
CHAPTER 1

A simple direct solver for integral equations

1.1. Broader context of solvers for discretized integral equations

In the past several chapters, we have investigated techniques for formulating a physical problem such as
electro-statics or acoustic scattering in the form of an integral equation such as

(1.1) α q(x) +

∫
Γ
K(x,y) q(y) ds(y) = f(x), x ∈ Γ.

This is in contrast to the perhaps more common methodology of formulating the problem as a partial differ-
ential equation. Having obtained an integral equation, we saw in Chapter ? how to discretize the problem
to convert a continuum equation such as (1.1) to a linear system such as

(1.2) Aq = f.

Since the coefficient matrix A will be dense, simplistic solvers such as Gaussian elimination will have cubic
complexity, which limits their use to very small problem sizes. Standard practice in applications is then to
switch to an iterative solver, whose cost will typically scale as

Tsolve ≈ Niter × Tmatvec,

whereNiter is the number of iterations required for convergence and Tmatvec is the time required for applying
A to a vector. When the underlying BIE is a Fredholm equation of the second kind,Niter is often small, since
the matrix A in this case tends to be well conditioned. The cost Tmatvec of applying A can in most common
environments be accelerated from the O(N2) cost of forming and applying A directly to the linear or close
to linear complexity of fast summation schemes such as the FMM or the H-matrix framework. (In practice,
BIE formulations often give accurate results for N small enough that acceleration schemes are not used.)

The use of iterative methods to solve (1.2) is well established at this point, and we refer to the textbooks
[4] and [1], and the survey [5] for additional details. We remark that in order to attain fast convergence
in practice, it is often necessary to introduce preconditioners, which may complicate the implementation
substantially.

As an alternative to iterative solvers accelerated by fast summation methods, there also exist accelerated
direct solvers whose complexity is in many environments also linear. Such direct solvers have an advantage
in that their execution time is not held hostage to the speed of convergence, and that they work without the
need for specialized pre-conditioners. As we discussed in the introduction, a direct solver can typically
be viewed as consisting of a “build stage” where an approximate inverse B of the coefficient matrix A is
built, and then for each given data vector f , a “solve stage” where the approximate solution uapprox = Bf is
computed. As the solve stage is typically very fast, direct solvers are particularly compelling in situations
where a sequence of linear systems involving the same coefficient matrix need to be solved. On the other
hand, the build stage is for problems in 3D typically quite slow, which tends to make iterative solvers run
faster in situations where only a single solve is performed for each coefficient matrix, and where convergence
is fast.

Over the next few chapters, we will engage with some of the core ideas underlying accelerated direct
solvers for boundary integral equations. In this first chapter (Chapter 1), we will develop a simple single-level
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scheme that requires minimal data-structures while introducing the essential concepts. Chapter 2 describes
how the complexity of the solver can be improved dramatically by moving to a full hierarchical domain
decomposition. (In Chapters 1 and 2, we closely follow the presentation in [2].) Chapter 3 explores some
issues related to the particular rank structured data format we introduce in Chapters 1 and 2, and describe
how it relates to the HODLR format of the introduction and to other popular formats. Chapter 4 describes
how the interpolative decomposition provides a powerful tool for accelerating and simplifying direct solvers
for BIEs. In Chapter 5, we describe how to build the data-sparse representation of the coefficient matrix in
the first place.

A reader who wishes to focus on the high level concepts and does not intend to actually implement the
methods may want to start with Chapters 1 and 2, and then Sections 4.3 and 5.1.

Throughout this chapter, we consider the BIE (1.1) for the case where Γ is the boundary of a domain
Ω in two or three dimensions. We typically have in mind a linear system (1.2) obtained from a Nyström
discretization based on a set of interpolation points {xi}Ni=1 and weights {wi}Ni=1, as described in Chapter ?.
However, many of the techniques described apply equally well to other discretization schemes (collocation,
BEM, etc.).

1.2. Block separable matrices

To introduce a simple direct solver, let A denote the N × N dense coefficient matrix in (1.2). Let us
tessellate it into p× p blocks, so that

(1.3) A =


D1 A1,2 A1,3 · · · A1,p

A2,1 D2 A2,3 · · · A2,p
...

...
...

...
Ap,1 Ap,2 Ap,3 · · · Dp

 .
For simplicity, let us suppose that each block is of the same size n× n. (There is no difficulty in letting the
block sizes vary, other than the need to introduce a more unwieldy notational machinery.) In this section, we
will demonstrate that when a matrix A can be tesselated as in (1.3) in such a way that all off-diagonal blocks
satisfy a certain low-rank condition, then there is a simple formula that allows us to compute the inverse of
A efficiently. To be precise, the first condition that we need is that there should be some “small” number k
that serves as an upper bound for the ranks of all the off-diagonal blocks. We additionally assume that there
exist some basis matrices {Uκ}pκ=1 and {Vκ}pκ=1 such that each off-diagonal block Aσ,τ of A admits the
factorization

(1.4) Aσ,τ = Uσ Ãσ,τ V∗τ , σ, τ ∈ {1, 2, . . . , p}, σ 6= τ.
n× n n× k k × k k × n

Note that this is stronger than merely assuming that the rank of each matrix is bounded by k. Specifically,
the columns of Uσ must form a basis for the columns of every off-diagonal block in row σ, and analogously,
the columns of Vτ must form a basis for the rows in every the off-diagonal blocks in column τ .

When (1.4) holds, the matrix A admits a block factorization

(1.5) A = U Ã V∗ + D,
pn× pn pn× pk pk × pk pk × pn pn× pn

where

U = diag(U1, U2, . . . , Up), V = diag(V1, V2, . . . , Vp), D = diag(D1, D2, . . . , Dp),
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and

Ã =


0 Ã12 Ã13 · · ·

Ã21 0 Ã23 · · ·
Ã31 Ã32 0 · · ·

...
...

...

 .
The block structure of formula (1.5) for p = 4 is illustrated below:

A = U Ã V∗ + D,

The point here is that (1.5) expresses A as a sum of two terms, where the first term (the product UÃV∗) is of
low rank, and the second term (the block diagonal matrix D) is easy to invert. This is exactly the framing for
the well-known Woodbury formula for inverting a low rank perturbation of a matrix. For the specific split in
(1.5), the relevant formula takes the following form:

LEMMA 1.1 (Variation of Woodbury). Suppose that A is an invertibleN×N matrix, thatK is a positive
integer smaller than N , and that A admits the factorization

(1.6) A = U Ã V∗ + D.
N ×N N ×K K ×K K ×N N ×N

Then

(1.7) A−1 = E
(
Ã + D̂

)−1
F∗ + G,

N ×N N ×K K ×K K ×N N ×N
where

D̂ =
(
V∗D−1 U

)−1
,(1.8)

E = D−1 U D̂,(1.9)

F = (D̂ V∗D−1)∗,(1.10)

G = D−1 −D−1 U D̂ V∗D−1,(1.11)

provided all inverses that appear in the formulas exist.

