Homework set 3 — MATH 393C — Spring 2019

Due on Thursday March 25. Please hand in solutions to problems 3.1 - 3.3.

Problem 3.1: The objective of this problem is to computationally investigate the error incurred by truncating multipole expansions. Consider the following geometry: Let Ω_{τ} and Ω_{σ} be two well-separated boxes with centers c_{τ} and c_{σ} . Let $y \in \Omega_{\sigma}$ be a source point and let $x \in \Omega_{\tau}$ be a target point. Consider the error function

$$e(P) = \sup \Big\{ \Big| \log |oldsymbol{x} - oldsymbol{y}| - oldsymbol{B}_P(oldsymbol{y}, oldsymbol{c}_ au) \, oldsymbol{\mathsf{Z}}_P(oldsymbol{c}_ au, oldsymbol{c}_\sigma) \, oldsymbol{\mathsf{C}}_P(oldsymbol{c}_\sigma, oldsymbol{x}) \Big| : \, oldsymbol{y} \in \Omega_\sigma \, oldsymbol{x} \in \Omega_ au \Big\}$$

where P is the length of the multipole expansion, and where

${f C}_P(oldsymbol{c}_\sigma,oldsymbol{y})\in {\Bbb C}^{P imes 1}$	maps a source to an outgoing expansion
$\mathbf{Z}_P(oldsymbol{c}_ au,oldsymbol{c}_\sigma)\in \mathbb{C}^{P imes P}$	maps an outgoing expansion to an incoming expansion
${f B}_P(oldsymbol{x},oldsymbol{c}_ au)\in {\Bbb C}^{1 imes P}$	maps an incoming expansion to a target

(a) Estimate e(P) experimentally for the geometry:

 $\Omega_{\sigma} = [-1, 1] \times [-1, 1], \qquad \Omega_{\tau} = [3, 5] \times [-1, 1].$

- (b) Fit the function you determined in (a) to a curve $e(P) \sim c \cdot \alpha^{P}$. What is α ?
- (c) Is the supremum for a given P attained for any specific pair {x, y}?
 If so, find (experimentally) the pair. Does the choice depend on P?
- (d) Repeat questions (a), (b), (c) for a different geometry of your choice. (Provide a picture.)

Hint: The provided file main_T_ops_are_fun.m might be useful.

Problem 3.2: The objective of this exercise is to familiarize yourself with the provided prototype FMM. The questions below refer to the basic FMM provided in the file main_fmm.m when executed on a uniform particle distribution. For this case, precompute only the translation operators $T^{(ofo)}$, $T^{(ifo)}$, and $T^{(ifi)}$ (i.e. set flag_precomp=0).

(a) Estimate and plot the execution time of the FMM for the choices

 $N_{\text{tot}} = 1\,000,\,2\,000,\,4\,000,\,8\,000,\,16\,000,\,32\,000,\,64\,000.$

Set nmax=50. Provide plots that track the following costs:

- $t_{\rm tot}$ total execution time, including initialization.
- t_{init} cost of initialization (computing the tree, the object T_OPS, etc.).
- $t_{\rm ofs}$ cost of applying $\mathbf{T}^{({\rm ofs})}$.
- $t_{\rm ofo}$ cost of applying $\mathbf{T}^{(\rm ofo)}$.
- $t_{\rm ifo}$ cost of applying **T**^(ifo).
- t_{ifi} cost of applying $\mathbf{T}^{(\text{ifi})}$.
- $t_{\rm tfi}$ cost of applying $\mathbf{T}^{\rm (tfi)}$.
- $t_{\rm close}$ cost of directly evaluating close range interactions.
- (b) Repeat exercise (a) but now for a few different choices of nmax. Which one is the best one? Provide a new plot of the times required for this optimal choice.

Problem 3.3: Repeat Problem 3.2 but now use a non-uniform point distribution of your choice.

Problem 3.4: *[Optional]* Can you think of a better way of computing the interaction lists? Here "better" could mean either a cleaner code that executes in more or less the same time, or a code that executes significantly faster than the provided one. If your code is *both* cleaner and faster then so much the better!

Problem 3.5: [Optional] Code up the single-level Barnes-Hut method and investigate computationally how many boxes you should use for optimal performance for any given precision and given total number N_{tot} of charges. Create a plot of the best possible time t_{optimal} for several N_{tot} and estimate the dependence of t_{optimal} on N_{tot} . To keep things simple, consider only uniform particle distributions. You need only consider a fixed precision (say P = 10) but an ambitious solution should compute the optimal time for several different choices (say P = 5, 10, 15, 20).