
CHAPTER 1

Fast summation and multipole expansions

The Fast Multipole Method (FMM) was originally developed as an algorithm for rapidly evaluating all
pairwise interactions between a given set of N electrically charged particles in two or three dimensions. A
general problem of this type can be written as

(1.1) ui =
N∑
j=1

G(xi,xj) qj , i = 1, 2, . . . , N,

where {xi}Ni=1 is a given set of point locations, where {qi}Ni=1 is a given set of corresponding sources, where
{ui}Ni=1 is a set of potential values to be determined, and where G(x,y) is the kernel associated with the
electrostatic problem. In two dimensions, we recall that the fundamental solution of the Laplace equation is
φ(x) = −(2π)−1 log |x|. To keep formulas less cluttered, we will omit the scaling in front of the logarithm,
and will use the kernel

(1.2) G(x,y) =

{
log |x− y| x 6= y,

0 x = y.

Directly evaluating all interactions in (1.1) would require O(N2) operations, but Greengard and Rokhlin
[11] demonstrated that the task could to any finite precision ε > 0 be solved in O(N) operations, with a
scaling constant that depends logarithmically on 1/ε as ε → 0. The FMM has since then been generalized
to work for a range of other interaction potentials and has today become one of the core algorithms in many
areas high performance computing.

To introduce the concepts supporting fast summation techniques like the FMM, we will in Chapters 1 and
2 describe a bare-bones algorithm for solving the basic problem of evaluating all electro-static interactions
between N charged particles in the plane that we described above, which is also the problem considered in
the original paper [11] of Greengard and Rokhlin. We will then in Chapter 3 briefly discuss ways in which
the FMM can be extended to problems in three dimensions, and to other interaction kernels such as those
associated with the Helmholtz or Stokes equations. We will also briefly mention ways in which the FMM
can be accelerated and improved from an algorithmic point of view.

1.1. Separation of variables

Let us in this section temporarily consider a simplified summation problem that illustrates the idea of a
separation of variables, which is a foundational concept in the FMM. The simplification is that we for now
suppose that the points where the sources are located and the points where we seek to evaluate the potentials
are separated, as shown in Figure 1.1. We are given a set of electric sources {qj}Nj=1 at locations {yj}Nj=1 in
one box Ωσ and seek the potentials these sources induce at some target locations {xi}Mi=1 in a different box
Ωτ . In other words, we seek to evaluate the sum

(1.3) ui =

N∑
j=1

G(xi,yj) qj , i = 1, 2, . . . , M.
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Ωσ Ωτ

c

Sources qj at points yj . Potentials ui at points xi.

FIGURE 1.1. Geometry of the simplified potential evaluation problem discussed in Sections
1.1 and 1.2. The red points are sources and the blue points are targets. The point c is the
center of the source box Ωσ.

The key observation is now that the kernel function that represents electrostatic interactions in the plane,
G(x,y) = log |x− y|, is smooth whenever x and y are not close. This means that G can be approximated
by a short sum of tensor products

(1.4) G(x,y) ≈
P−1∑
p=0

Bp(x)Cp(y), when x ∈ Ωτ , y ∈ Ωσ,

where P is a small integer called the interaction rank. (Section 1.2 provides detailed formulas for Bp and
Cp, and describes how to choose P to attain a requested accuracy.) Inserting (1.4) into (1.3), we find that

(1.5) ui ≈
N∑
j=1

P−1∑
p=0

Bp(x)Cp(y) qj =

P−1∑
p=0

Bp(x)

 N∑
j=1

Cp(y) qj

 .

In other words, we can evaluate an approximation to the sum (1.3) via the two steps

(1.6) q̂p :=
∑
j∈Iσ

Cp(xj) qj , p = 0, 1, 2, . . . , P − 1.

and

(1.7) ui ≈
P−1∑
p=0

Bp(xi) q̂p, i = 1, 2, . . . , M.

While evaluating (1.3) directly requires MN operations, evaluating (1.6) and (1.7) requires only P (M +N)
operations. The power of this observation stems from the fact that high accuracy is achieved even for small
P when the regions Ωσ and Ωτ are moderately well separated, cf. Section 2.6.

Using matrix notation, the approximation (1.4) implies that the M ×N matrix A with entries A(i, j) =
G(xi,yj) admits an approximate rank-P factorization A ≈ BC. Then clearly the matrix-vector product Aq
can efficiently be evaluated via Aq ≈ B (Cq).

In the summation problem that we are actually interested in, defined by (1.1), the sets of target locations
and source locations coincide. In this case, no one relation like (1.4) can hold for all combinations of target
and source points. Instead, our plan is to cut the domain up into pieces that we organize in a hierarchical
tree. Then we use approximations such as (1.4) to evaluate interactions between distant pieces, and direct
evaluation for points that are close. From a linear algebraic perspective, one could alternatively say that
we will efficiently evaluate the matrix-vector product u = Aq by exploiting rank-deficiencies in certain
off-diagonal blocks of A.
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1.2. Multipole expansions

In Section 1.1, we refrained from specifying the exact expressions for the functions Bp and Cp in the
approximation formula (1.4). This was done to emphasize that it is the form of the approximation that
matters — each term in the sum is a product of one factor that depends only on x and one factor that depends
only on y. In this section, let us describe in some additional detail a classical technique for building an
approximation to the kernel function G(x,y) = log |x−y|, based on so called multipole expansions. These
can be viewed as efficient representations of harmonic potentials. To be precise, suppose that a box shaped
domain Ωσ holds a set of N sources with charges {qj}Nj=1 at locations {yj}Nj=1 ⊂ Ωσ. At a target point x,
the electric potential u(x) caused by these charges is given by

(1.8) u(x) =
N∑
j=1

G(x,yj) qj .

A very simple and intuitively natural approximation to the potential u(x) is obtained by evaluating the sum
q̂0 of all the charges

(1.9) q̂0 =

N∑
j=1

qj ,

and then approximating the exact potential u by the potential caused by a single point charge of strength q̂0

placed at the center c of the box,

(1.10) u(x) ≈ q̂0 log |x− c|.
The approximation error in (1.10) tends to zero as |x− c| → ∞, but at a quite slow rate that would typically
be O(|x− c|−1). The approximation can be improved by adding a dipole charge at c so that

(1.11) u(x) ≈ q̂0 log |x− c| − d · x− c

|x− c|2
.

The optimal dipole charge vector d is given by

d =

N∑
j=1

qj
(
yj − c

)
.

The error in (1.11) would typically decay as O(|x− c|−2) as |x− c| → ∞.

The approximations (1.10) and (1.11) form the first two terms in the so called multipole expansion of the
harmonic function u. The full expansion is conveniently expressed using polar coordinates

(1.12) x− c = r (cos θ, sin θ), y − c = r′ (cos θ′, sin θ′).

Then

(1.13) u(x) = q̂0 log r +

∞∑
p=1

(
q̂2p−1

cos(p θ)

rp
+ q̂2p

sin(p θ)

rp

)
,

where q̂0 is defined by (1.9), and where, for p ≥ 1,

q̂2p−1 =−
N∑
j=1

qj (r′)p
1

p
cos(p θ′),(1.14)

q̂2p =−
N∑
j=1

qj (r′)p
1

p
sin(p θ′).(1.15)

The sum in (1.13) converges exponentially fast whenever |x− c| > maxj |yj − c|. To be precise, we have:
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THEOREM 1.1. Let u be the function defined by (1.8), and let for a positive integer P the P -term
multipole expansion be defined by

(1.16) uP (x) = q̂0 log r +
P∑
p=1

(
q̂2p−1

cos(p θ)

rp
+ q̂2p

sin(p θ)

rp

)
,

where the multipole coefficients {q̂j}2Pj=0 are defined via (1.9), (1.14), and (1.15). Set

β =
maxj |yj − c|
|x− c|

.

If β < 1, then

|u(x)− uP (x)| ≤ βP+1

(P + 1)(1− β)

N∑
j=1

|qj |.

To prove the theorem, we will switch to complex valued representations of the kernel function G. To
this end, we identify a point x = (x1, x2) in R2 with a complex number x1 + ix2 as usual. Then we interpret
G as a complex valued kernel

G(x,y) = log(x− y),

and view the sum (1.8) as a complex valued sum. The real valued potentials are easily recovered from the
complex valued ones by simply taking the real part of the end result since Re(log z) = log |z| for any non-
zero complex number z. Now let x and y be a target point and a source point, respectively, and let c still
denote the center of Ωσ. For some number β < 1, we assume that

|y − c| < β|x− c|.

Then recalling the formula log(1 − z) = −
∞∑
p=1

zp

p
, which is valid for any complex number z such that

|z| < 1, we immediately find the expression

(1.17) G(x,y) = log
(
x− y

)
= log

(
(x− c)− (y − c)

)
= log

(
x− c

)
+ log

(
1− y − c

x− c

)
= log

(
x− c

)
−
∞∑
p=1

1

p

(
y − c

x− c

)p
.

Using polar coordinates,

(1.18) x− c = reiθ, and y − c = r′eiθ
′
,

we see that

(1.19)
(
y − c

x− c

)p
=

(
r′eiθ

′

reiθ

)p
=

(
r′

r

)p
eip(θ

′−θ).

To recover the real-valued multipole expansion (1.13), let us insert (1.19) into (1.17), whence

log |x− y| = Re(G(x,y)) = log r −
∞∑
p=1

1

p

(
r′

r

)p
cos(p(θ′ − θ)).

We then obtain (1.13) directly from the formula

cos(p(θ′ − θ)) = cos(pθ′) cos(pθ) + sin(pθ′) sin(pθ).

The proof of Theorem 1.1 now follows from a bound of the terms that we neglect in the tail:∣∣∣∣∣∣
∞∑

p=P+1

1

p

(y − c)p

(x− c)p

∣∣∣∣∣∣ ≤ 1

P + 1

∞∑
p=P+1

(
r′

r

)p
≤ 1

P + 1

∞∑
p=P+1

βp =
1

P + 1

βP+1

1− β
.
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1.3. The general problem, and well-separated points

After the introduction to multipole expansions in Sections 1.1 and 1.2, we will in the remainder of this
chapter discuss the full potential evaluation problem, which we state as follows: Let {xi}Ni=1 denote the
locations of a set of electric charges in a box Ω, and let {qi}Ni=1 denote their source strengths, cf. Figure
1.3(a). Our task is then to evaluate the potentials

(1.20) ui =
N∑
j=1

G(xi,xj) qj , i = 1, 2, . . . , N.

In the remainder of this chapter, we will use the complex-valued kernel that was introduced in Section 1.2.
For future reference, let us formulate (1.20) as a matrix-vector multiplication. We introduce a vector q ∈ CN
and a matrix A ∈ CN×N via

q(i) = qi, and A(i, j) = G(xi, xj) i, j = 1, 2, 3, . . . , N.

The summation problem (1.20) is then equivalent to evaluating the matrix-vector product

(1.21) u = Aq.

Since we now have the more interesting situation where the source and the target points coincide, we
must exercise some care about when to use multipole expansions, and when to evaluate sums directly. When
using the FMM, we will tessellate the computational box Ω into smaller boxes, and will use expansions
only for interactions between boxes that are sufficiently well separated. This concept is made precise by the
following definition:

DEFINITION 1. Let Ω be a square with center c = (c1, c2) and side length 2a. Then we say that a point
x = (x1, x2) ∈ R2 is well-separated from Ω if

max(|x1 − c1|, |x2 − c2|) ≥ 3a.

In other words, x is well-separated if and only if it lies outside a square of side-length 6a that is concentric
with Ω, as illustrated in Figure 1.2(a).

Now suppose that a set of source points are located inside a box with sidelength 2a, and that we use a
truncated multipole expansion to evaluate potentials at some points that are well-separated from Ω, as shown
in Figure 1.2(b). Then for any source point yj , we have

|yj − c| ≤
√

2a,

and for any target point x we have
|x− c| ≥ 3a.