PROOF. Fix an f ∈ RN and set q = A−1f . Then

(1.12) Aq = f.

Furthermore, set

(1.13) q̃ = V∗q.

Combining (1.6), (1.12), and (1.13) we get a linear system[
D UÃ
−V∗ I

] [
q
q̃

]
=

[
f
0

]
.

Eliminating q̃ via a Schur complement, we find an equation for q̃ as follows:

(1.14)
(
I + V∗D−1UÃ

)
q̃ = V∗D−1f.

Multiply both sides of (1.14) by D̂ = (V∗D−1U)−1 to get

(1.15)
(
D̂ + Ã

)
q̃ = D̂V∗D−1f.
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Solving (1.15) for q̃, we get

(1.16) q̃ =
(
D̂ + Ã

)−1
D̂V∗D−1f.

Finally, we can express q as follows

q = D−1f −D−1UÃq̃ (use relation (1.15) to eliminate Ãq̃)

= D−1f −D−1U
(
D̂V∗D−1f − D̂q̃

)
(use relation (1.16) to eliminate q̃)

=
(
D−1 −D−1UD̂V∗D−1

)︸ ︷︷ ︸
=G

f + D−1UD̂︸ ︷︷ ︸
=E

(
D̂ + Ã

)−1
D̂V∗D−1︸ ︷︷ ︸

=F∗

f.

Since q was defined via q = A−1f , this completes the proof. �

When Lemma 1.1 is applied to (1.5), the computed inverse takes the form

A−1 = E (Ã + D̂)−1 F∗ + G.
p n× p n pn× p k p k × p k p k × p n pn× p n

Now observe that the matrices D̂, E, F, and G are cheap to form since all matrices used to construct them
are block diagonal. This means that Lemma 1.1 reduces the task of inverting the large (size pn× pn) matrix
A to the task of inverting the small (size pk × pk) matrix Ã + D̂.

Let us observe that Lemma 1.1 does not say anything about the stability of the inversion formula. When
A is positive symmetric definite and U is orthonormal, it is possible to show that the intermediate matrices
are no worse conditioned than A itself, see Section 3.2, or [2, Sec. 3]. For general A, no such guarantees can
hold (indeed, one can construct arbitrarily ill-conditioned counter examples).

REMARK 1.1. The version of the Woodbury formula we use here is slightly unusual. A more formulation
is

(1.17)
(
D + UÃV∗

)−1
= D−1 −D−1U

(
Ã
−1

+ V∗D−1U
)−1

V∗D−1.

The problem with the formula (1.17) is that it involves the inverse of Ã, which is not block diagonal, and is
in our applications often not invertible. To get around this difficulty, we use the matrix identity

(1.18)
(
X−1 + Y−1

)−1
= Y − Y

(
X + Y

)−1
Y,

which is valid for any two equi-sized square matrices X and Y for which all inverses exist. Lemma 1.1 now
results if we set X = Ã and with Y = D̂ =

(
V∗D−1U

)−1 in (1.18), and insert the result in the classic
Woodbury formula (1.17).

1.3. Asymptotic complexity of the Woodbury formula for a block separable matrix

Suppose that we are given a block separable matrix A consisting of p × p blocks, each of size n × n,
with block rank k. Let us further assume that we are given the factors in a BS factorization. Then in order to
apply the formula (1.7), we need to first compute the block diagonal matrices D̂, E, F, and G. Each matrix
holds p diagonal blocks, and in order to form each diagonal block operations on matrices of size at most
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n× n are carried out, so this cost scales as pn3. Then the pk× pk matrix Ã + D̂ needs to be inverted. Since
this matrix is dense, the total cost T works out to be

T ∼ pn3 + (pk)3.

In applications, we are typically given a fixed matrix A, and are free to choose an optimal tessellation.
Finding the optimal choice is a slightly complicated question since the rank k in general depends on the size
of the blocks. However, the dependence is sometimes weak, as happens for instance for matrices arising
from discretizing a BIE on a curve in the plane. Let us for simplicity suppose that k is fixed. Then what is
the optimal choice of p? First observe that in this scenario, n = N/p, so we would have

T ∼ p (N/p)3 + (pk)3 ∼ p−2N3 + p3k3.

Differentiating with respect to p, and setting the derivative to zero, we find that the optimal choice is p ∼
(N/k)3/5, which then leads to

T ∼ N3p−2 + k3p3 ∼ N3(N/k)−6/5 + k3(N/k)9/5 ∼ N9/5k6/5.

We see that the complexity is slightly better than quadratic, which is a substantial improvement over the
cubic complexity of standard Gaussian elimination of a dense system.

1.4. How to compute a block separable representation of a matrix

Let us close this chapter by briefly discussing how to obtain the factors in a factorization such as (1.4).
To do this, we first need to write down a precise definition for the type of rank-structured matrix we have
encountered in this section:

DEFINITION 1. Let A be an N ×N matrix, let I = 1 : N be its full index vector, and let

(1.19) I = I1 ∪ I2 ∪ · · · ∪ Ip
be a disjoint partition of I . We then say that A has block rank k with respect to this partition if there exist
matrices {Uκ}pκ=1 and {Vκ}pκ=1 such that each off-diagonal block of A admits a factorization

(1.20) A(Iσ, Iτ ) = Uσ Ãσ,τ V∗τ , σ, τ ∈ {1, 2, . . . , p}, σ 6= τ.
nσ × nτ nσ × k k × k k × nτ

where nτ is the length of Iτ .

We informally say that a matrix is block separable (BS) if its block rank is “small”. In practical appli-
cations, most matrices that we are interested in have off-diagonal blocks that are only of low-rank to within
some preset tolerance ε. We will allow ourselves to refer to such a matrix as being block-separable, although
one should perhaps to be strict refer to such a matrix as “block separable to precision ε”.

Let us now consider the question of how to compute the basis matrices {Uτ} and {Vτ}, given a matrix
A and a partition (1.19) of the index vector. For any given τ , the columns of the basis matrix Uτ must span
the columns of every block Aτ,σ for which σ 6= τ . In other words, the columns of Uτ must span all the
columns in the matrix

A(Iτ , I
c
τ ) =

[
Aτ,1, Aτ,2, . . . , Aτ,τ−1, Aτ,τ+1, . . . , Aτ,p

]
,

where Ic
τ = (1 : N)\Iτ . We can solve this task using an SVD as follows:

(1.21) [Uτ ,Xτ ,Yτ ] = svd(A(Iτ , I
c
τ ), k).

