Homework set 2 - MATH 393C — Spring 2019

Due on Thursday March 7. Please hand in solutions to two problems of your choice in the set $\{3,4,5,6\}$, as well as to problems 7 and 8 .

Problem 1: Suppose that \mathbf{A} is a real symmetric $n \times n$ matrix. Let $\left\{\mathbf{v}_{j}\right\}_{j=1}^{n}$ denote an orthonormal set of eigenvectors so that $\mathbf{A} \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$ for some numbers λ_{j}. Let us use an ordering where $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. Define a sequence of vectors $\mathbf{x}_{p}=\mathbf{A}^{p} \mathbf{g}$, where \mathbf{g} is an $n \times 1$ random vector whose entries are drawn independently from a standard Gaussian distribution.
(a) Set $\beta=\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$ and $\mathbf{y}_{p}=\left(1 /\left\|\mathbf{x}_{p}\right\|\right) \mathbf{x}_{p}$. Assume $\lambda_{1}=1$ and $\beta<1$. Prove that as $p \rightarrow \infty$, the vectors $\left\{\mathbf{y}_{p}\right\}$ converge either to \mathbf{v}_{1} or $-\mathbf{v}_{1}$.
(b) What is the speed of convergence of $\left\{\mathbf{y}_{p}\right\}$?
(c) Assume again that $\beta<1$, but now drop the assumption that $\lambda_{1}=1$. Prove that your answers in (a) and (b) are still correct, with the exception that if $\lambda_{1}<0$, then it is the vector $(-1)^{p} \mathbf{y}_{p}$ that converges instead.

Problem 2: Let $\mathbf{A} \in \mathbb{R}^{m \times n}, J$ be an $n \times 1$ permutation vector, and $J_{s}=J(1: k)$ for some $k \in \mathbb{N}$. Now suppose that

$$
\begin{equation*}
\underset{m \times n}{\mathbf{A}}=\underset{m \times k}{\mathbf{E}} \underset{k \times n}{\mathbf{F},} \tag{1}
\end{equation*}
$$

and suppose that for some matrix \mathbf{T} of size $k \times(n-k)$, it holds that

$$
\mathbf{F}(:, J)=\mathbf{F}\left(:, J_{s}\right)\left[\begin{array}{ll}
\mathbf{l}_{k} & \mathbf{T}
\end{array}\right],
$$

where \mathbf{I}_{k} is the $k \times k$ identity matrix. Prove that

$$
\mathbf{A}(:, J)=\mathbf{A}\left(:, J_{s}\right)\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{T}
\end{array}\right] .
$$

Problem 3: Suppose that \mathbf{A} is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_{s} and J_{s} such that the matrices

$$
\mathbf{C}=\mathbf{A}\left(:, J_{s}\right), \quad \mathbf{R}=\mathbf{A}\left(I_{s},:\right)
$$

hold k columns/rows that span the column/row space of \mathbf{A}. Then

$$
\mathbf{A} \approx \mathbf{C C}^{\dagger} \mathbf{A R} \mathbf{R}^{\dagger} \mathbf{R}
$$

and the optimal choice for the "U" factor in the CUR decomposition is

$$
\mathbf{U}=\mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}
$$

Set $\mathbf{X}=\mathbf{C C}^{\dagger}$.
(a) Suppose that \mathbf{C} has the SVD $\mathbf{C}=\mathbf{W D V}{ }^{*}$. Prove that $\mathbf{X}=\mathbf{W W}^{*}$.
(b) Suppose that \mathbf{C} has the $\mathbf{Q R}$ factorization $\mathbf{C P}=\mathbf{Q S}$. Prove that $\mathbf{X}=\mathbf{Q} \mathbf{Q}^{*}$.
(c) Prove that \mathbf{X} is the orthogonal projection onto $\mathrm{Col}(\mathbf{C})$.
(d) Suppose that \mathbf{A} has precisely rank k and that \mathbf{C} and \mathbf{R} are both of rank k. Prove that then $\mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}=$ $\left(\mathbf{A}\left(I_{s}, J_{s}\right)\right)^{-1}$.