Theorem 1.1 then provides an assured rate of convergence of the multipole expansion, since

maxj |yj − c|
|x− c|

≤
√

2a

3a
=

√
2

3
=: η.

Given a requested tolerance ε, we now simply need to pick a P that is large enough that

ηP

P (1− η)
≤ ε, where η =

√
2/3.

Roughly speaking, for purposes of convergence of the outgoing expansion, the choice P ≈ log(ε)

log(
√

2/3)
would

result in relative errors bounded by ε. We will in Section 1.4 see that there is a different expansion that
converges slightly slower, so we will in practice have to choose P ≈ log(ε)

log(
√

2/(4−
√

2))
.

5



(a) (b)

2a

6a

c
Ω

FIGURE 1.2. (a) Any point on or outside of the dashed square is well-separated from Ω,
cf. Definition 1. Blue points are well-separated from Ω. Red points are not. (b) A set of
source points (red) in a box Ω. All target points (blue) are well-separated from Ω. When Ω
has side-length 2a, the magenta circle has radius

√
2a and the green circle has radius 3a.

1.4. Multipole expansions and translation operators

We start by considering a subproblem of (1.20) corresponding to the interaction between two disjoint
subsets Ωσ and Ωτ , as illustrated in Figure 1.3(b). Specifically, we seek to evaluate the potential at all points
in Ωτ (the “target points”) caused by sources in Ωσ. To formalize, let Iσ and Iτ be index sets pointing to the
locations inside each box so that, e.g.,

i ∈ Iσ ⇔ xi ∈ Ωσ.

Our task is then to evaluate the sums

(1.22) vi =
∑
j∈Iσ

G(xi,xj) qj , i ∈ Iτ .

In matrix notation, (1.22) is equivalent to the matrix vector-product

(1.23) vτ = A(Iτ , Iσ)q(Iσ).

Going forwards, it will be convenient to use complex valued multipole expansions. Following in the
footsteps of the derivation in Section 1.2, let us derive a complex valued separation of variables for the
kernel in (1.22). To this end, let cσ and cτ denote the centers of Ωσ and Ωτ , respectively. Then, for y ∈ Ωσ

and x ∈ Ωτ , the kernel G admits the separation of variables

G(x,y) = log
(
(x− cσ)− (y − cσ)

)
= log

(
x− cσ

)
−
∞∑
p=1

1

p

(y − cσ)p

(x− cσ)p
.

The last expression in (1.17) is of the form (1.4) with Cp(y) = −1
p(y − cσ)p and Bp(x) = (x − cσ)−p.

We recall from Theorem 1.1 that when the sum is truncated after P − 1 terms, the error incurred is bounded
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Ω Ω

Ωσ

cσ

Ωτ

cτ

(a) (b)

FIGURE 1.3. (a) Geometry of the full N -body problem. The domain Ω is drawn in black
and the points xi are gray. (b) The geometry described in Section 1.4. The box Ωσ contains
source locations (red) and Ωτ contains target locations (blue).

roughly by ηP , for η =
√

2/3. The complex valued outgoing expansion of Ωσ of σ, is now defined as the
vector q̂σ = {q̂σp }P−1

p=0 where

(1.24)


q̂σ0 =

∑
j∈Iσ

qj

q̂σp =
∑
j∈Iσ

−1

p

(
xj − cσ

)p
qj , p = 1, 2, 3, . . . , P − 1.

The vector q̂σ is a compact representation of the sources in Ωσ. It contains all information needed to evaluate
the field v(x) =

∑
j∈Iσ G(x,xj) qj when x is a point “far away” from Ωσ.

It turns out to be convenient to also define an incoming expansion for Ωτ . The basic idea here is that for
x ∈ Ωτ , the potential

(1.25) v(x) =
∑
j∈Iσ

G(x,xj) qj = log(x− cσ) q̂σ0 +

∞∑
p=1

1

(x− cσ)p
q̂σp

is a harmonic function on Ωτ . In consequence, it has a convergent expansion

v(x) =

∞∑
p=0

(
x− cτ

)p
v̂τp .

The complex numbers {v̂τp}∞p=0 can be obtained from the numbers {q̂p}∞p=0 via the formulas

(1.26)


v̂τ0 = q̂σ0 log(cτ − cσ) +

∞∑
p=1

q̂σp (−1)p
1

(cσ − cτ )p
,

v̂τr = −q̂σ0
1

r(cσ − cτ )r
+
∞∑
p=1

q̂σp (−1)p
(
r + p− 1

p− 1

)
1

(cσ − cτ )r+p
.
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qσ
A(Iτ ,Iσ)//

Tofs
σ ��

vτ

q̂σ
Tifo
τ,σ

// v̂τ
Ttfi
τ

OO

The full vector of sources in σ.
Vector of length Nσ (a long vector).

The full vector of potentials in τ .
Vector of length Nτ (a long vector).

The outgoing expansion for σ.
A compact representation of the sources.
Vector of length P (a short vector).

The incoming expansion for τ .
A compact representation of the potential.
Vector of length P (a short vector).

FIGURE 1.4. The outgoing and incoming expansions introduced in Section 1.4 are compact
representations of the sources and potentials in the source and target boxes, respectively. The
diagram commutes to high precision since A(Iτ , Iσ) ≈ Ttfi

τ Tifo
τ,σT

ofs
σ , cf. (1.27).

We provide a derivation of these formulas in Remark 1.2. Upon truncation of the expansion coefficients, we
get the vector v̂τ = {v̂τp}P−1

p=0 , which we refer to as the incoming expansion for Ωτ generated by the sources
in Ωσ. It is a compact (approximate) representation of the harmonic field v defined by (1.25).

The linear maps introduced in this section can advantageously be represented via matrices that we refer
to as translation operators. Let Nσ and Nτ denote the number of points in Ωσ and Ωτ , respectively. The
map (1.24) can then upon truncation be written

q̂σ = Tofs
σ q(Iσ),

where Tofs
σ is a P ×Nσ matrix called the outgoing-from-sources translation operator with the entries implied

by (1.24). Analogously, (1.26) can upon truncation be written v̂τ = Tifo
τ,σ q̂

σ, where Tifo
τ,σ is the incoming-

from-outgoing translation operator. Finally, the targets-from-incoming translation operator is the matrix
Ttfi
τ such that vτ = Ttfi

τ v̂τ , where vτ is an approximation to the field v defined by (1.25), in other words
Ttfi
τ (i, p) = (xi − cτ )p−1. These three translation operators are factors in an approximate rank-P factoriza-

tion

(1.27) A(Iτ , Iσ) ≈ Ttfi
τ Tifo

τ,σ Tofs
σ .

Nτ ×Nσ Nτ × P P × P P ×Nσ

A diagram illustrating the factorization (1.27) is shown in Figure 1.4.

The introduction of the incoming expansion unfortunately reduces the rate of convergence of the expan-
sions that we use. Now both the local expansion and the multipole expansions must converge in discs of
radius

√
2a, which reduces the rate of convergence of the error ε to

ε ∼ ηP2D, where η2D =

√
2

4−
√

2
.

REMARK 1.1. The terms “outgoing expansion” and “incoming expansion” are slightly unconventional.
The corresponding objects were in the original papers called “multipole expansion” and “local expansion,”
and these terms continue to be commonly used; even in summation schemes where the expansions have
nothing to do with multipoles. Correspondingly, what we call the “incoming-from-outgoing” translation
operator is often called the “multipole-to-local” or “M2L” operator.

REMARK 1.2. In this remark, we demonstrate how to obtain a formula such as (1.26). Let cσ and cτ be
two given points in the complex plane. Let v be a function with a MacLaurin expansion about cσ

v(x) = log(x− cσ) q̂σ0 +

∞∑
p=1

1

(x− cσ)p
q̂σp .
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If the series converges at cτ , then its Maclaurin expansion v(x) =
∞∑
r=0

v̂τr (x− cτ )r, has coefficients

(1.28)


v̂τ0 = q̂σ0 log(cτ − cσ) +

∞∑
p=1

q̂σp (−1)p
1

(cσ − cτ )p
,

v̂τr = −q̂σ0
1

r(cσ − cτ )r
+

∞∑
p=1

q̂σp (−1)p
(
r + p− 1

p− 1

)
1

(cσ − cτ )r+p
.

To derive this expression, we first use the formula log(1− t) = −
∑∞

r=1 t
r/r, valid for |t| < 1:

log(x− cσ) = log
(
(cτ − cσ)− (cτ − x)

)
= log(cτ − cσ) + log

(
1− cτ − x

cτ − cσ

)
= log(cσ − cτ )−

∞∑
r=1

1

r

(
cτ − x

cτ − cσ

)r
= log(cσ − cτ )−

∞∑
r=1

1

r

(
1

cσ − cτ

)r (
x− cτ

)r
.

Next let us use the formula (1− t)−p =
∑∞

r=0

(
p+r−1
r−1

)
tr, which is also valid for |t| < 1, to get

(x− cσ)−p =
(
(cτ − cσ)− (cτ − x)

)−p
= (cτ − cσ)−p

(
1− x− cτ

cσ − cτ

)−p
= (cτ − cσ)−p

∞∑
r=0

(
p+ r − 1

r − 1

)(
x− cτ
cσ − cτ

)r
=

∞∑
r=0

(−1)p
(
p+ r − 1

r − 1

)
1

(cσ − cτ )r+p
(x− cτ )r.

1.5. A single-level method

Having introduced the concepts of incoming and outgoing expansions in Section 1.4, let us next demon-
strate how to evaluate our basic summation problem (1.1). Before we tackle the full multilevel hierarchical
scheme that forms the actual FMM, let us ease into things with a single-level method that does not achieve
O(N) complexity but that will help familiarize us with the core concepts and with the notation used.

Sub-divide the box Ω into a grid of m equisized smaller boxes {Ωτ}mτ=1 as shown in Figure 1.5(a). As
in Section 1.4, we let for each box τ the index vector Iτ list the points inside Ωτ and let cτ denote the center
of τ . The vector q̂τ denotes the outgoing expansion of τ , as defined by (1.24).

For a box τ , let Lnei
τ denote the list of neighbor boxes; these are the boxes that directly touch τ ; there will

be between 3 and 8 of them, depending on where τ is located in the grid. The remaining boxes are collected
in the list of far-field boxes Lfar

τ . Figure 1.5(b) illustrates the lists.

The sum (1.1) can now be approximated via three steps:

(1) Compute the outgoing expansions: Loop over all boxes τ . For each box, compute its outgoing
expansion q̂τ via the outgoing-from-sources translation operator:

q̂τ = Tofs
τ q(Iτ ).

(2) Convert outgoing expansions to incoming expansions: Loop over all boxes τ . For each box, con-
struct a vector ûτ called the incoming expansion. It represents the contribution to the potential in τ
from sources in all boxes in the far-field of τ and is given by

ûτ =
∑
σ∈Lfar

τ

Tifo
τ,σ q̂

σ.
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(a) (b)

FIGURE 1.5. (a) A tessellation of Ω into
√
m ×

√
m smaller boxes, cf. Section 1.5. (b)

Evaluation of the potential in a box τ . The target points in τ are marked with blue dots, the
source points in the neighbor boxes in Lnei

τ are marked with red dots, and the centers of the
outgoing expansions in the far-field boxes Lfar

τ are marked ⊗.

(3) Compute near interactions: Loop over all boxes τ . Expand the incoming expansion and add the
contributions from its neighbors via direct summation:

u(Iτ ) = Ttfi
τ ûτ + A(Iτ , Iτ )q(Iτ ) +

∑
σ∈Lnei

τ

A(Iτ , Iσ)q(Iσ).