We could then in principle compute all the Vτ matrices in a similar fashion, and then compute Ãσ,τ =
U∗σA(Iσ, Iτ )Vτ for every off-diagonal block. This would be a bit wasteful, however. It turns out to be
possible to use the output of the SVD in (1.21) as input for a compression procedure that computes both the
Vτ matrices, and all matrices Ãσ,τ in one go. We leave the details as an exercise.
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In Chapter 5 we describe compression techniques that apply specifically when a BS matrix arises from
the discretization of a boundary integral operator. In this case, there turns out to be no need to form the entire
matrix, and the compression procedure ends up having complexity that scales linearly withN (assuming that
the block size n is kept fixed while the number of blocks p→∞).
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CHAPTER 2

A multilevel scheme

The scheme described in Chapter 1 is quite a powerful numerical tool in its own right, but it cannot
reach optimal computational complexity. In this chapter, we will show how to apply the method recursively
to attain linear, or close to linear, complexity for many problems of high importance in applications. The key
observation is that the matrix Ã + D̂ that needs to be inverted in the Woodbury formula (1.7) in Lemma 1.1
is itself often block separable, and can be compressed again. We refer to a matrix that admits a hierarchial
structure of block separable matrices as a Hierarchically Block Separable (HBS) matrix.

2.1. Heuristic description

For a matrix to be hierarchically block separable (HBS), it must first of all be block separable, as defined
in Section 1.2. To informally introduce the key concept, let us consider a matrix A that consists of 8 × 8
blocks, so that cf. (1.5):

(2.1)

A = U(3) Ã
(3)

(V(3))∗ + D(3)

The superscripts on the right-hand side of (2.1) indicate that the factorization is at what we call “level 3” (the
motivation for this labeling should become clear once we reach equation (2.4)). We next require the smaller
matrix Ã

(3)
to be BS, and to admit the analogous factorization:

(2.2)

Ã
(3)

= U(2) Ã
(2)

(V(2))∗ + B(2)

In forming (2.2), we reblocked the matrix Ã
(3)

by merging blocks in groups of four. The purpose is to
“reintroduce” rank deficiencies in the off-diagonal blocks. In the final step in the hierarchy, we require that
upon reblocking, Ã

(2)
is BS and admits a factorization:

(2.3)
Ã

(2)
= U(1) Ã

(1)
(V(1))∗ + B(1)

Combining (2.1), (2.2), and (2.3), we find that A can be expressed as

(2.4) A = U(3)
(
U(2)

(
U(1) B(0) (V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ + D(3).
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Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

FIGURE 2.1. Numbering of nodes in a fully populated binary tree with L = 3 levels. The
root is the original index vector I = I1 = [1, 2, . . . , 400].

The block structure of the right hand side of (2.4) is:

U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3).

In other words, the HBS property lets us completely represent a matrix in terms of certain block diagonal
factors. The total cost of storing these factors is O(Nk), and the format is an example of a so-called “data-
sparse” representation of the matrix.

2.2. Tree structure

The HBS representation of an N × N matrix A is based on a partition of the index vector I =
[1, 2, . . . , N ] into a binary tree structure. For simplicity, we limit attention to binary tree structures in
which every level is fully populated. We let I form the root of the tree, and give it the index 1, I1 = I . We
next split the root into two roughly equi-sized vectors I2 and I3 so that I1 = I2 ∪ I3. The full tree is then
formed by continuing to subdivide any interval that holds more than some preset fixed number n of indices.
We use the integers ` = 0, 1, . . . , L to label the different levels, with 0 denoting the coarsest level. A leaf
is a node corresponding to a vector that never got split. For a non-leaf node τ , its children are the two boxes
α and β such that Iτ = Iα ∪ Iβ , and τ is then the parent of α and β. Two boxes with the same parent are
called siblings. These definitions are illustrated in Figure 2.1

REMARK 2.1. The HBS format works with a broad range of different tree structures. It is permissible to
split a node into more than two children if desirable, to distribute the points in an index set unevenly among
its children, to split only some nodes on a given level, etc. This flexibility is essential when A approximates a
non-uniformly discretized integral operator; in this case, the partition tree it constructed based on a geomet-
ric subdivision of the domain of integration. The spatial geometry of a box then dictates whether and how it
is to be split.

2.3. Definition of the HBS property

We are now prepared to rigorously define what it means for an N × N matrix A to be hierarchically
block seperable with respect to a given binary tree T that partitions the index vector J = [1, 2, . . . , N ]. We
suppose that the tree has L fully populated levels, and that for every leaf node τ , the index vector Iτ holds
precisely n points, so thatN = n 2L. Then A is HBS with block rank k if the following two conditions hold:
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Name: Size: Function:
For each leaf Dτ n× n The diagonal block A(Iτ , Iτ ).
node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .
For each parent Bτ 2k × 2k Interactions between the children of τ .
node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

FIGURE 2.2. An HBS matrix A associated with a tree T is fully specified if the factors
listed above are provided.

(1) Assumption on ranks of off-diagonal blocks at the finest level: For each pair of distinct leaf nodes τ and
τ ′, let us define the matrix Aτ,τ ′ via

(2.5) Aτ,τ ′ = A(Iτ , Iτ ′).

We then require that each such matrix has rank k, and can be factorized as

(2.6) Aτ,τ ′ = Uτ Ãτ,τ ′ V∗τ ′ .
n× n n× k k × k k × n

(2) Assumption on ranks of off-diagonal blocks on level ` = L − 1, L − 2, . . . , 1: The rank assumption at
level ` is defined in terms of the blocks constructed on the next finer level `+ 1: For any distinct nodes τ and
τ ′ on level ` with children α, β and α′, β′, respectively, define

(2.7) Aτ,τ ′ =

[
Ãα,α′ Ãα,β′

Ãβ,α′ Ãβ,β′

]
.

We then require that each such matrix has rank k, and can be factorized as

(2.8) Aτ,τ ′ = Uτ Ãτ,τ ′ V∗τ ′ .
2k × 2k 2k × k k × k k × 2k

The two points above complete the definition. An HBS matrix is now fully described if the basis matrices
Uτ and Vτ are provided for each node τ , and in addition, we are for each leaf τ given the n× n matrix

(2.9) Dτ = A(Iτ , Iτ ),

and for each parent node τ with children α and β we are given the 2k × 2k matrix

(2.10) Bτ =

[
0 Ãα,β

Ãβ,α 0

]
.

Observe in particular that the matrices Ãα,β are only required when {α, β} forms a sibling pair. Figure 2.2
summarizes the required matrices.