Problem 4: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank exactly k. In this problem, we will prove that \mathbf{A} admits a factorization $\mathbf{A}=\mathbf{A}\left(:, J_{s}\right) \mathbf{Z}$, where $\mathbf{A}\left(:, J_{s}\right) \in \mathbb{R}^{m \times k}$ and $\mathbf{Z} \in \mathbb{R}^{k \times n}$ such that $\mathbf{Z}\left(:, J_{s}\right)=\mathbf{I}_{k}$ and $\max _{i, j}|\mathbf{Z}(i, j)| \leq 1$.
(a) case 1: $m=k$.
(a) Pick a permutation vector J_{s} such that $\left|\operatorname{det}\left(\mathbf{A}\left(:, J_{s}\right)\right)\right|$ is maximized, and let J_{r} denote the remaining indices so that $\left[\begin{array}{ll}J_{s} & J_{r}\end{array}\right]$ is some permutation of the vector $\left[\begin{array}{lll}12 & \cdots & n\end{array}\right]$. Then we have that

$$
\mathbf{A}\left(:,\left[\begin{array}{ll}
J_{s} & J_{r}
\end{array}\right]\right)=\left[\begin{array}{ll}
\mathbf{A}\left(:, J_{s}\right) & \mathbf{A}\left(:, J_{r}\right)
\end{array}\right]
$$

can be written as $\mathbf{A P}$ for some permutation matrix \mathbf{P}. Find an interpolative decomposition $\mathbf{A}=\mathbf{C Z}$ of \mathbf{A}, where the columns of \mathbf{C} are some of the columns of $\mathbf{A} . \mathbf{C}$ and \mathbf{Z} should be in terms of $\mathbf{A}\left(:, J_{s}\right), \mathbf{A}(:$,$\left.J_{r}\right), \mathbf{P}$, and the identity matrix I.
(b) Consider the matrix $\mathbf{T}=\mathbf{A}\left(:, J_{s}\right)^{-1} \mathbf{A}\left(:, J_{r}\right)$. If we can show that

$$
\begin{equation*}
\max _{i, j}|\mathbf{T}(i, j)| \leq 1 \tag{2}
\end{equation*}
$$

then we will be done with the case $m=k$ (why?). Find a way to show (2) by applying Cramer's Rule to our definition of \mathbf{T}.

Cramer's Rule: Consider the linear system $\mathbf{A x}=\mathbf{b}$. The i-th entry of the solution \mathbf{x} is given by

$$
x_{i}=\frac{\operatorname{det}\left(\mathbf{A}_{i}\right)}{\operatorname{det}(\mathbf{A})},
$$

where \mathbf{A}_{i} is matrix formed by replacing the i-th column of \mathbf{A} with \mathbf{b}.
(b) case 2: $m \geq k$.

Then \mathbf{A} admits a factorization $\mathbf{A}=\mathbf{E F}$, where \mathbf{E} is $m \times k$ and \mathbf{F} is $k \times n$. Apply case 1 to \mathbf{F} to show the result for this case (something we proved in a previous problem may help, too...).

Problem 5: The purpose of this exercise is to prove the equivalence of subspace iteration and the "power" version of the RSVD. Suppose you are given an $m \times n$ matrix \mathbf{A} of rank at least k, and an $n \times k$ matrix \mathbf{G} for which $\mathbf{A G}$ is of full rank. Then set

$$
\mathbf{Y}=\left(\mathbf{A} \mathbf{A}^{*}\right)^{q} \mathbf{A} \mathbf{G}
$$

for some positive integer q. Also define \mathbf{Z} as the output of the iteration

$$
\begin{aligned}
& \mathbf{Z} \leftarrow \operatorname{orth}(\mathbf{A G}) \\
& \text { for } i=1: q \\
& \mathbf{Z} \leftarrow \operatorname{orth}\left(\mathbf{A}^{*} \mathbf{Z}\right) \\
& \mathbf{Z} \leftarrow \operatorname{orth}(\mathbf{A Z}) \\
& \text { end }
\end{aligned}
$$

The output of orth (\mathbf{A}) for a matrix \mathbf{A} is a matrix \mathbf{Z} with orthonormal columns such that $\operatorname{ran}(\mathbf{Z})=\operatorname{ran}(\mathbf{A})$. Show that $\operatorname{ran}(\mathbf{Y})=\operatorname{ran}(\mathbf{Z})$.

Problem 6: Let \mathbf{R} be an $m \times n$ random matrix. Assume the entries of \mathbf{R} are independent, and $\mathbb{E}\left[\mathbf{R}_{i j}\right]=0$ and $\operatorname{Var}\left(\mathbf{R}_{i j}\right)=1 \forall i, j$. Let $\mathbf{x} \in \mathbb{R}^{n}$. Show that $\mathbb{E}\left[\|\mathbf{R} \mathbf{x}\|^{2}\right]=m\|\mathbf{x}\|^{2}$.