The asymptotic complexity of Step 1 is O(NP ) since each of the N points contributes to P multipole
coefficients. The cost of steps two and three depend on how the number m of boxes is picked. If m is large,
then Step 2 becomes expensive since there are many boxes that all need to talk to each other. On the other
hand, the larger m is, the cheaper Step 3 becomes since the number of particles in one box decreases as the
number of boxes increases. To be precise, if Ti denotes the cost of Step i, then it is easy to see that

(1.29) T1 ∼ NP, T2 ∼ m2P 2, and T3 ∼ NP +
N2

m
.

The total cost T = T1 + T2 + T3 is minimized for m ∼ N2/3, which leads to an overall complexity of
O(N4/3).

REMARK 1.3 (Rank-structured matrix interpretation). The single level scheme we describe in this section
can readily be interpreted as a particularly simple form of a rank-structured matrix. If we create the index
vector I = [I1, I2, . . . , Im], then the matrix A(I, I) will be an m×m block matrix, as shown in Figure 1.6.
On each block row, there will be at most 9 blocks that correspond to interactions that cannot be compressed,
and must be represented as full dense matrices. The remaining O(m) blocks on each row represent low rank
interactions that can be accounted for via the P × P translation operators that map outgoing to incoming
expansions. Since there are m block rows, and each row holds O(1) matrices of size roughly N/m×N/m,
and O(m) matrices of size P × P , we find a total cost of

T ∼ m×

((
N

m

)2

+mP 2

)
∼ N2

m
+m2P 2.

10



FIGURE 1.6. The N × N matrix A(I, I) described in Remark 1.3, which is made up of
m×m blocks. The figure shows the matrix associated with the tessellation in Figure 1.5(a)
when the blocks are ordered column by column. Red block are stored as dense matrices of
size roughly N/m×N/m. Blue blocks are all of (numerical) rank P , and can be stored by
simply storing the corresponding P × P translation operators.

This again is minimized for m ∼ N2/3, which yields T ∼ N4/3.

Exercises

(1) At the end of Section 1.5, we claim that the overall complexity of the single-level scheme is
O(N4/3) if the number of boxes m is chosen to satisfy m ∼ N2/3. Work out the details that
establish the formulas (1.29), and then prove the claim that the optimal choice is m ∼ N2/3. (In
this exercise, we treat P as a fixed number.)
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CHAPTER 2

The Fast Multipole Method (FMM)

In this chapter, we continue the discussion from Chapter 1 on how to evaluate the sum

(2.1) ui =

N∑
j=1

G(xi,xj) qj , i = 1, 2, . . . , N,

where {xi}Ni=1 is a given set of point locations in a square Ω, where {qi}Ni=1 is a given set of corresponding
sources, where {ui}Ni=1 is a set of potential values to be determined, and where G(x,y) = log |x − y|. To
evaluate (2.1 in linear complexity, the FMM uses a multi-level technique in which the computational domain
Ω is split into a tree of boxes, cf. Figure 2.1. The FMM works well for adaptive and non-uniform trees,
but for notational simplicity, we will in this chapter restrict attention to the case of a uniform tree in which
every level is fully populated. The FMM then evaluates the sum (1.1) in two passes over the tree, one going
upwards (from smaller boxes to larger) and one going downwards:

The upwards pass: In the upwards pass, the outgoing expansion is computed for every box. For a leaf
box τ , the straight-forward approach described in Section 1.4 is used. For a box τ that has children, the
outgoing expansion is computed not directly from the sources located in the box, but from the outgoing
expansions of its children, which are already available.

The downwards pass: In the downwards pass, the incoming expansion is computed for every box. This is
done by converting the outgoing expansions constructed in the upwards pass to incoming expansions via the
formula (1.26). The trick is to organize the computation so that each conversion happens at its appropriate
length-scale. This hierarchical process computes the incoming expansions for every box inO(N) operations.

Once the upwards and downwards passes have been completed, the incoming expansion is known for all
leaf boxes. All that remains at that point is to expand the incoming expansion into potentials and adding the
contributions from sources in the near-field via direct computations.

In order to describe the details of how to execute the upwards and downwards passes, we need to intro-
duce some language for describing the hierarchical tree of boxes (Section 2.1), and some additional transla-
tion operators in Sections 2.3 and 2.4.
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FIGURE 2.1. A tree of boxes on Ω with L = 3 levels. The enumeration of boxes shown is
simply one of many possible ones.
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11 13

16
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21

Neighbor list of τ = 35 Interaction list of τ = 35 Interaction list of τ = 9

FIGURE 2.2. Illustration of some index vectors called “lists” that were intro-
duced in Section 2.1. For instance, the left-most figure illustrates that Lnei

35 =
{28, 29, 34, 36, 37, 40, 46, 48}. (Boxes are numbered as in Figure 2.1.)

2.1. A tree of boxes

Split the square Ω into 4L equisized smaller boxes, where the integer L is chosen to be large enough that
each box holds only a small number of points. (The optimal number of points to keep in a box depends on
many factors, but having ∼ 102 points per box is often reasonable.) These 4L equisized small boxes form
the leaf boxes of the tree. We merge the leaves by sets of four to form 4L−1 boxes of twice the side-length,
and then continue merging by sets of four until we recover the original box Ω, which we call the root. The
set consisting of all boxes of the same size forms what we call a level. We label the levels using the integers
` = 0, 1, 2, . . . , L, with ` = 0 denoting the root, and ` = L denoting the leaves, cf. Figure 2.1.

Given a box τ in the hierarchical tree, we next define some index lists, cf. Figure 2.2:

• The parent of τ is the box on the next coarser level that contains τ .
• The children of τ is the set Lchild

τ of boxes whose parent is τ .
• The neighbors of τ is the set Lnei

τ of boxes on the same level that directly touch τ .
• The interaction list of τ is the set Lint

τ of all boxes σ such that (1) σ and τ are on the same level, (2)
σ and τ do not touch, and (3) the parents of σ and τ do touch.

When non-uniform trees are considered, additional lists will be required, as we will discuss in Section
3.1.

2.2. Outgoing and incoming expansions

With each box in the tree, we associate two vectors that we call the outgoing expansion and the incoming
expansion, respectively. The outgoing expansion is a compact representation of the field generated by all the
sources that are contained in the box. The incoming expansion is a compact representation of the potential
in the box that is generated by all sources that are well-separated from the box. These vectors are of length
P , where P is a tuning parameter that trades computational cost for accuracy. For a fixed P , we define for a
box Ωτ in the tree these expansions as follows:

The outgoing expansion q̂τ ∈ CP : Let Iτ denote a list of all the points xj such that xj ∈ Ωτ . Then
the entries of the outgoing expansion are the multipole coefficients defined via the formula (1.24), which we

14



repeat for completeness:

(2.2)


q̂τ0 =

∑
j∈Iτ

qj

q̂τp =
∑
j∈Iτ

−1

p

(
xj − cτ

)p
qj , p = 1, 2, 3, . . . , P − 1,

The incoming expansion q̂τ ∈ CP : Let Jτ denote a list of all points xj that are well-separated from Ωτ .
The incoming potential uτ is then defined as the field generated by these sources:

uτ (x) =
∑
j∈Jτ

qj log |x− xj |.

This field is analytic around the center cτ of Ωτ , and the incoming expansion vector ûτ holds the first P
coefficients in the Taylor series for uτ around cτ .

2.3. Computing all outgoing expansions

As our first task, we will for each box τ in the tree build its outgoing expansion q̂τ , as defined by (2.2).
We start by processing all leaf boxes, and simply use formula (2.2) directly, which we recall is encoded in
the matrix operation

q̂τ = Tofs
τ q(Iτ ).

Next let us consider a box τ on level L − 1, meaning that it is formed by four leaf boxes. We could
now of course simply use (2.2) again. But this would be wasteful, since the outgoing expansions for the four
leaves already provide us with economic representations of all the sources inside τ . It turns out to be straight-
forward to compute the outgoing representation for τ from the outgoing representations from its children via
simple linear transformations. To be precise, there exist matrices Tofo

τ,σ, known as outgoing-from-outgoing
translation operators such that

q̂τ =
∑

σ∈Lchild
τ

Tofo
τ,σq̂τ .

This means that after we have processed the leaf boxes, we can compute the outgoing expansion for every
other box by four matrix-vector multiplications involving matrices of size P ×P . Additional details on how
to build the matrices are given in Theorem 2.1 below, and the whole process is illustrated in Figure 2.3.

THEOREM 2.1. Let cτ and cσ denote two points in the complex plane. Let {yj}Nj=1 denote a number
of source locations with associated charges {qj}Nj=1. Define for p = 0, 1, 2, . . . , P − 1 the “outgoing
expansions” q̂τ and q̂σ via

q̂τ (p) =
N∑
j=1

qj (yj − cτ )p, and q̂σ(p) =
N∑
j=1

qj (yj − cσ)p.

Let Tofo
τ,σ denote the P × P lower triangular matrix defined by

Tofo
τ,σ(r, s) =

{ (
r
s

)
(cσ − cτ )r−s, when s ≤ r,

0 when s > r.

Then

(2.3) q̂τ = Tofo
τ,σ q̂σ.

THEOREM 2.2. Bello.
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Consider a set four leaf boxes σ1,σ2,σ3, and σ4,
whose union forms a parent box Ωτ = Ωσ1 ∪Ωσ2 ∪
Ωσ3 ∪Ωσ4 . We seek to build the outgoing potentials
for the four leaf boxes and for the parent box.

Ωσ1

Ωσ2

Ωσ3

Ωσ4

We first process each of the four leaf boxes. For
each box, we compute the outgoing expansion di-
rectly from the point sources, using the formula
q̂σj = Tofs

σj q(Iσj ).

Ωσ1

Ωσ2

Ωσ3

Ωσ4

In order to compute the outgoing expansion for the
parent box τ , we simply shift the centers for the ex-
pansions of the children (cf. Theorem 2.1) and add
them up: q̂τ =

∑
σ∈Lchild

τ

Tofo
τ,σq̂σ.

Ωτ

FIGURE 2.3. Illustration of how the outgoing expansions are computed. Observe that the
outgoing expansions of the parent box Ωτ should be valid outside the magenta line. Any
point outside this line is well-separated from each child box.
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PROOF. The equation (2.3) follows directly from the binomial identity:

q̂τ (r) =

N∑
j=1

qj (yj − cτ )r =

N∑
j=1

qj
[
(yj − cσ) + (cσ − cτ )

]r
=

N∑
j=1

qj

r∑
s=0

(
r

s

)
(yj − cσ)s (cσ − cτ )r−s =

r∑
s=0

(
r

s

)
(cσ − cτ )r−s

N∑
j=1

qj(yj − cσ)s︸ ︷︷ ︸
=q̂σ(s)

.

�

2.4. Computing all incoming expansions

The incoming expansions for all boxes are built in a top-down sweep through the tree of boxes, going
from larger to smaller.

All boxes at levels ` = 0 and ` = 1 have zero incoming expansions, so the first non-trivial ones arise on
level ` = 2. Let τ be a box on level 2, as shown in Figure 2.4(a). We see that all sources that contribute to
the incoming expansion for τ belong to boxes in the interaction list of τ . We can therefore easily build the
incoming expansion for τ by exploiting the outgoing expansions for all of these boxes, so

(2.4) ûτ =
∑
σ∈Lτ

Tifo
τ,σq̂σ.

Next let us consider a box σ on level ` = 3, as shown in Figure 2.4(c). Let uσ denote the incoming field on
σ. We split this field into two components

uσ = u(1)
σ + u(2)

σ ,

where u(1)
σ is the field caused by sources that are well-separated from the parent τ of σ, while u(2)

σ is the field
generated by the sources that are well-separated from σ, but are not well-separated from the parent τ . Now
observe that u(1)

σ is well-represented inside Ωσ by the incoming expansion for the parent τ . All we need to
do is to shift the expansion center, which corresponds to a linear map ûσ = Tifi

σ,τ whose coefficient matrix
we refer to as the incoming-from-incoming translation operator. (A precise formulation is given in Theorem
2.1.) The field u(2)

σ can be generated by adding up the contributions from the outgoing expansions of boxes
in the interaction list of σ. Consequently

(2.5) ûσ = Tifi
σ,τ ûτ +

∑
ν∈Lσ

Tifo
σ,ν q̂ν .