2.4. Telescoping factorizations

In the heuristic description of the HBS property in Section 2.1, we claimed that any HBS matrix can
be expressed as a telescoping factorization with block diagonal factors. We will now formalize this claim.
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Given the matrices defined in Section 2.3 (and summarized in Figure 2.2), we define the following block
diagonal factors:

D(`) = diag(Dτ : τ is a box on level `), ` = 0, 1, . . . , L,(2.11)

U(`) = diag(Uτ : τ is a box on level `), ` = 1, 2, . . . , L,(2.12)

V(`) = diag(Vτ : τ is a box on level `), ` = 1, 2, . . . , L,(2.13)

B(`) = diag(Bτ : τ is a box on level `), ` = 0, 1, . . . , L− 1, .(2.14)

Furthermore, we let Ã
(`)

denote the block matrix whose diagonal blocks are zero, and whose off-diagonal
blocks are the blocks Ãτ,τ ′ for all distinct τ, τ ′ on level `. With these definitions,

(2.15) A = U(L) Ã
(L)

(V(L))∗ + D(L);
n 2L × n 2L n 2L × k 2L k 2L × k 2L k 2L × n 2L n 2L × n 2L

for ` = L− 1, L− 2, . . . , 1 we have

(2.16) Ã
(`+1)

= U(`) Ã
(`)

(V(`))∗ + B(`);
k 2`+1 × k 2`+1 k 2`+1 × k 2` k 2` × k 2` k 2` × k 2`+1 k 2`+1 × k 2`+1

and finally

(2.17) Ã
(1)

= B(0).

REMARK 2.2 (Matrix-vector multiplication). The telescoping factorizations in Section 2.4 easily trans-
late into a formula for evaluating the matrix-vector product u = Aq once all factors in an HBS representa-
tion have been provided. Under the assumption that the tree is refined all the way do where the number of
nodes in each leaf is comparable to the interactions ranks (so that n = O(k)), the asymptotic complexity of
the matrix-vector multiplication is O(Nk). This operation is summarized in Figure 2.3.

2.5. Inversion of hierarchically block separable matrices

We are now ready to describe in detail how to invert an HBS matrix. The inversion algorithm turns
out to be remarkably simple, as can be seen by peeking ahead at Figure 2.4. Moreover, as long as all
intermediate matrices that need to be inverted are non-singular, the inversion formula is exact up to floating
point arithmetic.

Technically, the scheme consists of recursive application of Lemma 1.1, and its derivation is given in the
proof of the following theorem, cf. [2, Thm. 5.1].

THEOREM 2.1. Let A be an invertibleN×N HBS matrix with block-rank k. Suppose that the associated
tree structure is uniform, and that each leaf box holds at mostO(k) nodes. Then a data-sparse representation
of A−1 that is exact up to rounding errors can be computed in O(Nk2) operations via the process outlined
in Figure 2.4, provided that none of the matrices that need to be inverted is singular. The computed inverse
can be applied to a vector in O(Nk) operations via the algorithm in Figure 2.5.

Proof: We can according to equation (2.15) express an HBS matrix as

A = U(L) Ã
(L)

(V(L))∗ + D(L).

Lemma 1.1 immediately applies, and we find that

(2.18) A−1 = E(L)
(
Ã

(L)
+ D̂

(L))−1
(F(L))∗ + G(L),

where D̂
(L)

, E(L), F(L), and G(L) are defined via (1.8), (1.9), (1.10), and (1.11).
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loop over all leaf boxes τ
q̂τ = V∗τ q(Iτ ).

end loop

loop over levels, finer to coarser, ` = L− 1, L− 2, . . . , 1
loop over all parent boxes τ on level `,

Let α and β denote the children of τ .

q̂τ = V∗τ

[
q̂α
q̂β

]
.

end loop
end loop

û1 = 0
loop over all levels, coarser to finer, ` = 1, 2, . . . , L− 1

loop over all parent boxes τ on level `
Let α and β denote the children of τ .[

ûα
ûβ

]
= Uτ ûτ +

[
0 Bα,β

Bβ,α 0

] [
q̂α
q̂β

]
.

end loop
end loop

loop over all leaf boxes τ
u(Iτ ) = Uτ ûτ + Dτ q(Iτ ).

end loop

FIGURE 2.3. The HBS matrix-vector multiplication. Given a vector q and a matrix A in
HBS format, compute u = Aq.

To move to the next coarser level, we set ` = L− 1 in formula (2.16) whence

(2.19) Ã
(L)

+ D̂
(L)

= U(L−1) Ã
(L−1)

(V(L−1))∗ + B(L−1) + D̂
(L)
.

We define

D̃
(L−1)

= B(L−1) + D̂
(L)

=



D̂τ1 Bτ1τ2 0 0 0 0 · · ·
Bτ1τ2 D̂τ2 0 0 0 0 · · ·

0 0 D̂τ3 Bτ3τ4 0 0 · · ·
0 0 Bτ3τ4 D̂τ4 0 0 · · ·
0 0 0 0 D̂τ5 Bτ5τ6 · · ·
0 0 0 0 Bτ5τ6 D̂τ6 · · ·
...

...
...

...
...

...


,

where {τ1, τ2, . . . , τ2L} is a list of the boxes on level L. Equation (2.19) then takes the form

(2.20) Ã
(L)

+ D̂
(L)

= U(L−1) Ã
(L−1)

(V(L−1))∗ + D̃
(L−1)

.

(We note that in (2.20), the terms on the left hand side are block matrices with 2L × 2L blocks, each of size
k × k, whereas the terms on the right hand side are block matrices with 2L−1 × 2L−1 blocks, each of size
2k × 2k.) Now Lemma 1.1 applies to (2.20) and we find that(

Ã
(L)

+ D̂
(L))−1

= E(L−1)
(
Ã

(L−1)
+ D̂

(L−1))−1
(F(L−1))∗ + G(L−1),

11



loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all boxes τ on level `,

if τ is a leaf node
D̃τ = Dτ

else
Let α and β denote the children of τ .

D̃τ =

[
D̂α Bα,β

Bβ,α D̂β

]
end if
D̂τ =

(
V∗τ D̃

−1
τ Uτ

)−1.
Eτ = D̃

−1
τ Uτ D̂τ .

F∗τ = D̂τ V∗τ D̃
−1
τ .

Gτ = D̂τ − D̃
−1
τ Uτ D̂τ V∗τ D̃

−1
τ .

end loop
end loop

G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.

FIGURE 2.4. Inversion of an HBS matrix.

where D̂
(L−1)

, E(L−1), F(L−1), and G(L−1) are defined via (1.8), (1.9), (1.10), and (1.11).

The process by which we went from step L to step L − 1 is then repeated to move up to coarser and
coarser levels. With each step, the size of the matrix to be inverted is cut in half. Once we get to the top
level, we are left with the task of inverting the matrix

(2.21) Ã
(1)

+ D̂
(1)

=

[
D̂2 B2,3

B3,2 D̂3

]
The matrix in (2.21) is of size 2k × 2k, and we use brute force to evaluate

G(0) = G1 =

[
D̂2 B2,3

B3,2 D̂3

]−1

.

The proof that the asymptotic cost of the method is O(Nk2) is given in Section 2.6.1. �

REMARK 2.3. The HBS inversion algorithm in Figure 2.4 provides four formulas for the matrices
{Eτ , Fτ , Gτ , D̂τ}τ . The task of actually computing the matrices can be accelerated in two ways: (1) Sev-
eral of the matrix-matrix products in the formulas are recurring, and the computation should be organized
so that each matrix-matrix product is evaluated only once. (2) When interpolatory decompositions are used,
multiplications involving the matrices Uτ and Vτ can be accelerated by exploiting that they each contain a
k × k identity matrix.

