Homework set 2 — MATH 393C — Spring 2019

Due on Thursday March 7. Please hand in solutions to two problems of your choice in the set $\{3, 4, 5, 6\}$, as well as to problems 7 and 8.

Problem 1: Suppose that **A** is a real symmetric $n \times n$ matrix. Let $\{\mathbf{v}_j\}_{j=1}^n$ denote an orthonormal set of eigenvectors so that $\mathbf{A}\mathbf{v}_j = \lambda_j\mathbf{v}_j$ for some numbers λ_j . Let us use an ordering where $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. Define a sequence of vectors $\mathbf{x}_p = \mathbf{A}^p \mathbf{g}$, where **g** is an $n \times 1$ random vector whose entries are drawn independently from a standard Gaussian distribution.

- (a) Set $\beta = |\lambda_2|/|\lambda_1|$ and $\mathbf{y}_p = (1/\|\mathbf{x}_p\|)\mathbf{x}_p$. Assume $\lambda_1 = 1$ and $\beta < 1$. Prove that as $p \to \infty$, the vectors $\{\mathbf{y}_p\}$ converge either to \mathbf{v}_1 or $-\mathbf{v}_1$.
- (b) What is the speed of convergence of $\{\mathbf{y}_p\}$?
- (c) Assume again that $\beta < 1$, but now drop the assumption that $\lambda_1 = 1$. Prove that your answers in (a) and (b) are still correct, with the exception that if $\lambda_1 < 0$, then it is the vector $(-1)^p \mathbf{y}_n$ that converges instead.

Problem 2: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, J be an $n \times 1$ permutation vector, and $J_s = J(1:k)$ for some $k \in \mathbb{N}$. Now suppose that

(1)
$$\mathbf{A} = \mathbf{E} \quad \mathbf{F}, \\ m \times n \qquad m \times k \quad k \times n$$

and suppose that for some matrix **T** of size $k \times (n - k)$, it holds that

$$\mathbf{F}(:,J) = \mathbf{F}(:,J_s) \begin{bmatrix} \mathbf{I}_k & \mathbf{T} \end{bmatrix},$$

where \mathbf{I}_k is the $k \times k$ identity matrix. Prove that

$$\mathbf{A}(:,J) = \mathbf{A}(:,J_s) \begin{bmatrix} \mathbf{I}_k & \mathbf{T} \end{bmatrix}$$

Problem 3: Suppose that **A** is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_s and J_s such that the matrices

$$\mathbf{C} = \mathbf{A}(:, J_s), \quad \mathbf{R} = \mathbf{A}(I_s, :)$$

hold k columns/rows that span the column/row space of **A**. Then

$$\mathbf{A} \approx \mathbf{C} \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger} \mathbf{R}$$

and the optimal choice for the "U" factor in the CUR decomposition is

$$\mathbf{U} = \mathbf{C}^{\dagger} \mathbf{A} \mathbf{R}^{\dagger}$$

Set $\mathbf{X} = \mathbf{C}\mathbf{C}^{\dagger}$.

- (a) Suppose that **C** has the SVD $\mathbf{C} = \mathbf{W}\mathbf{D}\mathbf{V}^*$. Prove that $\mathbf{X} = \mathbf{W}\mathbf{W}^*$.
- (b) Suppose that **C** has the QR factorization CP = QS. Prove that $X = QQ^*$.
- (c) Prove that X is the orthogonal projection onto Col(C).
- (d) Suppose that **A** has precisely rank k and that **C** and **R** are both of rank k. Prove that then $C^{\dagger}AR^{\dagger} = (A(I_s, J_s))^{-1}$.

2

Problem 4: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have rank exactly k. In this problem, we will prove that \mathbf{A} admits a factorization $\mathbf{A} = \mathbf{A}(:, J_s)\mathbf{Z}$, where $\mathbf{A}(:, J_s) \in \mathbb{R}^{m \times k}$ and $\mathbf{Z} \in \mathbb{R}^{k \times n}$ such that $\mathbf{Z}(:, J_s) = \mathbf{I}_k$ and $\max_{i,j} |\mathbf{Z}(i, j)| \leq 1$.