As we proceed down the tree, we use the formula (2.5) to build the incoming expansions for all boxes.
(Observe that the formula (2.5) also works for the boxes at level ` = 2 since for any such box, its parent has
zero incoming field.)

THEOREM 2.1. Let cσ and cτ be two points in the complex plane. Let u be a function that is analytic at
cσ and at cτ , and suppose that each point lies within the radius of analyticity of the other. We let {ûσp}∞p=0

and {ûτp}∞p=0 denote the expansion coefficients for u about the two points, so that locally

u(x) =

∞∑
p=0

ûσp
(
x− cσ

)p
, and u(x) =

∞∑
p=0

ûτp
(
x− cτ

)p
.

Then

ûσr =

∞∑
p=r

(
p

r

)
(cσ − cτ )p−r ûτp .
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Ωτ Ωτ

(a) We seek to compute the incoming expansion
ûτ for box Ωτ on level ` = 2. Ωτ is marked in
green. ûτ is the potential caused by the sources
marked in red.

(b) Instead of evaluating ûτ directly from
the sources, we use the outgoing expansions
for the boxes in the interaction list, ûτ =∑

σ∈Lτ T
ifo
τ,σq̂σ.

Ωσ Ωσ

(c) Now let us build the incoming expansion for
a box Ωσ (green) that is a child of Ωτ . ûσ is the
potential caused by the sources marked in red.

(d) Contributions to ûσ come in two types: (1)
Sources that are well-separated from the parent
τ are communicated by shifting ûτ . (2) Sources
that are in the interaction list of σ send their
contributions via their outgoing expansions. In
all: ûσ = Tifi

σ,τ ûτ +
∑

ν∈Lσ T
ifo
σ,ν q̂ν .

FIGURE 2.4. Illustration of how the incoming expansions are computed.

PROOF. A simple application of the binomial identity yields

u(x) =
∞∑
p=0

ûτp (x− cτ )p =
∞∑
p=0

ûτp
[
(x− cσ) + (cσ − cτ )

]p
=
∞∑
p=0

ûτp

p∑
r=0

(
p

r

)
(x− cσ)r (cσ − cτ )p−r =

∞∑
r=0

{ ∞∑
p=r

(
p

r

)
(cσ − cτ )p−r ûτp

}
︸ ︷︷ ︸

=ûσr

(x− cσ)r.
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In the context of the fast multipole method, we observe that the incoming field is always represented as
a polynomial of degree P − 1. Since it is not a general harmonic function, all sums in Theorem 2.1 are in
fact finite. We see that the incoming-from-incoming translation operator corresponds to the upper triangular
matrix with entries

Tifi
σ,τ (r, p) =


(
p

r

)
(cσ − cτ )p−r for r ≤ p,

0 for r > p.

Observe that the transfer of an incoming expansion is an exact operation (up to round-off errors).

2.5. The classical Fast Multipole Method

We now have all tools required to describe the classical FMM in detail.

Given a set of sources {qi}Ni=1 with associated locations {xi}Ni=1, the first step is to find a minimal
square Ω that holds all points. Next, subdivide Ω into a hierarchy of successively smaller boxes as described
in Section 2.1. Then fix an integer P that determines the accuracy, remembering that a larger P gives higher
accuracy, but also higher cost. As we saw in Section 1.4, to attain a requested accuracy ε, we need to pick P
roughly as P ≈ log(ε)/ log(

√
2/3). (We will return to the question of errors for a more detailed discussion

in Section 2.6.)

Once we have constructed the tree and picked an expansion length P , the actual computations can
start. We first execute an upwards sweep where all outgoing expansions are computed, using the techniques
described in Section 2.3. Then perform a downwards sweep where all incoming expansions are computed,
using the techniques described in Section 2.4. After these sweeps have completed, the final step is to loop
over all leaf boxes in order to build the actual potentials. Since we at this point know the incoming expansion
for each leaf box, this is simply a matter of expanding the incoming field to actual potentials, and then adding
the contributions from sources in the box itself and its immediate neighbors via a brute force calculation. For
a leaf box τ , we would have

u(Iτ ) = Atfi
τ ûτ + A(Iτ , Iτ )q(Iτ ) +

∑
σ∈Lnei

τ

A(Iτ , Iσ)q(Iσ).

The classical FMM we have just described is summarized in Figure 2.5.

Observe that the translation operators Tofo
τ,σ, Tifo

τ,σ, and Tifi
τ,σ can all be pre-computed since they depend

only on P and on the vectors cτ − cσ. The tree structure of the boxes ensures that only a small number of
values of cτ − cσ are encountered.

Since we for now restrict attention to uniform trees, it is relatively straight-forward to estimate the
asymptotic complexity of the classical FMM. In what follows, let m denote the typical number of nodes in a
leaf box.

Let us consider the cost of applying each of the translation operators in turn, starting with the outgoing-
from-sources operators that build the outgoing expansion for each leaf box. For each leaf box, the matrix
Tofs
τ is of size P ×m, so the cost to build and apply it is Pm. Since there are roughly N/m leaf boxes, we

find an overall cost of
Tofs ∼

N

m
× Pm = PN.

(One could alternately argue that Tofs ∼ PN since each particle contributes to precisely P expansion co-
efficients.) Next we consider the outgoing-from-outgoing operators that arise in the upwards pass. These
are each of size P × P , and each box in the tree involves precisely one communication to its parent box.
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Upwards sweep: Compute the outgoing expansion of each box in a pass over all boxes, going from smaller
boxes to larger. For a leaf box, compute the expansion directly from the sources in the box; for a parent box,
use the outgoing expansions of its children, cf. Section 2.3:
loop over levels `, from the finest to the coarsest

loop over all boxes τ on level `
if (τ is a leaf)

q̂τ = Tofs
τ q(Iτ )

else
q̂τ =

∑
σ∈Lchild

τ
Tofo
τ,σ q̂σ

end if
end loop

end loop

Downwards sweep: Compute the incoming expansion for every box in a pass over all boxes, going from
larger boxes to smaller. For each box, combine the incoming expansion of its parent with the contributions
from the outgoing expansions of all boxes in its interaction list, cf. Section 2.4:
Set ûτ = 0 for every box τ on level 1.
loop over levels `, from level ` = 2 to the finest

loop over all boxes τ on level `
Let ν denote the parent of τ .
ûτ = Tifi

τ,ν ûν +
∑

σ∈Lτ T
ifo
τ,σ q̂σ.

end loop
end loop

Compute the potential on every leaf by expanding its incoming potential (via the targets-from-incoming
operator) and then adding the contributions from its near field via direct evaluation, cf. Section 2.5:
loop over every leaf boxes τ

u(Iτ ) = Atfi
τ ûτ + A(Iτ , Iτ )q(Iτ ) +

∑
σ∈Lnei

τ
A(Iτ , Iσ)q(Iσ)

end loop

FIGURE 2.5. The Classical Fast Multipole Method.

On level `, there are roughly N
m4L−` boxes, so the cost to apply all the outgoing-from-outgoing expansion

operators is roughly

Tofo ∼ P 2
L∑
`=3

N

m
4L−` = P 2N

m

(
1 +

1

4
+

1

16
+ · · ·+ 1

4L−3

)
≤ P 2N

m

1

1− 1/4
.

The incoming-to-incoming operators all involve exactly the same amount of work, so Tifi = Tofo. In the
downwards sweep, we also apply all the incoming-from-outgoing operators. While there can be up to 27 of
these, the fact that the number is bounded by a fixed constant means that the cost to process any box remains
O(P 2), so

Tifo ∼ Tifi ∼ Tofo ∼ P 2N/m.

The cost to expand the incoming expansions is the same as the cost to build the outgoing expansions, so

Ttfi ∼ Tofs ∼ PN.

The cost to evaluate all near field interactions is on average 9m per particle, so we find that

Tnear ∼ N × 9m ∼ Nm.
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Adding up all the costs we obtain an estimate for the total cost of

TFMM = Tofs + Tofo + Tifo + Tifi + Ttfi + Tnear ∼ PN + P 2N/m+ P 2N/m+ P 2N/m+ PN +Nm.

Finally, we observe that the number m of nodes in a leaf box is a number that we are free to pick as we see
fit. By choosing m ∼ P , we obtain the estimate

TFMM = PN + P 2N/P +NP ∼ PN ∼ {Use that P ∼ log(1/ε)} ∼ log(1/ε)N.

REMARK 2.1. In this section, we restricted attention to the case of relatively uniform particle distri-
butions for which a a fully populated tree (as described in Section 2.1) is appropriate. When the particle
distribution is non-uniform, locally adaptive trees perform much better. The basic FMM can readily be
adapted to operate on non-uniform trees. The key modification required is that some outgoing expansions
need to be broadcast directly to target points, and some incoming expansions must receive direct contribu-
tions from source points in certain boxes [3]. We return to this question in Section 3.1.

2.6. Error analysis

The potentials computed by the FMM are not exact since all expansions have been truncated to P terms.
An analysis of how such errors could propagate through the transformations across all levels is technically
complicated, and should seek to estimate both the worst case error, and the statistically expected error [6, 27].
As it happens, the global error is in most cases similar to the (worst case) local truncation error, which means
that it scales roughly as ηP , where η =

√
2/(4 −

√
2) = 0.5469 · · · [22]. As a rough estimate, we see that

in order to achieve a given tolerance ε, we need to pick

P ≈ log(ε)/ log(η).

As P increases, the asymptotic complexity of the 2D FMM is O(PN), provided that each leaf box holds
O(P ) sources. In consequence, the overall complexity can be said to scale as log(1/ε)N as ε → 0 and
N →∞.

2.7. The Barnes-Hut algorithm

Before we close this chapter, let us describe a method called “Barnes-Hut” [1] that was introduced at
around the same time as the FMM. The Barnes-Hut method has complexity O(N logN), which is worse
than the O(N) of the FMM, but has the appeal that it attains near linear complexity without introducing
any machinery other than classical multipole expansions, which are already familiar to many scientists and
engineers. In other words, it does not need any “incoming expansions” or new translation opreators. Let us
stress that the material in this section is included mostly to provide historical context; we will not build on
these ideas in the remainder of the book.

In the Barnes-Hut method, we introduce a hierarchical tree of boxes, as described in Section 2.1, and
then execute an upwards pass where we build all the outgoing expansions, as described in Section 2.3. The
key observation is now that once we have all outgoing expansions, we can compute any potential using only
O(logN) work. For an informal description of how this works, let us consider a leaf box τ , as shown in
Figure 2.6. What work do we need to do in order to evaluate the potential at the blue target points in τ?
We first need to evaluate interactions with the near boxes directly, without using any expansions. There
are only a small number of near neighbors, however, so this is inexpensive. For the far-field interactions,
we tessellate the far field into as coarse boxes as possible while maintaining the requirement that the target
points (in blue in Figure 2.6) should be well-separated from any box in the tessellation. Then we use the
outgoing expansions to evaluate the potentials. We will show that there are at most O(logN) boxes in this
tessellation, which leads us to an overall complexity of ∼ N × logN .
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To make the description precise, let us for a leaf box τ introduce the list Lanc
τ of its “ancestors”; this

list contains τ itself, and also its parent, grand-parent, great grand-parent, etc. Then the tessellation of the
far-field that we seek is the union of the boxes in the interaction lists for all of the ancestors of τ , so that

Ωfar
τ =

⋃
σ∈Lanc

τ

⋃
ν∈Lσ

Ων .

The formula for evaluating all potentials in τ therefore takes the form

(2.6) u(Iτ ) = A(Iτ , Iτ )q(Iτ ) +
∑

σ∈Lnear
τ

A(Iτ , Iσ)q(Iσ) +
∑

σ∈Lanc
τ

∑
ν∈Lσ

Ttfo
τ,ν q̂ν ,

where the first two terms represent near field interactions and the last term represents far-field interactions.

In order to estimate the asymptotic complexity of the simplified scheme, let us again suppose that we
have a uniform tree where each leaf box holds approximately m nodes. Then the cost to evaluate the poten-
tials in one leaf box is

(2.7) Tleaf ≈ m2 + 8m2 + L× 27×mP,
where each term is an estimate of the cost to evaluate the corresponding term in (2.6), since the near-field
matrices are each of size m×m and the matrices Ttfo

τ,ν are each of size m×P . There are roughly N/m leaf
boxes, so

TBarnesHut ∼
N

m

(
m2 +mLP

)
∼ {Use that L ∼ log(N/m)} ∼ Nm+ PN log(N/m).

Using simply m = O(1), we find an overall complexity of O(PN logN).

We summarize the Barnes-Hut scheme in Figure 2.7. The formulation given in the figure does not
directly invoke the list of ancestors. Instead, we use an algebraically equivalent formulation where instead
of focusing on what information each box needs to gather in order to evaluate the potentials in a box, we
instead focus on what information each box needs to broadcast.

REMARK 2.2. In the original Barnes-Hut scheme, there were no outgoing-from-outgoing translation
operators. Instead, each outgoing expansion was computed from scratch from the sources inside the box. In
this version, the “upwards sweep” in Figure 2.7 could be replaced by a very simple sweep over all boxes:

loop over all boxes τ
q̂τ = Tofs

τ q(Iτ )
end loop

This formulation has the advantage that each loop can be traversed in an entirely arbitrary order. However,
since the outgoing-from-outgoing translations are exact up to floating point precision, one may as well use
these to save some time. (The overall execution time does not change much either way, since the dominant
time is the sweep over all interaction lists.)

REMARK 2.3. In Remark 1.4, we illustrate how the various translation operators in the FMM can be
viewed as legs in a commutative diagram. In the Barnes-Hut method, we remove one leg from this diagram,
and end up with the simpler one

qτ
A(Iσ ,Iτ )//

Tofs
τ ��

uσ

q̂τ
Ttfo
σ,τ

;;wwwwwwww

An equivalent formulation would be as an approximate matrix factorization

(2.8) A(Iσ, Iτ ) ≈ Ttfo
σ,τ Tofs

τ .
nσ × nτ nσ × P P × nτ
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FIGURE 2.6. Illustration of how the potentials in a box τ (marked with blue dots) are eval-
uated in the Barnes-Hut scheme described in Section 2.7. Contributions to the potential
caused by sources in τ itself (blue dots), or in its immediate neighbors (red dots) are com-
puted via direct evaluation. The contributions from more distant sources are computed via
the outgoing expansions centered on the ⊗ marks in the figure.

23



Upwards sweep: Compute the outgoing expansion of each box in a pass over all boxes, going from smaller
boxes to larger. For a leaf box, compute the expansion directly from the sources in the box; for a parent box,
use the outgoing expansions of its children, cf. Section 2.3:
loop over levels `, from the finest to the coarsest

loop over all boxes τ on level `
if (τ is a leaf)

q̂τ = Tofs
τ q(Iτ )

else
q̂τ =

∑
σ∈Lchild

τ
Tofo
τ,σ q̂σ

end if
end loop

end loop

Evaluate the far field potentials. Each box τ broadcasts its outgoing representation to all boxes in its inter-
action list:
u = 0
loop over all boxes τ

loop over all σ ∈ Lint
τ

u(Iσ) = u(Iσ) + Ttfo
σ,τ q̂τ

end loop
end loop

Evaluate the near field interactions:
loop over all leaf boxes τ

u(Iτ ) = u(Iτ ) + A(Iτ , Iτ )q(Iτ ) +
∑

σ∈Lnei
τ

A(Iτ , Iσ)q(Iσ)

end

FIGURE 2.7. The Barnes-Hut algorithm.
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CHAPTER 3

Extensions and improvements on the basic FMM

In this chapter, we describe different ways that the basic FMM can be extended to more general situa-
tions, starting with the extension to non-uniform trees, and then continuing on to three spatial dimensions,
and other interaction kernels. We also describe how the accuracy of the FMM may be analyzed, and differ-
ent techniques for optimizing its performance. Throughout this chapter, we keep the discussion brief, and
provide pointers to the extensive literature on the subject for an in-depth treatment.

3.1. The extension to non-uniform trees

Let us again consider the situation where we are given a set of source points {xj}Nj=1 in a square Ω.
When the points are not close to uniformly distributed in Ω, the basic FMM that we described in Chapter 2
can become inefficient. Luckily, it turns out to be relatively straight-forward to modify the FMM to allow
it to use a non-uniform tree, which more effectively organizes the points [3]. To illustrate, let us consider a
distribution of points such as the one shown in Figure 3.1. To build a tree that is tailored to the given set of
locations, we start by picking a positive integer, say m, that represents the largest number of nodes that we
are willing to have in a single leaf. We then split Ω into four equisized squares. Any box that ends up being
empty is pruned from the tree. For the boxes that remain, we proceed recursively to subdivide any of them
that hold more than m points. Figure 3.1 illustrates the process.

Once the adaptive tree has been built, we next build all outgoing expansions using exactly the same
process as for the original FMM. The only modification required is that some boxes will have fewer than
four children. The difference appears once we start to build the incoming expansions and the potentials in
the all boxes. In a uniform tree, any box τ interacts only with other boxes that are on the same level as itself
(in addition to its parent and children, of course). In an adaptive tree, things can get more complicated. To
illustrate, let us consider how to evaluate the potential in box τ = 18 on level 3 in Figure 3.1. In order to
evaluate the potential in this box, we need to use full evaluation for all leaf boxes that directly touch it. We
call these boxes its neighbor list, which in this case works out to L(nei)

18 = {19, 48, 49, 52}. Observe that the
boxes in the neighbor list need no longer be located on the same level as τ itself. Next let us consider the
interaction between box 18 and box 51. While box 51 is not well-separated from box 18, it is the case that
box 18 is well-separated from box 51. This means that we can effectively evaluate the potential caused on
box 18 by using the outgoing expansion for box 51. Figure 3.2 illustrates how the three boxes 50, 51, and 53
communicate their outgoing expansions to potentials in box 18. Analogously, these three boxes {50, 51, 53}
must gather their incoming expansions directly from the source points in box 18.

In order to account for the new types of interactions between boxes on different levels, we introduce two
additional lists. For a box τ , we for historical reasons refer to these as List 3 and List 4, or L(3)

τ and L(4)
τ . For

a box τ , the list L(3)
τ keeps track of of the boxes that must communicate their outgoing expansions directly

to target points in Ωτ . List 4 is the dual of list 3, so L(4)
τ keeps track of all boxes that must communicate their

sources directly to the incoming expansion for box τ . Precise definitions of these lists are given in Figure
3.3, and then the full adaptive FMM is summarized in Figure 3.4. For completeness, we also list in Figure
3.5 all the seven translation operators that arise in the FMM.
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FIGURE 3.1. The green points represent a given distribution of source points. Since the
points are non-uniformly distributed, an adaptive tree is used. Any box holding more than
some preset maximal number of points is subdivided into 4 equisized boxes. Any of these
that end up being empty are pruned from the tree.

REMARK 3.1 (FMM versus PPPM methods). The ability to effectively work with non-uniform trees is an
advantage of the FMM that is often decisive. In situations where the sources are distributed uniformly in a
box, it is often possible to solve the potential evaluation problem by leveraging the exceptionally high speed of
the FFT. In principle, the fastest versions of the FMM only work when the distribution of source points forms
a uniform grid in the box, but techniques have been developed that work for general source distributions
as well. The idea in these “PPPM” (particle-particle / particle-mesh) methods is to lay down an artificial
uniform grid on the computational box, then create some “equivalent” charges at these new points, and
use the grid based problem for evaluating long range interactions, while performing local corrections to
accurately evaluate short range interactions [18]. These techniques are very popular, as they tend to be very
fast and can be easier to implement than an FMM. However, PPPM methods suffer suffer in performance
when the distribution of points is non-uniform, and can also be challenging to implement in situations when
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Close-up.

18

51 53

50

FIGURE 3.2. The box τ = 18 is marked in green. The potentials at target points in this
box are collected from the outgoing expansions of the boxes in L(3)

18 = {50, 51, 53}. Anal-
ogously, sources in box 18 communicate their contributions directly to the incoming expan-
sions for the boxes {50, 51, 53}.

L(child)
τ The children of τ .

L(parent)
τ The parent of τ .

L(nei)
τ For a parent box τ , L(nei)

τ is empty. For a leaf box τ , L(nei)
τ is a list

of the leaf boxes that directly border τ .

L(int)
τ A box σ ∈ L(int)

τ iff σ and τ are on the same level, σ and τ are
well-separated, but the parents of σ and τ are not well-separated.

L(3)
τ For a parent box τ , L(3)

τ is empty. For a leaf box τ , a box σ ∈ L(3)
τ

if and only if σ lives on a finer level than τ , τ is well-separated from
σ, but τ is not well-separated from the parent of σ.

L(4)
τ The dual of L(3)

τ . In other words, σ ∈ L(4)
τ if and only if τ ∈ L(3)

σ .

FIGURE 3.3. A summary of the various “lists” that are used in the FMM. The last two, L(3)
τ

and L(4)
τ , are needed only for non-uniform trees.

non-periodic boundary conditions are required. (In contrast, the FMM can readily handle both periodic and
non-periodic boundary conditions.)
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Set ûτ = 0 and q̂τ = 0 for all τ .

loop over all leaf nodes τ
q̂τ = T

(ofs)
τ q(Jτ )

end loop

loop over levels ` = L, L− 1, . . . , 2
loop over all nodes τ on level `

q̂τ =
∑

σ∈L(child)
τ

T
(ofo)
τ,σ q̂σ

end loop
end loop

loop over all nodes τ
ûτ = ûτ +

∑
σ∈L(int)

τ
T

(ifo)
τ,σ q̂σ.

end loop

loop over all nodes τ
ûτ = ûτ +

∑
σ∈L(4)

τ
T

(ifs)
τ,σ q(Jσ).

end loop

loop over levels ` = 2, 3, 4, . . . , L− 1
loop over all nodes τ on level `

loop over all children σ of τ
ûσ = ûσ + T

(ifi)
σ,τ ûτ .

end loop
end loop

end loop

loop over all leaf nodes τ
u(Jτ ) = T

(tfi)
τ ûτ

end loop

loop over all nodes τ
u(Jτ ) = u(Jτ ) +

∑
σ∈L(3)

τ
T

(tfo)
τ,σ q̂σ.

end loop

loop over all leaf nodes τ
u(Jτ ) = u(Jτ ) + A(Jτ , Jτ )q(Jτ )

+
∑

σ∈L(nei)
τ

A(Jτ , Jσ)q(Jσ)

end loop

FIGURE 3.4. The adaptive FMM. The algorithm takes as input a set of points {xj}Nj=1,
a precision parameter P , and a number m that specifies the maximum number of nodes
allowed in a leaf. Before the computations listed start, the FMM finds a bounding square
Ω (if it is not specified by the user), builds the adaptive tree for the given set of points, and
determines the lists specified in Figure 3.3.

q̂τ
T

(ifo)
ν,τ // ûν

T
(ifi)
µ,ν

��
q̂σ

T
(ofo)
τ,σ

OO

T
(ifo)
µ,σ //

T
(tfo)
µ,σ

''OO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

O ûµ

T
(tfi)
µ

��
qσ

T
(ofs)
σ

OO

A(Jµ,Jσ) //

T
(ifs)
µ,σ

77oooooooooooooooooooooooooooooo
uµ

FIGURE 3.5. A commutative diagram that summarizes 7 different types of translation op-
erators used in the adaptive FMM. The two operators T(tfo)

µ,σ and T
(ift)
µ,σ which correspond to

the two diagonal arrows are not required for uniform trees.
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3.2. The extension from two to three dimensions

It is in some sense relatively straight-forward to modify the basic FMM for two dimensional problems
that we have described to handle problems in three dimensions. The concept of multipole expansions has
an immediate three dimensional analog, and the data structures can readily be changed from a quadtree of
squares to an octree of cubes. The resulting algorithm has complexity O(N), but a significant challenge
arises in that the scaling constant turns out to depend on the requested accuracy ε not as log(1/ε) in two
dimensions, but as (log(1/ε))2. In practice, this means that the algorithm becomes quite slow if a high
accuracy is requested. It turns out to be possible to accelerate the scheme substantially, but this will require
the introduction of some additional machinery. In this section, our intention is to give a high level description
of how the generalization to 3D works; for details, we refer to the survey [12].

