$\hat{\mathbf{q}}_{\tau}=\mathbf{T}_{\tau}^{\text {(ofs) }} \mathbf{q}\left(J_{\tau}\right)$
end loop
loop over levels $\ell=L, L-1, \ldots, 2$
loop over all nodes τ on level ℓ
$\hat{\mathbf{q}}_{\tau}=\sum_{\sigma \in \mathcal{L}_{\tau}^{(\text {child })}} \mathbf{T}_{\tau, \sigma}^{(\text {ofo })} \hat{\mathbf{q}}_{\sigma}$
end loop
end loop
loop over all nodes τ
$\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{int})}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifo})} \hat{\mathbf{q}}_{\sigma}$.
end loop
loop over all nodes τ
$\hat{\mathbf{u}}_{\tau}=\hat{\mathbf{u}}_{\tau}+\sum_{\sigma \in \mathcal{L}_{\tau}^{(4)}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{ifs})} \mathbf{q}\left(J_{\sigma}\right)$.
end loop
loop over levels $\ell=2,3,4, \ldots, L-1$
loop over all nodes τ on level ℓ loop over all children σ of τ $\hat{\mathbf{u}}_{\sigma}=\hat{\mathbf{u}}_{\sigma}+\mathbf{T}_{\sigma, \tau}^{(\mathrm{ifi})} \hat{\mathbf{u}}_{\tau}$.
end loop
end loop
end loop
loop over all leaf nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{T}_{\tau}^{(\mathrm{tfi})} \hat{\mathbf{u}}_{\tau}
$$

end loop
loop over all nodes τ

$$
\mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\sum_{\sigma \in \mathcal{L}_{\tau}^{(3)}} \mathbf{T}_{\tau, \sigma}^{(\mathrm{tfo})} \hat{\mathbf{q}}_{\sigma} .
$$

end loop
loop over all leaf nodes τ

$$
\begin{aligned}
& \mathbf{u}\left(J_{\tau}\right)=\mathbf{u}\left(J_{\tau}\right)+\mathbf{A}\left(J_{\tau}, J_{\tau}\right) \mathbf{q}\left(J_{\tau}\right) \\
& \quad+\sum_{\sigma \in \mathcal{L}_{\tau}^{(\mathrm{nei})}} \mathbf{A}\left(J_{\tau}, J_{\sigma}\right) \mathbf{q}\left(J_{\sigma}\right)
\end{aligned}
$$

end loop

A summary of the lists needed:

$\mathcal{L}_{\tau}^{\text {(child) }} \quad$ The children of τ.
$\mathcal{L}_{\tau}^{\text {(parent) }}$ The parent of τ.
$\mathcal{L}_{\tau}^{(\text {nei })}$
For a leaf box τ, this is a list of the leaf boxes that directly border τ. For a non-leaf box, $\mathcal{L}_{\tau}^{(\text {nei })}$ is empty.
$\mathcal{L}_{\tau}^{\text {(int) }} \quad$ A box $\sigma \in \mathcal{L}_{\tau}^{\text {(int) }}$ iff σ and τ are on the same level, σ and τ are well-separated, but the parents of σ and τ are not well-separated.
$\mathcal{L}_{\tau}^{(3)} \quad$ For a leaf box τ, a box $\sigma \in \mathcal{L}_{\tau}^{(3)}$ iff σ lives on a finer level than τ, τ is well-separated from σ, but τ is not well-separated from the parent of σ. For a non-leaf box $\tau, \mathcal{L}_{\tau}^{(3)}$ is empty.
$\mathcal{L}_{\tau}^{(4)} \quad$ The dual of $\mathcal{L}_{\tau}^{(3)}$. In other words, $\sigma \in \mathcal{L}_{\tau}^{(4)}$ if and only if $\tau \in \mathcal{L}_{\sigma}^{(3)}$.

A summary of the translation operators:

