Homework set 4 - MATH 393C — Spring 2019

Due in class on Thursday April 18, 2019. Hand in solutions to all problems.
Problem 4.1: In the course notes posted on the class website on the FMM, Figure 4.3 shows in part the following:

Using the techniques outlined in Chapter 4 of the course notes, compute the first few singular vectors associated with the integral operator

$$
\begin{equation*}
A: L^{2}\left(\Omega_{\sigma}\right) \rightarrow L^{2}\left(\Omega_{\tau}\right): q \mapsto f(\boldsymbol{x})=\int_{\Omega_{\sigma}} \log |\boldsymbol{x}-\boldsymbol{y}| q(\boldsymbol{y}) d \boldsymbol{y} \tag{1}
\end{equation*}
$$

where Ω_{σ} and Ω_{τ} are as shown in the Figure 4.3(a) and 4.3(c). Hand in plots of the first 6 singular vectors.
Optional: Replace $\log |\boldsymbol{x}-\boldsymbol{y}|$ by $H_{0}^{(1)}(\kappa|\boldsymbol{x}-\boldsymbol{y}|)$. Plot the singular values for a few different values of κ. What differences to you observe?

Problem 4.2: Define a contour Γ_{1} via

$$
\Gamma_{1}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+2 x_{2}^{2}=1\right\} .
$$

Let Ω_{1} denote the domain interior to Γ_{1}. Define points $\boldsymbol{a} \in \Omega_{1}$ and $\boldsymbol{b} \in \Gamma_{1}$ via

$$
\boldsymbol{a}=(0.3,0.3), \quad \boldsymbol{b}=(\cos (0.7),(1 / \sqrt{2}) \sin (0.7)) .
$$

Let u be the unique solution to

$$
\left\{\begin{align*}
-\Delta u(x) & =0, & & x \in \Omega_{1}, \tag{2}\\
u(x) & =f(x), & & x \in \Gamma_{1},
\end{align*}\right.
$$

where

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2} e^{\sin \left(10 x_{2}\right)}
$$

Let u have the representation

$$
u(\boldsymbol{x})=[S \sigma](\boldsymbol{x})=\int_{\Gamma_{1}}-\frac{1}{2 \pi} \log \frac{1}{|\boldsymbol{x}-\boldsymbol{y}|} \sigma(\boldsymbol{y}) d s(\boldsymbol{y}) .
$$

Your task is to form an equation for σ, discretize this equation, solve the equation, and then to evaluate the function u. Use just a plain Trapezoidal rule.

Let N denote the number of degrees of freedom in your approximation, let σ_{N} denote the corresponding solution, and include in your solution the following table (with values filled in where the question marks are):

N	$u_{N}(\boldsymbol{a})$	$\sigma_{N}(\boldsymbol{b})$	
100	$?$	$?$	
200	$?$	$?$	
400	$?$	$?$	
800	$?$	$?$	
\vdots	\vdots	\vdots	\vdots

Include as large N as your computer can handle in a reasonable amount of time, and estimate the convergence rate for each column.
Estimate the rates of convergence.

Problem 4.3: Repeat Problem 4.2, but now set

$$
\begin{aligned}
& G_{1}(t)=1.5 \cos (t)+0.1 \cos (6 t)+0.1 \cos (4 t), \\
& G_{2}(t)=\sin (t)+0.1 \sin (6 t)-0.1 \sin (4 t),
\end{aligned}
$$

and define

$$
\Gamma_{2}=\left\{x=\left(G_{1}(t), G_{2}(t)\right): t \in[0,2 \pi)\right\} .
$$

The Dirichlet data f is the same. Report $\sigma(\boldsymbol{c})$ and $u(\boldsymbol{d})$ for the points

$$
\boldsymbol{c}=(0.3,0.3), \quad \boldsymbol{d}=(-1.3,0)
$$

Problem 4.4: Repeat Problem 4.2 (with the contour Γ_{1}) but now use the double layer potential

$$
u(\boldsymbol{x})=[D \sigma](\boldsymbol{x})=\int_{\Gamma_{1}} \frac{\boldsymbol{n}(\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y})}{2 \pi|\boldsymbol{x}-\boldsymbol{y}|^{2}} \sigma(\boldsymbol{y}) d s(\boldsymbol{y}),
$$

where $\boldsymbol{n}(\boldsymbol{y})$ is the outwards pointing unit normal at \boldsymbol{y}.
Hint: Recall from class that the double layer kernel is smooth. Some work is required in determining its value on the diagonal, though!

Problem 4.5: Repeat Problem 4.3 (with the contour Γ_{2}) but now use the double layer potential

$$
u(\boldsymbol{x})=[D \sigma](\boldsymbol{x})=\int_{\Gamma_{1}} \frac{\boldsymbol{n}(\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y})}{2 \pi|\boldsymbol{x}-\boldsymbol{y}|^{2}} \sigma(\boldsymbol{y}) d s(\boldsymbol{y})
$$

where $\boldsymbol{n}(\boldsymbol{y})$ is the outwards pointing unit normal at \boldsymbol{y}.

Problem 4.6: Repeat problems 4.3 and 4.5, but now use the dirichlet data

$$
f(\boldsymbol{x})=\log \left(\left(x_{1}-1.5\right)^{2}+\left(x_{2}-0.5\right)^{2}\right), \quad \boldsymbol{x} \in \Gamma .
$$

In this case, you of course know that the exact analytic solution is simply

$$
u(\boldsymbol{x})=\log \left(\left(x_{1}-1.5\right)^{2}+\left(x_{2}-0.5\right)^{2}\right), \quad \boldsymbol{x} \in \Omega
$$

Estimate the rate of convergence of your computed solution at the point \boldsymbol{c} when you use the single and the double layer formulations, respectively.

