Homework set 4 — MATH 393C — Spring 2019
Due in class on Thursday April 18, 2019. Hand in solutions to all problems.

Problem 4.1: In the course notes posted on the class website on the FMM, Figure 4.3 shows in part the following:
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Using the techniques outlined in Chapter 4 of the course notes, compute the first few singular vectors associated
with the integral operator

(1) A: L2(Q,) = LX) : ¢ fx) z/ log|z — y[q(y) dy,

o

where €2, and €2, are as shown in the Figure 4.3(a) and 4.3(c). Hand in plots of the first 6 singular vectors.

Optional: Replace log |x — y| by Hél)(n]w — y|). Plot the singular values for a few different values of x. What
differences to you observe?
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Problem 4.2: Define a contour I'; via
I ={z=(x1, 3) € R?: 22 + 222 =1}.
Let €2 denote the domain interior to I'. Define points @ € €2y and b € I'; via
a=(03,03), b=(cos(0.7), (1/V2) sin(0.7)).
Let u be the unique solution to
—Au(x) =0, x €,
2) {

u(z) = f(z), x eI,

where
Flor, 22) = o 105,
Let u have the representation
1 1
u(e) = So)(w) = [~ log - oly)ds(y).
r, 27 7 |z—y
Your task is to form an equation for o, discretize this equation, solve the equation, and then to evaluate the function
u. Use just a plain Trapezoidal rule.

Let N denote the number of degrees of freedom in your approximation, let o denote the corresponding solution,
and include in your solution the following table (with values filled in where the question marks are):

N |upn(a) | on(b)

100 ? ?
200 ? ?
400 ? ?

? ?

800

Include as large IV as your computer can handle in a reasonable amount of time, and estimate the convergence rate
for each column.

Estimate the rates of convergence.



Problem 4.3: Repeat Problem 4.2, but now set
G1(t) =1.5 cos(t) + 0.1 cos(6t) + 0.1 cos(4t),
Ga(t) =sin(t) + 0.1 sin(6¢) — 0.1 sin(4 ),
and define
Iy = {z = (G1(t), G2(t)) : t €0, 2m)}.
The Dirichlet data f is the same. Report o(c) and u(d) for the points

c=(0.3,03), d=(-13,0).

Problem 4.4: Repeat Problem 4.2 (with the contour I'1) but now use the double layer potential

uw) = Dol(e) = [ MLEZH oy asty),

r, 27|z —yl?

where n(y) is the outwards pointing unit normal at y.

Hint: Recall from class that the double layer kernel is smooth. Some work is required in determining its value on
the diagonal, though!

Problem 4.5: Repeat Problem 4.3 (with the contour I'2) but now use the double layer potential

uw) = Dol(e) = [ MLEZH oy asty),

r, 27|z —yl?

where n(y) is the outwards pointing unit normal at y.

Problem 4.6: Repeat problems 4.3 and 4.5, but now use the dirichlet data

f(x) =log((z1 — 1.5)> + (z2 — 05)?),  wel.
In this case, you of course know that the exact analytic solution is simply

u(x) = log((ml — 1.5)2 + (29 — 0.5)2), x c Q.

Estimate the rate of convergence of your computed solution at the point ¢ when you use the single and the double
layer formulations, respectively.