- (a) case 1: m = k.
 - (a) Pick a permutation vector J_s such that $|\det(\mathbf{A}(:, J_s))|$ is maximized, and let J_r denote the remaining indices so that $[J_s \quad J_r]$ is some permutation of the vector $[1 \ 2 \ \cdots \ n]$. Then we have that

 $\mathbf{A}(:, \begin{bmatrix} J_s & J_r \end{bmatrix}) = \begin{bmatrix} \mathbf{A}(:, J_s) & \mathbf{A}(:, J_r) \end{bmatrix}$

can be written as **AP** for some permutation matrix **P**. Find an interpolative decomposition $\mathbf{A} = \mathbf{CZ}$ of **A**, where the columns of **C** are some of the columns of **A**. **C** and **Z** should be in terms of $\mathbf{A}(:, J_s)$, $\mathbf{A}(:, J_r)$, **P**, and the identity matrix **I**.

(b) Consider the matrix $\mathbf{T} = \mathbf{A}(:, J_s)^{-1}\mathbf{A}(:, J_r)$. If we can show that

(2)

$$\max_{i,j} |\mathbf{T}(i,j)| \le 1,$$

then we will be done with the case m = k (why?). Find a way to show (2) by applying Cramer's Rule to our definition of **T**.

Cramer's Rule: Consider the linear system Ax = b. The *i*-th entry of the solution x is given by

$$x_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})},$$

where A_i is matrix formed by replacing the *i*-th column of **A** with **b**.

(b) case 2: $m \ge k$.

Then A admits a factorization A = EF, where E is $m \times k$ and F is $k \times n$. Apply case 1 to F to show the result for this case (something we proved in a previous problem may help, too...).

Problem 5: The purpose of this exercise is to prove the equivalence of subspace iteration and the "power" version of the RSVD. Suppose you are given an $m \times n$ matrix **A** of rank at least k, and an $n \times k$ matrix **G** for which **AG** is of full rank. Then set

$\mathbf{Y} = (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\mathbf{G}$

for some positive integer q. Also define **Z** as the output of the iteration

$$\begin{aligned} \mathbf{Z} &\leftarrow \operatorname{orth}(\mathbf{AG}) \\ & \text{for } i = 1: q \\ & \mathbf{Z} \leftarrow \operatorname{orth}(\mathbf{A^*Z}) \\ & \mathbf{Z} \leftarrow \operatorname{orth}(\mathbf{AZ}) \end{aligned}$$

The output of orth(**A**) for a matrix **A** is a matrix **Z** with orthonormal columns such that $ran(\mathbf{Z}) = ran(\mathbf{A})$. Show that $ran(\mathbf{Y}) = ran(\mathbf{Z})$.

Problem 6: Let **R** be an $m \times n$ random matrix. Assume the entries of **R** are independent, and $\mathbb{E}[\mathbf{R}_{ij}] = 0$ and $\operatorname{Var}(\mathbf{R}_{ij}) = 1 \ \forall i, j$. Let $\mathbf{x} \in \mathbb{R}^n$. Show that $\mathbb{E}[\|\mathbf{R}\mathbf{x}\|^2] = m\|\mathbf{x}\|^2$.

Problem 7:

- (a) Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be tridiagonal, and let $\mathbf{x} \in \mathbb{R}^n$ be a given vector. Write a function $y = \text{solve_tridiag}(B, x)$ that computes the solution to $\mathbf{By} = \mathbf{x}$.
- (b) Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be tridiagonal. Write a function $[L, U] = LU_{\text{tridiag}}(B)$ that computes the LU factorization of \mathbf{B} .
- (c) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be semi-separable, and let $\mathbf{y} \in \mathbb{R}^n$ be a given vector. Write a function $\mathbf{x} = \text{solve}_{SS}(\mathbf{A}, \mathbf{y})$ that computes the solution to $\mathbf{A}\mathbf{x} = \mathbf{y}$.
- (d) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be semi-separable. Write a function $\mathbb{B} = \text{inv}_S (\mathbb{A})$ that computes the inverse of \mathbf{A} .
- (e) Verify that all your functions have linear complexity through numerical experiments. In other words, measure the execution time t_n required to solve the problem, and plot t_n against n. (Or, even better, plot t_n/n against n.)

You need to use data-efficient formats to represent the matrices. For instance, you could represent a semiseparable matrix A using four vectors a, b, c, d such that

$$\mathbf{A}(i,j) = \begin{cases} a(i)b(j), & \text{for } i \leq j, \\ c(i)d(j), & \text{for } i \geq j. \end{cases}$$

Ensure that you pick vectors that satisfy a(i)b(i) = c(i)d(i). Or, even better, specify just three vectors and compute the dependent variable on the fly. A tridiagonal matrix, can be specified by giving the three vectors that hold the

$\begin{bmatrix} 0 & 0 & e_3 & f_4 \cdots \\ \vdots & \vdots & \vdots \end{bmatrix}$	diagonal and the offdiagonal entries. For instance, the matrix $\mathbf{A} =$	$\begin{array}{c}f_1\\e_1\\0\\0\\\vdots\end{array}$	$\begin{array}{c}g_1\\f_2\\e_2\\0\\\vdots\end{array}$	0 g_2 f_3 e_3 \vdots	$0 \\ 0 \\ g_3 \\ f_4 \cdots \\ \vdots$	····	is specified by
--	---	---	---	--------------------------------	---	------	-----------------

giving just the vectors \mathbf{e} , \mathbf{f} , \mathbf{g} .

Write the functions as simple for loops in your first implementation. Then see if you can accelerate them using more efficient programming techniques. (Using, for instance, built-in routines for sparse operations.)

Various pathological cases may arise that involve division by zero. You are welcome to disregard this, and just assume that no divisions by zero happen.

Problem 8: In this problem, n and k are positive integers such that k < n, **A** is an $N \times N$ invertible matrix, and **B** = **A**⁻¹. Let us further assume that every diagonal block of **A** is invertible.

(a) Suppose that N = 2n, and that we can write **A** and **B** as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix},$$

where each block is of size $n \times n$. Suppose further that A_{12} and A_{21} have rank k. What is the highest possible value for the rank of B_{12} ?

(b) Suppose that N = 4n, and that we can write **A** and **B** as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} & \mathbf{A}_{14} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} & \mathbf{A}_{24} \\ \mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} & \mathbf{A}_{34} \\ \mathbf{A}_{41} & \mathbf{A}_{42} & \mathbf{A}_{43} & \mathbf{A}_{44} \end{bmatrix}, \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{13} & \mathbf{B}_{14} \\ \mathbf{B}_{21} & \mathbf{B}_{22} & \mathbf{B}_{23} & \mathbf{B}_{24} \\ \mathbf{B}_{31} & \mathbf{B}_{32} & \mathbf{B}_{33} & \mathbf{B}_{34} \\ \mathbf{B}_{41} & \mathbf{B}_{42} & \mathbf{B}_{43} & \mathbf{B}_{44} \end{bmatrix},$$

where each block is of size $n \times n$. Suppose further that $\mathbf{A}_{12}, \mathbf{A}_{21}, \mathbf{A}_{34}, \mathbf{A}_{43}, \begin{bmatrix} \mathbf{A}_{13} & \mathbf{A}_{14} \\ \mathbf{A}_{23} & \mathbf{A}_{24} \end{bmatrix}, \text{ and } \begin{bmatrix} \mathbf{A}_{31} & \mathbf{A}_{32} \\ \mathbf{A}_{41} & \mathbf{A}_{42} \end{bmatrix}$
all have rank k . What is the highest possible value for the rank of \mathbf{B}_{12} ?

(c) [Optional:] Consider the natural generalization to a matrix consisting of 8×8 blocks. What is the maximal rank of B_{12} ? What about a matrix with $2^p \times 2^p$ blocks?

Please motivate your answers rigorously if you can.