REMARK 2.4. The assumption in Theorem 2.1 that none of the matrices to be inverted is singular is
undesirable. When A is spd, this assumption can be done away with (cf. Corollary 3.1), and it can further
be proved that the inversion process is numerically stable.

2.6. Asymptotic complexity of the Woodbury formula for an HBS matrix

It is time to estimate the asymptotic cost of the HBS inversion scheme summarized in Figure 2.4. We
start in Section 2.6.1 by analyzing the case where the interaction ranks are the same at every level in the

12



loop over all leaf boxes τ
ûτ = F∗τ u(Iτ ).

end loop

loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
loop over all parent boxes τ on level `,

Let α and β denote the children of τ .

ûτ = F∗τ

[
ûα
ûβ

]
.

end loop
end loop[

q̂2

q̂3

]
= Ĝ1

[
û2

û3

]
.

loop over all levels, coarser to finer, ` = 1, 2, . . . , L− 1
loop over all parent boxes τ on level `

Let α and β denote the children of τ .[
q̂α
q̂β

]
= Eτ ûτ + Gτ

[
ûα
ûβ

]
.

end loop
end loop

loop over all leaf boxes τ
q(Iτ ) = Eτ q̂τ + Gτ u(Iτ ).

end loop

FIGURE 2.5. Application of the inverse of an HBS matrix. Given a vector u, compute
q = A−1 u using the compressed representation of A−1 resulting from the algorithm in
Figure 2.4.

hierarchy, which is the basic assumption underlying the entire discussion so far in this chapter. In Sections
2.6.2 and 2.6.3, we then analyze the cases where the interaction ranks increase as the sizes of the boxes grow.

Throughout this section, we stick with the assumption that the tree is uniform, that it has L levels, and
that there are roughly equally many nodes in each leaf box.

2.6.1. Constant interaction ranks. Let us assume that there is a uniform upper bound k on the HBS
rank of all boxes at all levels, conforming to the assumption in Theorem 2.1 Let us further assume that each
leaf box holds at most 2k nodes (the argument of course remains unchanged for O(k) nodes in each leaf
box).

We first consider the cost of constructing the matrices D̂τ , Eτ , Fτ , Gτ for all boxes τ on a fixed level `.
To construct one of these matrices, we must perform dense matrix algebra (matrix-matrix multiply, matrix
inversion, etc.) on matrices of size at most 2k × 2k. Since there are 2` nodes on level `, we find:

cost of processing level ` ∼ 2` k3.

Now sum over all the L levels to find

total cost ∼
L∑
`=1

2` k3 ∼ 2L k3.

13



↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster

FIGURE 2.6. Cartoon of the hierarchical compression strategy described in Section 2.5.
Gray blocks represent the matrices D̂τ . These must be explicitly constructed. All black
blocks represent sub-matrices of the original matrix.

Finally observe that since there are 2L leaf boxes, and each leaf box holds about 2k points, we have N ≈
2L+1k. In consequence, the total cost of the inversion procedure is O(Nk2).

2.6.2. Logarithmic growth of interaction ranks. Let us next suppose that the rank of a block is pro-
portional to the logarithm of the number of nodes in the block. This is often a realistic assumption for a
matrix A arising from discretization of a boundary integral operator on a contour in the plane. If we let
n denote the number of nodes in a leaf box, we find that there are 2(L−`)n nodes in a box at level `, and
consequently the interaction rank k` at level ` would satisfy

k` ∼ log(n2(L−`)) = log(n) + (L− `) log(2).

Since there are (N/n)2(L−`) boxes at level `, we then find a total cost

T ∼
L∑
`=1

N

n
2(`−L)

(
log(n) + (L− `) log(2)

)3 ∼ N

n

L−1∑
j=0

2−j
(
log(n) + j log(2)

)3 ∼ N

n
(log(n))3.

The last similarity holds since

L−1∑
j=0

2−j
(
log(n) + j log(2)

)3 ≤ ∞∑
j=0

2−j
(
log(n) + j log(2)

)3
=

∞∑
j=0

2−j
(
log(n)3 + 3 log(n)2j log(2) + 3 log(n)j2 log(2)2 + j3 log(2)3

)
,

and in each term, the polynomial growth in j does not prevent that fast exponential decay from making the
sum converge. Since we may pick n = O(1), it follows that the total cost is O(N) in this case as well. See
[6, 2, 3] for details.

2.6.3. Algebraic growth of interaction ranks. As our final case, let us suppose that the ranks grow as
a power of the number of nodes in a box. To be precise, let m` denote the number of nodes in a box at level

14



Γ = Γ1 Γ2Γ3 Γ4

Γ5

Γ6

Γ7

FIGURE 2.7. Hej

` so that m` ∼ N2−`, and then suppose that the interaction ranks k` at level ` satisfy

k` ∼ mα
` ,

for some α ∈ (0, 1). The total computational cost is then

T ∼
L∑
`=0

2`m3
` ∼

L∑
`=0

2`(N2−`)3 ∼ N3α
L∑
`=0

2`(1−3α) ∼ {Set β = 2(1−3α)} ∼ N3α
L∑
`=0

β`.

We see that the cost estimate is a geometric sum that is dominated either by the root computation or by the
leaf computation, depending on whether β is smaller or larger than 1. We get three cases:

α > 1/3: Now β > 1, the sum is dominated by the root, and T ∼ N3α.

α = 1/3: Now β = 1, and T ∼ NL ∼ N logN .

α < 1/3: Now β < 1, the sum is dominated by the leaves, and T ∼ N , since we may pick n = O(1).

2.7. A numerical example

To close this chapter, let us check what the HBS ranks actually turn out to be for typical BIEs associated
with a contour Γ in two dimension. We consider the simple geometry shown in Figure 2.7, and the two
integral operators

[Cσ](x) =

∫
Γ

(
d(x,y) + s(x,y)

)
σ(y) ds(y),(2.22)

[Cκσ](x) =

∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y) ds(y),(2.23)

where s and d are the single and double layer kernels associated with the Laplace equation, and where sκ
and dκ are the corresponding kernels associated with the Helmholtz equation. We build a matrix A by
discretizing either (2.22) or (2.23) using a Nyström scheme associated with a panel based quadrature with
40 panels, with 10 Lagrangian interpolation nodes on each panel, so that the matrix ends up being of size
400× 400. (We use the Alpert method for accurately discretizing the singular kernels.)