Let us first consider the changes in the data structures that are required. We are now given a set of points
{xj}Nj=1 in R3 that are contained in a cube Ω. (The generalization to a rectangular parallelepiped is straight-
forward.) We create a tree of boxes by splitting Ω into 8 equisized cubes, and then continuing subdividing
the cubes recursively until only a handful of nodes remain in each leaf. The definitions of lists remain exactly
the same as for the 2D case, as listed in Figure 3.3. We observe that while the generalization from a quadtree
to an octree is in principle simple, things get more expensive from a practical point of view since all lists get
longer. For a fully populated tree, a typical neighbor list has 26 boxes in 3D, as opposed to 8 in 2D. The
interaction list in 3D holds no fewer than 189 boxes, as opposed to the 27 we had in 2D. (More generally, in
Rd, the interaction list holds 6d − 3d boxes, which is one reason the FMM scales poorly with dimension.)

As far as multipole expansions go, the generalization is conceptually simple. However, the notation
required is more complicated, and the number of terms required to attain a given accuracy grows quite
substantially. The interaction potential for Laplace problems (electrostatics, gravitation, etc.) is now

(3.1) G(x,y) =
1

4π|x− y|
.

(The definition (3.1) is slightly inconsistent with our treatment of the 2D case since it includes the scaling
factor 4π. We do this to conform with the standard literature on 3D multipole expansions.) We seek to
separate the variables x and y to find an approximate expansion of the form (1.4). This is a classical problem
in mathematical physics, whose solution involve so called spherical harmonic functions. To define these, let
us introduce polar coordinates (r, θ, ϕ) so that

x = (x1, x2, x3) = r(sin θ cosϕ, sin θ sinϕ, cos θ).

The “spherical harmonic function” Y m
n = Y m

n (θ, ϕ) is defined for any non-negative integer n, and for any
integer m ∈ {−n, −n+ 1, . . . , n− 1, n} via

Y m
n (θ, ϕ) = (−1)m

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimϕ,

where P |m|n are the so called “associated Legendre functions”. The functions Y m
n form an orthogonal basis

(inL2) on the unit sphere in R3, and together form the analog in 3D to the set
{

1√
2π

}
∪
{

cos(nθ)√
π
, sin(nθ)√

π

}∞
n=1

,
which forms an orthonormal basis for the unit circle in 2D. For each spherical harmonic function Y m

n , there
are two associated “solid harmonic functions” which are defined via

Rmn (x) = rnY m
n (θ, ϕ),(3.2)

Smn (x) =
1

rn+1
Y m
n (θ, ϕ).(3.3)

The “regular solid harmonic function” Rmn solves the Laplace equation at all points in R3; it is zero at the
origin, and grows as rn as r →∞. The “irregular solid harmonic function” Smn solves the Laplace equation
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at all points in R3\{0}; it is singular at the origin, and decays as r−n−1 as r →∞. Using the solid harmonic
functions, the separation of variables of the fundamental solution takes the form

(3.4)
1

4π|x− y|
=
∞∑
n=0

n∑
m=−n

R−mn (y)Smn (x), for |x| > |y|.

In other words, if we are given a set of source points {yj}nj=1 in a cube Ωσ with associated source strengths
{qj}nj=1 and a positive integer P , then the field

u(x) =
n∑
j=1

1

4π|x− yj |
qj

can be approximated by

uP (x) =
P∑
n=0

n∑
m=−n

q̂n,m Smn (x− cσ),

where the multipole coefficients are defined via

q̂n,m =

n∑
j=1

R−mn (yj − cσ) qj , n ∈ {0, 1, . . . , P}, m ∈ {−n, . . . , n},

and where cσ is the center of Ωσ. If x is well-separated from Ωσ (with Definition 1 generalized to 3D in the
obvious way), then as P →∞, we have ∣∣u(x)− uP (x)

∣∣ = O(ηP )

where η =
√

3/3, since the radius of the smallest sphere enclosing a cube or side length 2a is
√

3a. We
refrain from going in to details about the exact form of the various translation operators required in the FMM,
but in principle everything works exactly the same as in 2D, and we have analytic expressions for all entries.

Comparing the machinery of multipole expansions required for problems and two and three dimensions
respectively, there are important differences. An obvious one is that there are for any given order P far more
basis functions in the 3D case. In 2D, there were 1 + 2P functions of order at most P . In 3D, the number
of multipoles of order precisely p is 1 + 2p, leading to an overall (P + 1)2 functions of order P or less.
This growth in the number of terms required leads to substantial increase in the time required to apply all
translation operators. Let us consider the incoming-from-outgoing operator, which is often the most time
consuming one. For a fully populated tree with Ntree parent nodes, we find that the costs in two and three
dimensions are

Cost of applying all ifo (“M2L”) operators in 2D: Nparent × 27× (2P + 1)2

Cost of applying all ifo (“M2L”) operators in 3D: Nparent × 189× (P + 1)4

To make things even worse, we in 3D typically have to pick a larger P to achieve any given tolerance than
we did in 2D. To be precise, in 3D, the truncation errors scale as ηP3D where η3D =

√
3/(4−

√
3) = 0.76 · · ·

whereas in 2D we have η2D =
√

2/(4−
√

2) = 0.54 · · · ; cf. [23] for details.

A detailed analysis of the asymptotic complexity of the basic FMM in 3D is given in [12]. It is demon-
strated that by choosing the maximal number of particles in a leaf as O(P 2) (so that the number of boxes
scales as N/p2), the overall complexity becomes O(NP 2). However, the scaling factor remains quite high,
which coupled with the fact that errors decay only slowly as P increases makes this version of the 3D FMM
of limited use in cases where high accuracy is required.

In order to accelerate the 3D FMM at high accuracies, Rokhlin and Greengard [12] developed a technique
that reduces the cost of applying each incoming-from-outgoing (“M2L”) translation operator from O(P 4) to
O(P 2). The idea is to split the interaction list into several smaller pieces, that each lie within a limited solid
angle from the source box. One can then prove that after performing various local transformations at the
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source and the target boxes, it is possible to transfer the expension via a diagonal translation operator. This
new method is substantially faster the classical FMM, but also requires more effort to implement.

REMARK 3.2. While switching to diagonal translation operators leads to a very fast FMM, the modi-
fications required to implement this technique are non-trivial to code effectively. There is a much simpler
method for reducing the cost of applying the incoming-from-outgoing (“M2L”) translation operators that in
practice is often “fast enough.” To describe it, let us consider a source box Ωσ that needs to communicate
its outgoing expansion to the incoming expansion for a target box Ωτ . The idea is then to carry out a local
rotation of the coordinate system so that the axis corresponding to polar coordinate θ = 0 goes through the
line that connects the centers of Ωσ and Ωτ ; then each Fourier mode in the azimuthal variable ϕ communi-
cates independently of all the others. This rotation method reduces the cost of applying each ifo translation
operator from O(P 4) to O(P 3). This is of course not as good as the O(P 2) cost of diagonal translation
operators, but it is much simpler to implement [12, Sec. 6.1].

3.3. The extension from the Laplace to the Helmholtz equation

Let us next consider how to evaluate sums that involve an oscillatory kernel function such as the funda-
mental solution associated with the Helmholtz equation. The difficulty of this task depends crucially on the
size of the computational domain in relation to the wave-length in the kernel function. If the domain is of
modest size, say a dozen wave-lengths or less, then the modifications required to obtain a Helmholtz FMM
given a Laplace FMM are conceptually straight-forward. However, as the problem size grows to include
larger domains, fundamentally new ideas need to be introduced in order to attain linear complexity. Our
objective in this section is merely to describe the main ideas at a high level, for details, see, e.g. [4, 5, 26].

Let us center the discussion on the problem of evaluating a sum associated with the Helmholtz equation

(3.5) −∆u(x)− κ2u(x) = f(x), x ∈ R2,

coupled with a radiating boundary condition at infinity. In (3.5), the wave-number κ is assumed to be a
positive real number. To be precise, we will given a set of sources {qj}Nj=1 and a set of points {xj}Nj=1 in a
square Ω in the plane discuss fast algorithms for evaluating the sums

(3.6) ui =
∑
j 6=i

G(xi,xj)qj , for i = 1, 2, 3, . . . , N.

The kernel function is now the Hankel function of the first kind

G(x,y) = H
(1)
0 (κ|x− y|) = J0(κ|x− y|) + Y0(κ|x− y|),

where J0 and Y0 are the zeroth other Bessel functions of the first and the second kind, respectively, cf. Figure
3.6. The fundamental solution of the Helmholtz equation (3.5) is the function φ(x) = i

4G(x,y). This means
that up to a scaling by the factor i/4, the sum (3.6) represents the solution to (3.5) in the specific case where
the body load f is a set of point sources located at the points {xj}, so that

f(x) =
N∑
j=1

δ(x− xj)qj .

More generally, a sum such as (3.6) may arise from applying a quadrature rule to discretize a compactly
supported continuous function f . The perhaps most important application of fast algorithms for evaluating
a sum such as (3.6) is in solving boundary integral equations associated with the Helmholtz equation in the
plane using iterative solvers.

The foundation for the 2D Helmholtz FMM is an addition theorem for H(1)
0 that takes the form

(3.7) H
(1)
0 (κ|x− y|) =

∞∑
p=−∞

(
Jp(κs)e

ipβ
)

︸ ︷︷ ︸
=Rp(y)

(
H(1)
p (κr)e−ipα

)
︸ ︷︷ ︸

=Sp(x)

, when |x| > |y|.
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FIGURE 3.6. (a) Plots of the Bessel functions {Jp}4p=0 and {Yp}4p=0. These arise in the
FMM for the Helmholtz equation in 2D, cf. Section 3.3. (b) Plots of the modified Bessel
functions {Ip}4p=0 and {Kp}4p=0, cf. Remark 3.5.

In (3.7), we used polar coordinates
x = r eiα y = s eiβ,

to represent the target and the sources point respectively. The formula (3.7) is the Helmholtz analog of the
formula for the fundamental solution associated with Laplace’s equation

(3.8) log(x− y) = log(x) +
∞∑
p=1

(
−s

p eipβ

p

)(
e−ipα

rp

)
, when |x| > |y|.

that we derived in Section 1.2. Given a positive integer P , we can truncate the sum (3.7) to obtain an
approximate kernel

(3.9) GP (x,y) =
P∑

p=−P

(
Jp(κs)e

ipβ
)(

H(1)
p (κr)e−ipα

)
≈ G(x,y).