Problem 7:

(a) Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be tridiagonal, and let $\mathbf{x} \in \mathbb{R}^{n}$ be a given vector. Write a function $y=\operatorname{solve} t r i d i a g(B, x)$ that computes the solution to $\mathbf{B y}=\mathbf{x}$.
(b) Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be tridiagonal. Write a function $[L, U]=$ LU_tridiag (B) that computes the LU factorization of \mathbf{B}.
(c) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be semi-separable, and let $\mathbf{y} \in \mathbb{R}^{n}$ be a given vector. Write a function $\mathrm{x}=\operatorname{solve_ SS}(\mathrm{A}, \mathrm{y})$ that computes the solution to $\mathbf{A x}=\mathbf{y}$.
(d) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be semi-separable. Write a function $B=i n v _S S$ (A) that computes the inverse of \mathbf{A}.
(e) Verify that all your functions have linear complexity through numerical experiments. In other words, measure the execution time t_{n} required to solve the problem, and plot t_{n} against n. (Or, even better, plot t_{n} / n against n.)

You need to use data-efficient formats to represent the matrices. For instance, you could represent a semiseparable matrix \mathbf{A} using four vectors a, b, c, d such that

$$
\mathbf{A}(i, j)= \begin{cases}a(i) b(j), & \text { for } i \leq j \\ c(i) d(j), & \text { for } i \geq j\end{cases}
$$

Ensure that you pick vectors that satisfy $a(i) b(i)=c(i) d(i)$. Or, even better, specify just three vectors and compute the dependent variable on the fly. A tridiagonal matrix, can be specified by giving the three vectors that hold the diagonal and the offdiagonal entries. For instance, the matrix $\mathbf{A}=\left[\begin{array}{ccccc}f_{1} & g_{1} & 0 & 0 & \cdots \\ e_{1} & f_{2} & g_{2} & 0 & \cdots \\ 0 & e_{2} & f_{3} & g_{3} & \cdots \\ 0 & 0 & e_{3} & f_{4} \cdots & \\ \vdots & \vdots & \vdots & \vdots & \end{array}\right]$ is specified by giving just the vectors $\mathbf{e}, \mathbf{f}, \mathbf{g}$.

Write the functions as simple for loops in your first implementation. Then see if you can accelerate them using more efficient programming techniques. (Using, for instance, built-in routines for sparse operations.)

Various pathological cases may arise that involve division by zero. You are welcome to disregard this, and just assume that no divisions by zero happen.

Problem 8: In this problem, n and k are positive integers such that $k<n, \mathbf{A}$ is an $N \times N$ invertible matrix, and $\mathbf{B}=\mathbf{A}^{-1}$. Let us further assume that every diagonal block of \mathbf{A} is invertible.
(a) Suppose that $N=2 n$, and that we can write \mathbf{A} and \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right], \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ll}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{array}\right],
$$

where each block is of size $n \times n$. Suppose further that \mathbf{A}_{12} and \mathbf{A}_{21} have rank k. What is the highest possible value for the rank of \mathbf{B}_{12} ?
(b) Suppose that $N=4 n$, and that we can write \mathbf{A} and \mathbf{B} as

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} & \mathbf{A}_{14} \\
\mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} & \mathbf{A}_{24} \\
\mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} & \mathbf{A}_{34} \\
\mathbf{A}_{41} & \mathbf{A}_{42} & \mathbf{A}_{43} & \mathbf{A}_{44}
\end{array}\right], \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{llll}
\mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{13} & \mathbf{B}_{14} \\
\mathbf{B}_{21} & \mathbf{B}_{22} & \mathbf{B}_{23} & \mathbf{B}_{24} \\
\mathbf{B}_{31} & \mathbf{B}_{32} & \mathbf{B}_{33} & \mathbf{B}_{34} \\
\mathbf{B}_{41} & \mathbf{B}_{42} & \mathbf{B}_{43} & \mathbf{B}_{44}
\end{array}\right]
$$

where each block is of size $n \times n$. Suppose further that $\mathbf{A}_{12}, \mathbf{A}_{21}, \mathbf{A}_{34}, \mathbf{A}_{43},\left[\begin{array}{ll}\mathbf{A}_{13} & \mathbf{A}_{14} \\ \mathbf{A}_{23} & \mathbf{A}_{24}\end{array}\right]$, and $\left[\begin{array}{ll}\mathbf{A}_{31} & \mathbf{A}_{32} \\ \mathbf{A}_{41} & \mathbf{A}_{42}\end{array}\right]$ all have rank k. What is the highest possible value for the rank of \mathbf{B}_{12} ?
(c) [Optional:] Consider the natural generalization to a matrix consisting of 8×8 blocks. What is the maximal rank of \mathbf{B}_{12} ? What about a matrix with $2^{p} \times 2^{p}$ blocks?

Please motivate your answers rigorously if you can.