Figure 2.8 shows the singular values of off-diagonal blocks of the matrix A associated with three different
integral operators. Left column: The Laplace operator (2.22). Middle and right columns: The Helmholtz
operator (2.23) for κ chosen so that the diameter of the contour is 3λ and 30λ respectively. The plots in
the top row show the singular values of the 200 × 200 matrix A(I2, I

c
2) while the bottom row shows the

corresponding singular values of the 100× 300 matrix A(I4, I
c
4).
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FIGURE 2.8. Singular values of off-diagonal blocks that arise in the compression of an HBS
matrix A, as described in Section 2.7. The matrix A is obtained from Nyström discretization
of the boundary integral operators (2.22) and (2.23), on the contour Γ shown in Figure 2.7.
The top row holds plots of the singular values of A(I2, I

c
2) and the bottom row holds the

corresponding plots for A(I4, I
c
4). The ranks shown are to absolute precision 10−12.

For small wave numbers, we observe first of all that there is not much difference between the Laplace
case and the Helmholtz case. Moreover, the ranks do not appear to change much with the size of the patch
being compressed. When the wave-number increases, however, we see both that the ranks grow substantially,
and also that there is a meaningful difference between the ranks of the blocks A(I2, I

c
2) and A(I4, I

c
4). This

conforms with the discussion in Section ???, where we claimed that the “knee” that we see in two rightmost
graphs in Figure 2.8 is located at kknee ∼ κD, where D is the diameter of the patch.
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CHAPTER 3

Additional topics on HBS matrices

Our objective in Chapter 2 was to provide a complete description of an O(N) algorithm for inverting an
HBS matrix that was not unduly burdened by technical minutiae. In this chapter, we return to some of the
topics that were introduced in Chapter 2 for a more detailed discussion. The issues here are important when
implementing a direct solver in an actual application, but can be skipped by a reader looking for a more
conceptual introduction to direct solvers for integral equations.

3.1. Error estimation

When the direct solver described in Chapters 1 and 2 is used to solve a linear system

Aq = f,

one goes through the following steps:

(1) Given the input matrix A, one by some means find an HBS approximation Aapprox such that

Aapprox ≈ A.

(2) The HBS matrix Aapprox is inverted using the method in Figure 2.4 to build a matrix B such that

B = A−1
approx.

(3) An approximate solution is computed using the formula

qapprox = Bf.

After the process has completed, what is the accuracy of the computed solution qapprox? There are
several paths whereby errors may by introduced. First of all, many techniques for compressing a matrix are
based on heuristics to some degree, and it can be difficult to know exactly how accurately the matrix Aapprox

captures A. Second, even if we know that, say

‖A− Aapprox‖ ≤ ε

for some small ε, it does not necessarily follow that A−1
approx is within distance ε of A−1. If A is well-

conditioned, then a relation such as

A−1 − A−1
approx = A−1

(
Aapprox − A

)
A−1

approx

may help us bound the error, but we often face a situation where A−1 may be large. Finally, while the HBS
inversion procedure in Figure 2.4 is in principle mathematically exact, round-off errors can potentially throw
things off, in particular when some of the intermediate matrices that need to be inverted are ill-conditioned.
Given the many sources of errors, it is challenging to attempt to bound the resulting error á priori, and to
the extent that guaranteed bounds can be derived, they tend to be very pessimistic. For these reasons, it is
often more productive to estimate the error in the actual computed solution. The easiest technique for doing
this is of course to simply compute the residual Aqapprox − f and check if it is small enough. We often have
techniques available for applying A rapidly, using, for instance an FMM executed at high accuracy.
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To get a handle on the error in the direct solver itself (as opposed to the error for a specific data vector
f), it can be useful to estimate the quantity

e = ‖I− BA‖

that provides a measure of how good of an approximate inverse the computed object B is to A. The number
e can often be estimated at moderate cost by executing a power iteration on the matrix

(
I−BA

)(
I−A∗B∗

)
,

exploiting the fact that we can very rapidly apply both B and B∗ to vectors since we have them available in
an HBS format, and using a standard fast summation scheme such as the FMM to apply A and A∗. Once e
has been computed, we immediately get bounds such as

‖A− B‖
‖A−1‖

=
‖
(
I− BA

)
A−1‖

‖A−1‖
≤ ‖I− BA‖ ‖A−1‖

‖A−1‖
= e.

Or, analogously,

‖q− qapprox‖ = ‖q− Bf‖ = ‖q− BAq‖ = ‖
(
I− BA

)
q‖ ≤ ‖I− BA‖ ‖q‖ = e ‖q‖.

3.2. Symmetric positive definite matrices

The algorithm for inversion of an HBS matrix in Figure 2.4 requires the inversion of a large number
of small intermediate matrices. It is in general not easy to prove that these are necessarily non-singular, or
to say anything about their condition numbers. One exception is the case where A is symmetric positive
definite, in which case we have the following theorem:

COROLLARY 3.1. Let A be a symmetric positive definite (spd) matrix that admits a factorization

(3.1) A = U Ã U∗ + D,
N ×N N ×K K ×K K ×N N ×N

where ker(U) = {0} and D is a block diagonal submatrix of A. Then the matrices D,
(
U∗D−1 U

)
, and

Ã + (U∗D−1U)−1 are spd (and hence invertible).

PROOF. That D is spd is an immediate consequence of the fact that it is a block diagonal submatrix of a
spd matrix. To prove that U∗D−1 U is spd, let us pick any x 6= 0. Setting y = D−1 U x, we then find that

x∗
(
U∗D−1U

)
x = x∗U∗D−1DD−1Ux =

(
D−1Ux

)∗
D
(
D−1Ux

)
= y∗Dy > 0

since D is spd. (Observe that y 6= 0 since ker(U) = {0}.)

It remains only to prove that Ã + (U∗D−1U)−1 is spd. To this end, define D̂ and E via

D̂ = (U∗D−1U)−1

E = D−1UD̂.

Then

Ã + D̂ = D̂
(

D̂
−1

Ã D̂
−1

+ D̂
−1
)

D̂ = D̂
(

U∗D−1 U Ã U∗D−1 U + D̂
−1
)

D̂

= D̂
(
U∗D−1 (A−D)D−1 U + U∗D−1U

)
D̂ = D̂ U∗D−1 AD−1 UD̂ = E∗AE.

That Ã + (U∗D−1U)−1 is spd now follows since ker(E) = {0} and A is spd. �

The proof of Corollary 3.1 demonstrates that for an spd matrix A, the stability of the inversion formula
(1.7) can be assessed by tracking the conditioning of the matrices E. If these matrices are well-conditioned,
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then the condition number of Ã + D̂ cannot be substantially larger than the condition number of A. To make
this statement precise, let νmin and νmax denote the smallest and largest singular values of E, so that

νmin = inf
‖x‖=1

‖Ex‖, and νmax = sup
‖x‖=1

‖Ex‖.

Moreover, let λmin and λmax denote the smallest and the largest eigenvalues of A, so that

λmin = inf
‖x‖=1

x∗Ax and λmax = sup
‖x‖=1

x∗Ax.