For a domain that is of modest size in comparison to the wave-length of the kernel, an FMM can now
be constructed in a manner very similar to the FMM for the Laplace equation. There exist “translation”
theorems that directly provide formulas for how to shift the centers of expansions, and for converting an
outgoing to an incoming expansion.

The crucial difference between the Laplace and the Helmholtz summation problems is that the number
of terms P required to attain a certain precision in the approximation (3.9) depends on the size of the box
holding the sources to be compressed. The larger the box is, the more terms will be needed. This means
that in the FMM, the length of the incoming and the outgoing expansions will need to grow for larger boxes.
For boxes that are of size O(1) wave-lengths or smaller, a fixed P will work, just like in the Laplace case.
But once the boxes get larger, we will need to use expansions of length P ∼ κD, where D is the diameter
of the box, just to maintain a fixed accuracy. (In Section 4.5, we illustrate this effect through a numerical
experiment.)

If the basic framework of the FMM were to be kept, the growth in interaction ranks will lead to a
disastrous increase in computational complexity for domains that are large in relation to the wave-length.
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However, Vladimir Rokhlin made the remarkable discovery [25, 26] that it is possible to execute the transfer
of an outgoing expansion to an incoming expansion using diagonal translation operators. To make this
work, substantial new machinery needs to be introduced, however. The interaction list needs to be split into
different groups that correspond to different directions from a source box, additional local transformations
in both the source and the target box are required, and then one needs to figure out when to switch from one
representation to the other to maintain numerical stability [4, 5].

Let us summarize the key points of this section: For domains that are small in relation to the wave-length,
it is relatively straight-forward to modify the Laplace FMM to obtain a Helmholtz FMM. For larger (“high-
frequency”) problems, fundamental re-engineering is required. These codes are complex to implement, but
work very well and provide a tool for solving a class of problems for which very few competing methods are
available.

REMARK 3.3 (Helmholtz in 3D). In three dimension, the fundamental solution of the Helmholtz equation
takes the form

G(x,y) =
eiκ|x−y|

4π|x− y|
.

This fundamental solution admits a summation theorem of similar form to the formula (3.4) for the Laplace
equation. A key difference is that the function rn in the formula (3.2) is replaced by the spherical Bessel
function jn(κr), and r−n−1 in formula (3.3) is replaced by the spherical Hankel function hn(κr). In other
words, Rmn (x) = jn(κr)Y m

n (θ, ϕ) and Smn (x) = hn(κr)Y m
n (θ, ϕ). Serious obstacles must be overcome

to implement a high efficiency FMM in this environment. All challenges that we described for 3D Laplace
FMM arise, as well as the need for diagonal translation operators to combat the increase in rank that we
described for the 2D Helmholtz case. In fact, in 3D, the interaction rank between two boxes depends on the
area (as measured in square wave-lengths) of the boxes in the plane perpendicular to the line between the
box centers.

REMARK 3.4 (Directional FMM). Another approach to recovering linear complexity in the Helmholtz
FMM is to use hierarchical trees with far more boxes. By tessellating the far field with more boxes, it becomes
possible to ensure that whenever an outgoing expansion is transferred from a source box Ωσ, all target boxes
fit within a cone centered on Ωσ whose opening angle is small enough to ensure that the interaction rank is
bounded. This way pure rank-deficiency turns out to be sufficient to attain close to linear complexity in the
summation scheme [7].

REMARK 3.5 (The modified Helmholtz equation). By flipping the sign in front of κ2 term in the Helmholtz
equation −∆u − κ2u = f , we obtain the “modified Helmholtz equation” or “Yukawa equation” −∆u +
κ2u = f . This equation has the fundamental solution G(x,y) = K0(κ|x − y|) where K0 is the modified
Bessel function of the second kind. It has a logarithmic singularity at the origin, just like the fundamental
solutions of the Laplace and Helmholtz equations. It is a non-oscillatory function that decays exponentially
fast as |x− y| → ∞. A summation problem like

ui =

N∑
j=1

K0(κ|x− y|) qj , i = 1, 2, . . . , N,

can be solved using an FMM by exploiting the separation of variables, cf. (3.8) and (3.7),

(3.10) K0(κ|x− y|) =
∞∑

p=−∞

(
Ip(κs)e

ipβ
)

︸ ︷︷ ︸
=Rp(y)

(
Kp(κr)e

−ipα)︸ ︷︷ ︸
=Sp(x)

, when |x| > |y|.

The functions Ip are the modified Bessel functions of the first kind. This variation of the FMM is for-
mally closely related to the Helmholtz FMM described in this section. Since the kernel is in this case
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non-oscillatory, ranks do not grow like they do for the standard Helmholtz equation which simplifies mat-
ters. Details on the various translation operators and other machinery that is required can be found in
[13, 15, 24].

3.4. Practical notes and further reading

We have provided only the briefest of introductions to the vast topic of Fast Multipole Methods. A fuller
treatment can be found in numerous tutorials (e.g. [2, 17]), survey papers (e.g. [20]), and full length text
books (e.g. [5, 16]).

3.4.1. Other interaction potentials (elasticity, Stokes, etc). Variations of the FMM have been con-
structed for most of the kernels associated with the elliptic PDEs of mathematical physics. This text touches
on the Laplace and Helmholtz cases. For material on linear elasticity, see e.g. [8]. The Stokes and unsteady
Stokes equations are considered in [10]. For time-harmonic Maxwell, see [5]. [16] provides a one point
reference for all of these cases.

3.4.2. Using the FMM to apply integral operators. In this text, we focused on using the FMM to
evaluate discrete sums. Very similar techniques can of course be used to evaluate integrals against continuum
charge distributions. To illustrate, suppose that q(y) is a given charge distribution in a domain Ω, which
generates a harmonic potential

u(x) =

∫
Ω

log |x− y| q(y) dA(y).

Let c denote the center of Ω. Then for any target point x that lies outside of a disc centered on c that contains
Ω, we can write the potential u as a sum of the form (1.13), with the multipole coefficients q̂j defined via the
formulas

q̂0 =

∫
Ω
q(y) dA(y),

q̂2p−1 =

∫
Ω
q(y)C2p−1(y,yc) dA(y) = −

∫
Ω
q(y) (r′)p

1

p
cos(p θ′) dA(y),

q̂2p =

∫
Ω
q(y)C2p(y,yc) dA(y) = −

∫
Ω
q(y) (r′)p

1

p
sin(p θ′) dA(y).

Formulas of this type become particularly useful in the context of rapid application of boundary integral
operators.

3.4.3. Kernel free FMMs. While FMMs can be developed for a broad range of kernels (cf. Section
3.4.1), it is quite labor intense to re-derive and re-implement the various translation operators required for
each special case. The so called kernel independent FMMs [30, 9] overcome this difficulty by setting up a
common framework that works for a broad range of kernels. The idea is to compute translation operators
numerically by either performing low-rank approximation of certain full operators, or to solve least square
systems exploiting physical knowledge that informs us that certain factorizations must exist.

3.4.4. Matrix operations beyond the matrix-vector product. The FMM performs a matrix-vector
multiply x 7→ Ax involving certain dense N × N matrices in O(N) operations. It achieves the lower
complexity by exploiting rank-deficiencies in the off-diagonal blocks of the matrix A. It turns out that
such rank deficiencies can also be exploited to perform other matrix operations, such as matrix inversions,
construction of Schur complements, LU factorizations, etc, in close to linear time. The so called H-matrix
methods [14] provide a general framework that can be applied in many contexts. Higher efficiency can
be attained by designing direct solvers specifically for the linear systems arising upon the discretization of
certain boundary integral equations [19]. A variation of these schemes is the inverse FMM, see [28].
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3.4.5. High quality codes. Let us close with a practical note. For problems with non-oscillatory ker-
nels, it is in general not that daunting of an endeavor to implement an FMM with linear or close to linear
asymptotic scaling. However, it is another matter entirely to write a code that actually achieves high practi-
cal performance. This would be an argument against using FMMs were it not for the fact that the algorithms
are very well suited for black box implementation. Some such codes are available publicly, and more are
expected to become available in the next several years. Before developing a new code from scratch, it is
usually worth-while to first look to see if a high-quality code may already be available.
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CHAPTER 4

The potential evaluation map

In this chapter, we return to the potential evaluation problem that we described in Section 1.1. In this
problem, we were given one set of source locations and a different set of target locations, and we are inter-
ested in the matrix that maps a vector of source strengths to a vector of potentials. We proved in Section
Section 1.2 that the singular values of this matrix decay exponentially fast by analyzing an analytic separa-
tion of variables given by 2D multipole expansions. Let us now ask the following questions: How close to
optimal is the factorization provided by a multipole expansion? Is it possible to improve on it? If the answer
is yes, then can this fact be used to accelerate the FMM?

We start the discussion by considering the Laplace problem in Sections 4.1 — 4.4, and then briefly
discuss the Helmholtz equation in Section 4.5.

4.1. Compression with optimal rank

Let us start with investigating exactly the same geometry that we started with in Section 1.1 and that
was shown in Figure 1.1. This geometry involves two separate boxes Ωσ and Ωτ that hold source points
{yj}nj=1 and target points {xi}mi=1, respectively. We then formed the m× n matrix A with entries A(i, j) =

log |xi − yj | and in Section 1.2 we analytically built an approximate factorization, cf. (2.8),

A = Ttfo Tofs,
m× n m× k k × n

where k is a tuning parameter that trades accuracy for cost. Deriving a factorization via analysis is very
appealing in part because it provides assurance that the method will always work reliably. Perhaps more
importantly, however, having an analytic formula dispenses with the need to do any work to find the fac-
torization; the formula provides simple analytic expressions for all the entries of the factors Ttfo and Tofs.
The drawback is that the factorization is not necessarily close to optimal. To investigate this, let us for
the particular distribution of points shown in Figure 4.1(a) form the actual matrix A, and then compare the
approximation errors obtained when computing a rank-k approximation Ak to A using three difference tech-
niques, the FMM, the SVD, and the interpolative decomposition (ID) that was described in Section ??. In
Figure 4.1(b) we plot the approximation errors

ek =
‖A− Ak‖
‖A‖

for the three different methods as a function of k.1 We observe that the SVD and the ID perform far better
than the multipole expansion in this case. There are at least two reasons why this comparison may not be fair
to the multipole expansion. First, the multipole expansion is valid in a much larger domain of target points,
not just in the particular box considered here. Second, the multipole expansion works for any distribution of
points in the two boxes, not just the particular one that we happened to choose.

1The rank k that we use for the multipole expansion is the rank resulting from real valued arithmetic. In other words, each term
in the complex expansion corresponds to two real valued functions, since (x− c)−p = cos(pθ)

rp
+ i sin(pθ)

rp
using polar coordinates,

cf. (1.18). This means that a multipole expansion of order P corresponds to a real-valued factorization of rank k = 1 + 2P .
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FIGURE 4.1. Actual ranks of some representative potential evaluation matrices, as dis-
cussed in Section 4.1. The left column shows three representative geometries, and the
right column shows the corresponding approximation accuracies, using three different ma-
trix compression techniques. The matrix is in each case A(i, j) = log |xi − yj |. The ranks
listed in the legends are to relative precision ε = 10−12. The darker source and target points
are the ones chosen by the ID; these form what we call the skeleton points.
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To investigate the importance of the locations of the target points, let us next consider a situation where
the target points are distributed along all directions from the source box, but still well-separated from the
source box, as shown in Figure 4.1(c). The resulting approximation errors in Figure 4.1(d) are very illumi-
nating. The errors in the multipole expansion remain basically the same, which is what we would expect
since all the target points as just as far away from the source box as in the geometry in Figure 4.1(a). But
now the SVD and the ID perform far worse, and in fact are not too far off from the ranks produced by the
multipole expansion.