We then find that
x∗
(
Ã + D̂

)
x = x∗E∗AEx ≥ λmin ‖Ex‖2 ≥ λmin ν

2
min ‖x‖2,

which shows that the smallest eigenvalue of Ã + D̂ can be no smaller than ν2
min λmin. Analogously,

‖Ã + D̂‖ = ‖E∗AE‖ ≤ ‖E‖2 ‖A‖ ≤ ν2
max λmax,

which shows that the largest eigenvalue of Ã + D̂ is bounded by ν2
max λmax. To summarize, the spectrum of

Ã + D̂ is constrained to an interval:

σ(Ã + D̂) ⊂
[
ν2

minλmin, ν
2
maxλmax

]
.

It follows that the condition number of Ã + D̂ satisfies

κ(Ã + D̂) ≤ κ(E)2κ(A).

In the particular case where the singular values of E are all of roughly the same size, we have κ(E) ≈ 1.
This substantiates our claim that in this case, the condition number of Ã + D̂ is approximately bounded by
that of A.

3.3. Orthonormal basis matrices

The definition of the HBS property in Section 2.3 is flexible in the sense that we did not enforce any
conditions on the factors Uτ , Vτ , and Ãτ,τ ′ other than that (2.6) and (2.8) must hold. From a purely algebraic
point of view, the conditions we imposed are sufficient in themselves. However, for numerical stability it is
as always very helpful to work with basis matrices that are well-conditioned. This is useful to maintain high
accuracy when performing a matrix-vector multiplication involving an HBS matrix, and is essential when
inverting them [7, 9, 8].

The most stringent definition of a well-conditioned basis is that the columns should be orthonormal. If
we are given any data-sparse representation of an HBS matrix, it turns out to be relatively straight-forward to
convert it to one that involves orthonormal matrices Uτ and Vτ ′ in (2.6) and (2.8), as shown in the algorithm
in Figure 3.1. This algorithm also exploits the fact that the HBS format has some amount of redundancies
to convert all sibling interaction matrices Bτ,τ ′ to diagonal matrices, in effect turning (2.6) and (2.8) into
singular value decompositions. This improves the compression rate of the HBS representation, and also
provides a slight boost in computational speed since multiplication by a diagonal matrix is very fast.

While orthonormality is ideal from the point of view of conditioning of a basis, it is often convenient to
relax this condition and allow other well-conditioned bases to be used. In particular, we will in Chapter 4
demonstrate that using the interpolatory decomposition (the ID) in the factorizations (2.6) and (2.8) is often
very effective, in particular for gaining high speed when computing the compressed representation in the
first place. When the ID is used, every Uτ and Vτ contains a k× k identity matrix, which mildly accelerates
computations, and reduces storage requirements. Moreover, each Ãτ,τ ′ is a submatrix of the original matrix
A. In situations where matrix entries can easily be computed on the fly, this means that we only need to store
the index vectors that identify the submatrix, rather than the matrix entries themselves.
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loop over levels, finer to coarser, ` = L− 1, L− 2, . . . , 0
loop over all parent boxes τ on level `,

Let α and β denote the children of τ .
[U1, R1] = qr(Uα). [U2, R2] = qr(Uβ).
[V1, S1] = qr(Vα). [V2, S2] = qr(Vβ).
[X1, Σ12, Y2] = svd(R1 Ãα,β S∗2). [X2, Σ21, Y1] = svd(R2 Ãβ,α S∗1).
Uα ← U1 X1. Uβ ← U2 X2.
Vα ← V1 Y1. Vβ ← V2 Y2.
Bαβ ← Σ12. Bβα ← Σ21.
if ` > 0

Uτ ←
[

X∗1 R1 0
0 X∗2 R2

]
Uτ . Vτ ←

[
Y∗1 S1 0

0 Y∗2 S2

]
Vτ .

end if
end loop

end loop

FIGURE 3.1. Reformating an HBS matrix: Given the factors Uτ , Vτ , Ãα,β , Dτ of an HBS
matrix in general format, this algorithm computes new factors (that overwrite the old) such
that all Uτ and Vτ are orthonormal, and all Ãα,β are diagonal.

loop over all levels, coarser to finer, ` = 0, 1, 2, . . . , L− 1
loop over all parent boxes τ on level `,

Let α and β denote the children of τ .
Define the matrices H1,1, Bα,β, Bβ,α, H2,2 so that

Gτ =

[
H1,1 Bα,β

Bβ,α H2,2

]
.

Gα ← Gα + Eα H1,1 F∗α.
Gβ ← Gβ + Eβ H2,2 F∗β .

end loop
end loop

loop over all leaf boxes τ
Dτ = Gτ .

end loop

FIGURE 3.2. Reformatting of an HBS inverse. The method described here takes as input
the factors in the data-sparse representation of an inverse resulting from the method in Figure
2.4 to obtain an inverse in the standard HBS format.

3.4. Reformatting the inverse of an HBS matrix to an HBS matrix

The HBS inversion algorithm in Figure 2.4 produces a representation of A−1 that is not exactly in HBS
form since the matrices Gτ do not have zero diagonal blocks like the matrices Bτ , cf. (2.10). However, a
simple technique given in Figure 3.2 converts the factorization provided by the HBS inversion algorithm
into a standard HBS factorization. If a factorization in which the expansion matrices are all orthonormal is
sought, then further post-processing via Algorithm 3.1 will do the job.
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FIGURE 3.3. A matrix A tessellated according to a simple binary tree with three levels.

3.5. Extended basis matrices

When we introduced the HBS format in Section 2.3, the basis matrices Uτ and Vτ were defined in a way
that is easy to interpret whenever τ is a leaf node. Let us recall that in this case, for any sibling pair {α, β},
the corresponding off-diagonal block should admit a factorization

(3.2) A(Iα, Iβ) = Uα Ãα,β V∗β.
n× n n× k k × k k × n

So the columns of Uτ should span the column space of A(Iα, Iβ), and the columns of Vτ should span the
row space. When τ is not a leaf, the definition (2.8) was recursive, and is perhaps harder to interpret. Our
objective in this section is to clarify the meaning of these basis matrices, and to elucidate the connection
between the HBS matrix format and the Hierarchically Off-Diagonal Low Rank (HODLR) matrix format
introduced in Section ? in the introduction.

Let us start by discussing a simple example involving the tree with three levels shown in Figure 2.1. This
tree of course corresponds to the tessellation of the corresponding matrix shown in Figure 3.3. When A has
HBS rank k, it turns out that for every sibling pair {α, β} (not just the leaves), the corresponding off-diagonal
block A(Iα, Iβ) as rank at most k. This means that each such block must admit a low-rank factorization

(3.3) A(Iα, Iβ) = Ulong
α Ãα,β (Vlong

β )∗.

n` × n` n` × k k × k k × n`
In (3.3), n` refers to length of the index vectors for boxes at level `, so that for a perfectly balanced tree,

n` = 2−`N.