The fact that the SVD and the multiple expansions are quite close in Figure 4.1(d) indicate that the
second concern in regards to the fairness of comparing the SVD to an analytic expansion seems less likely
to hold much water. As it happens, for a relatively dense distribution of sources, there is not much difference
between the ranks generated for a particular realization, and the ranks generated by an optimal “generic”
compression. We will discuss this point further in Sections 4.2 and 4.3.

For particle distributions that are not uniform in a box, it turns out to be possible to obtain far lower ranks
via numerical compression than what you would get from a simple analytic formula such as a multipole
expansion. To illustrate the point, let us consider the geometry shown in Figure 4.1(e). Here both source and
target points are distributed along a curve. The two sets are hardly separated at all, so it is unsurprising that
the multipole expansion converges very slowly, as shown in Figure 4.1(f). In contrast, the actual numerical
rank of A, as detected by the SVD, is in this case exceedingly low.

Let us finally comment on how the SVD and the ID compare to each other. In all three of the error plots
in Figures 4.1(b,d,f), the ID results in errors that are only a hair larger than the theoretically optimal ones
resulting from the SVD. This is in some sense unsurprising, given how rapidly the singular values of the
matrices decay. However, we will in later chapters often work with problems where the ID has powerful
advantages over the SVD, and it is very encouraging to see how close to optimal it is.

4.2. Proxy surfaces

Consider a box Ωσ that holds some source points, a shown in Figure 4.2, and suppose that we seek
to build a compressed representation of the field v that is generated by these sources. For the compressed
representation to be useful in a fast summation scheme like the FMM, it must be accurate at any target point
that is well-separated from Ωσ. This may at first seem like a daunting task; how could we ever test every
possible point? There is a surprisingly simple way out of this quandary, however. All we need to do is to
observe that if we build a harmonic field vapprox that matches the exact field v on the boundary of the region
of well-separated points, then the field vapprox automatically matches u at all well-separated points. This
observation follows immediately from the uniqueness of solutions to the Laplace equation with Dirichlet
data: Let Γproxy denote the boundary of the set of well-separated points, as shown with the green dashed
line in Figure 4.2. Then observe that the field w = v − vapprox is harmonic and satisfies the correct decay
condition at infinity. If w = 0 on Γproxy, then w must be identically zero everywhere outside of Γproxy.

4.3. Compression of continuum operators

In Section 4.1 we investigated the numerical ranks of a number of matrices that each was derived from
some particular choice of source and target points. We will next describe how to build matrices that represent
the intrinsic geometry of the source and the target domains, rather than particular samples from them. Given
a source region Ωσ and a target region Ωτ , the idea is to consider the continuum operator

(4.1) A : L2(Ωσ)→ L2(Ωτ ) : q 7→ f(x) =

∫
Ωσ

log |x− y| q(y) dy
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Ωσ

Γproxy

FIGURE 4.2. Geometry considered in Section 4.2. A box Ωσ holds a number of source
locations and generate a harmonic field v outside the box. If we can generate a harmonic
field vapprox that matches v closely on the contour Γproxy then v and vapprox will closely
match everywhere outside of Γproxy.

that maps a continuum source distribution q on Ωσ to a continuum potential f on Ωτ . When the two regions
are separated by some minimal distance dmin > 0, the kernel in the integral operator A is smooth, and can
readily be approximated using numerical quadratures. To this end, let {xi, vi}mi=1 be a quadrature for the
target domain, and let {yj , wj}nj=1 be a quadrature for the source domain. It is then convenient to scale the
vectors that represent q and f by the square roots of the corresponding quadrature weights. In other words,
we define q ∈ Rn and v ∈ Rm via

f(i) =
√
vi f(xi),

q(j) =
√
wj q(yj).

The advantage is that then

‖f‖2`2 =
m∑
i=1

|f(i)|2 =
m∑
i=1

vi|f(xi)|2 ≈
∫

Ωτ

|f(x)|2 dx = ‖f‖2L2(Ωτ ),

with an analogous calculation showing that ‖q‖`2 ≈ ‖q‖L2(Ωσ). Finally, we let A denote the m × n matrix
with entries

(4.2) A(i, j) =
√
vi log |xi − yj |

√
wj .

Then the singular values/vectors of A are accurate approximations of the singular values/vectors of A.

REMARK 4.1 (Max-norm approximation). The perhaps most desirable approximation of the continuum
operator A would be one that is accurate pointwise everywhere, so that given some tolerance ε, we would
build basis functions {Sp}Pp=1 and {Rp}Pp=1 such that

(4.3) sup
x∈Ωτ , y∈Ωσ

∣∣∣∣∣∣G(x,y)−
P∑
p=1

Rp(y)Sp(x)

∣∣∣∣∣∣ ≤ ε.
While a bound such as (4.3) would perhaps be preferable, we work with L2 norms since they are computa-
tionally far more tractable, and allow the low-rank approximation problem to be resolved optimally using the
SVD. In contrast, finding close to optimal basis functions such that (4.3) holds can be challenging. Heuristic
methods can work very well in practice [29] but come with no guarantee of optimality. More sophisticated
methods [21] would likely lead to lower ranks.
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4.4. Three case studies for Laplace’s equation

In this section, we will numerically investigate the singular values of the integral operator (4.1) that maps
a source distribution q on a source domain Ωσ to a potential f on a target domain Ωτ . We consider the kernel
function G(x,y) = log |x− y| associated with the Laplace equation, and the three geometries shown in the
left column of Figure 4.3. The red and the blue dots in the figures show the quadrature points chosen by the
ID on Ωσ and Ωτ , respectively.

Let us first compare the optimal accuracies resulting from the SVD (red lines in Figures 4.3(b,d,f)) to
the accuracies resulting from the analytic formula provided by the multipole expansions (green lines). The
first geometry that we consider, shown in Figure 4.3(a), consists of a disc of sources which are mapped to a
concentric circle of target ponts. This geometry is the one that multipole expansions are designed for, and it is
not surprising to see that in this case, there is no visible difference between the SVD and the multipole errors.
The geometry shown in Figure 4.3(c) is the one of relevance in the 2D FMM. Here we see that the multipole
expansions do result in larger errors for any given separation rank, but that the difference to the SVD is small
enough that using multipole expansions in the FMM is well justified. (Still, at accuracy 10−12, the ranks are
45 and 53 respectively, which is not entirely negligible given that the cost of the FMM scales as the rank
squared. This difference provides an opening to optimize the speed by switching to numerically determined
translation operators as described in Section 3.4.3.) In our final geometry in Figure 4.3(e) we consider a
geometry where the targets are much close to the box of sources. In this case, some of the target points are
in fact not well-separated from the source box, and in consequence, the multipole expansion diverges, as we
see in Figure 4.3(f). It is of interest however that the interaction is still of low numerical rank, and in fact
increases only from 45 in the previous example to 81 when the two boxes are very close.

Next we consider the difference between the errors results from the SVD (red lines) and the interpolatory
decomposition (blue lines). The key observation is that in all the three geometries we consider, the difference
is marginal, and we may freely chose either format as there is almost no difference in the resulting ranks.
The one case where there is a noticeable difference is the last one, which is to be expected since the singular
values decay more slowly in this case.

In Figures 4.3(a,c,e), the points chosen by the ID in the source and the target domains are drawn with a
darker color. We observe that the dark red points are universal skeleton points. This means that given any
source distribution inside Ωσ, we can replicate the field these sources generate on Ωτ to precision ε = 10−12

by placing some equivalent sources at these dark red points. In order to carry out this computation in practice,
we would use the computed right singular vectors of A to tell us what the shape of the relevant basis functions
should be, using the interpolation implicit in the quadrature rule to create a continuum function from the
sampled values identified in the singular vector.

REMARK 4.2. Let us linger slightly on the geometry in Figure 4.3(a) where the source region is a disc,
and the target region is a circle that is concentric to the disc. We see in Figure 4.3(b) that the multipole
expansion in this case appears to be about as accurate as the SVD, which is theoretically optimal. Since
the graph is small, it is difficult to see just how close they are, so let us look at a zoomed picture in Figure
4.4. We see that the accuracies still appear to be identical. It turns out that in this case, the harmonic basis
functions are actually the right singular vectors associated with the continuum operator that are associated
with non-zero singular values.

4.5. Three case studies for the Helmholtz equation

Having studied the potential evaluation map associated with the Laplace equation in Section 4.4, let us
next turn our attention to the analogous integral operator

(4.4) A : L2(Ωσ)→ L2(Ωτ ) : q 7→ f(x) =

∫
Ωσ

H
(1)
0 (κ|x− y|) q(y) dy

41



Ωσ

Ωτ 0 10 20 30 40 50 60 70 80

k

10
-15

10
-10

10
-5

10
0

||
A

 -
 A

k
||
/|
|A

||

svd (k=66)

ID (k=69)

multipole (k=66)

(a) (b)

0 10 20 30 40 50 60 70

k

10
-15

10
-10

10
-5

10
0

||
A

 -
 A

k
||
/|
|A

||

svd (k=45)

ID (k=47)

multipole (k=53)

(c) (d)

0 10 20 30 40 50 60 70

k

10
-4

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||
/|
|A

||

svd (k=244)

ID (k=81)

multipole (k=81)

(e) (f)

FIGURE 4.3. Ranks of the potential evaluation integral operators described in Section 4.4.
The left column shows the three geometries, and the right column shows the corresponding
approximation accuracies. The ranks listed in the legends are to relative precision ε =
10−12. The darker source and target points are the skeleton points chosen by the ID.
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FIGURE 4.4. A close-up of the accuracy graph in Figure 4.3(b). We see that the errors from
the SVD and the multipole expansion are identical. In fact, the multipole expansion is the
continuum SVD in this case, cf. Remark 4.2.

that is associated with the Helmholtz equation −∆u− κ2u = f . We consider the three geometries shown in
Figures 4.5(a,c,e).

Let us first consider the rotationally symmetric geometry in Figure 4.5(a). This is the same geometry as
in Figure 4.3(a), and we in this case choose the wave number κ so that the domain is just over 1 wave-length
in diameter. We again see that in this case, the multipole expansion and the SVD give identical errors, just as
for the Laplace case. We next consider the FMM geometry in Figure 4.5(c). The box with sources is around
one and a half wave-length across, and we see that in this case, the accuracies behave in a manner entirely
analogous to the Laplace case — there is some discrepancy between the multipole expansion and the SVD,
but they are close. In the final example in Figure 4.5(e), we keep the geometry the same, but increase κ so
that the domain is now about 11 wavelengths across. In this situation, the errors plots look quite different. We
see that we get no accuracy whatsoever until the interaction ranks reach about 60, and then the exponential
decay sets in. This is a result of the fact (cf. Section 3.3) that for the Helmholtz case, the interaction rank
depends on the size of the domain in wave-lengths. Until P is large enough to resolve the source object to
within the precision dictated by the wavelength, the expansion (3.9) will have no accuracy. Once the object
is resolved, the accuracy improves rapidly.

Let us next consider the accuracy from the ID in comparison to the accuracy of the SVD. We see that just
as for the Laplace case, there is generally very little difference between the two. Using the ID leads to very
slightly higher interaction ranks, but from a practical point of view, the ranks are essentially the same. One
interesting observation is that for the short wave-length case in Figure 4.5(e), the ID selects plenty of points
from the interior of the domain. In all prior examples, the points tended to cluster along the boundary of the
domain, despite the fact that these points are weighted unfavorably by the quadrature scaling in (4.2). (When
this scaling is not included, basically all skeleton nodes are picked right on the boundary in the Laplace
case.)
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FIGURE 4.5. Ranks of the potential evaluation integral operators described in Section 4.5
involving the Helmholtz kernelG(x,y) = H

(1)
0 (κ|x−y|). The left column shows the three

geometries, and the right column shows the corresponding approximation accuracies. The
ranks listed in the legends are to relative precision ε = 10−12. The darker source and target
points are the skeleton points chosen by the ID.
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