We see that at the higher levels, where ` is small, the basis matrices will start to become very long. The point
of the HBS matrix format is that all the small matrices Uτ and Vτ efficiently encode the information needed
to build the long basis matrices. To illustrate, let us consider the parent box 4 with children 8 and 9. Then
U4 tells us how we can merge the information in the basis matrices U8 and U9 to build Ulong

4 ,

(3.4) Ulong
4 =

[
U8 0
0 U9

]
U4.

2n× k 2n× 2k 2k × k
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Analogously, U2 contains the information that tells us how to merge the information in Ulong
4 and Ulong

5 to
form Ulong

2 ,

(3.5) Ulong
2 =

[
Ulong

4 0

0 Ulong
5

]
U2.

4n× k 4n× 2k 2k × k

Combining (3.5) with (3.4), and the analogous expression for Ulong
5 we find that

(3.6) Ulong
2 =


U8 0 0 0
0 U9 0 0
0 0 U10 0
0 0 0 U11

 [
U4 0
0 U5

]
U2.

4n× k 4n× 4k 4k × 2k 2k × k

The point here is that by storing for each box τ only two small basis matrices Uτ and Vτ of size 2k × k, we
can build the basis matrices for any sibling interaction matrix.

To be precise, let us for every node τ in the tree define two “long basis matrices” Ulong
τ and Vlong

τ as
follows: When τ is a leaf, set

Ulong
τ = Uτ , and Vlong

τ = Vτ .

For a parent node τ with children α and β, set

Ulong
τ =

[
Ulong
α 0

0 Ulong
β

]
Uτ , and Vlong

τ =

[
Vlong
α 0

0 Vlong
β

]
Vτ .

One can then prove that for any distinct nodes τ and τ ′ on level ` (not just sibling pairs), we have

A(Iτ , Iτ ′) = Ulong
τ Ãτ,τ ′ (Vlong

τ )∗.
n 2L−` × n 2L−` n 2L−` × k k × k k × n 2L−`

3.6. The connection between HBS and HODLR matrices

In Section 3.5, we established that every HBS matrix is block separable at every level. This in particular
means that it is also compressible in the hierarchically off-diagonal low-rank (HODLR) format that we
introduced in the introduction. The “long” basis matrices that appear in the HODLR representation can
easily be built via telescoping representations such as (3.6). In this section, we will give an alternative
definition of the HBS property that further elucidates precisely which HODLR matrices also admit the more
compact HBS representation. In the course of proving the equivalency between the new definition and the
old, we will also describe an explicit procedure for numerically building all the short basis matrices.

To start, let us first restate the definition of a HODLR matrix. As usual, we suppose that we are given an
N ×N matrix A, with an associated binary tree T on the index vector I = 1 : N . Then A is compressible
in the HODLR format with rank k if the following condition holds:

(HODLR) For every node τ with children α and β, the matrices A(Iα, Iβ) and A(Iβ, Iα) have rank at most k.

Now, let us consider an different condition:

(HBSnew) For every node α, the matrices A(Iα, I
c
α) and A(Ic

α, Iα) have rank at most k.
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Let us first observe that the condition (HBSnew) is clearly more restrictive than (HODLR), since for any
parent node τ with children α and β, it is the case that Iβ ⊆ Ic

α. Next, we will prove that condition
(HBSnew) is equivalent to the definition of the HBS property that we gave in Section 2.3.

The fact that the HBS property implies the “HBSnew” property follows immediately from the discussion
in Section 3.5: If A satisfies the HBS property, then use the procedure described to build the “long” basis
matrices. this establishes that A is block separable at every level, which is precisely what HBSnew requires.

Next, let us suppose that A satisfies the HBSnew property. We will describe a constructive method for
building all “short” basis matrices required in the HBS definition in Section 2.3. We start with the smallest
boxes. For every leaf node α, form the corresponding long off-diagonal block A(Iα, I

c
α), and build a matrix

Uα whose columns form a basis for the column space of A(Iα, I
c
α), so that

(3.7) A(Iα, I
c
α) = Uα U†αA(Iα, I

c
α),

nα × (n− nα) nα × k k × (n− nα)

where U†α is the pseudo-inverse of Uα. To avoid pathologies, let us require the columns of Uα to be lin-
early independent. Let us next consider a node τ whose children {α, β} are leaf nodes. Then we have a
factorization (3.7) for node α, and an analogous one for node β:

(3.8) A(Iβ, I
c
β) = Uβ U†βA(Iβ, I

c
β).

nβ × (n− nβ) nβ × k k × (n− nβ)

Figure 3.4 illustrates the two blocks being compressed in red and blue. Next, consider compressing the block
A(Iτ , I

c
τ ) associated with the parent τ (shown in green in Figure 3.4). Since Ic

τ ⊂ Ic
α and Ic

τ ⊂ Ic
β , we know

that
A(Iα, I

c
τ ) = UαU†αA(Iα, I

c
τ ), and A(Iβ, I

c
τ ) = UβU†βA(Iβ, I

c
τ ).

We write this in blocked form as

A(Iτ , I
c
τ ) =

[
Uα 0
0 Uβ

] [
U†αA(Iα, I

c
τ )

U†βA(Iβ, I
c
τ )

]
.

Condition (HBSnew) tells us that the matrix A(Iτ , I
c
τ ) has rank k, and since the factor

[
Uα 0
0 Uβ

]
has full

rank, we conclude that the matrix

[
U†αA(Iα, I

c
τ )

U†βA(Iβ, I
c
τ )

]
has rank (at most) k, and can be factored[

U†αA(Iα, I
c
τ )

U†βA(Iβ, I
c
τ )

]
= Uτ U†τ

[
U†αA(Iα, I

c
τ )

U†βA(Iβ, I
c
τ )

]
.

Putting everything together, we now find that

A(Iτ , I
c
τ ) =

[
Uα 0
0 Uβ

]
Uτ U†τ

[
U†αA(Iα, I

c
τ )

U†βA(Iβ, I
c
τ )

]
.

nτ × (n− nτ ) nτ × 2k 2k × k k × (n− nτ )

The procedure for constructing the basis matrices {Vτ} is entirely analogous.

Let us stress that the pseudo-inverses that appear in the formulas in this section are in practice never
computed, they simply form a convenient way to avoid introducing extra notation. To illustrate, suppose that
we are given an m×n matrix X of rank k, and we compute an m× k matrix U whose columns form a basis
for the column space of X. This results in a factorization that we can conveniently write X = U

(
U†X

)
. In

practice, though, the factor U†X will be formed automatically either as the “R” factor in a QR factorization,
or as the factor “ΣV∗” when we use an SVD.
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Iα

Iβ

FIGURE 3.4. Compression of HBS matrices. Here, α and β are leaf nodes with a parent τ
so that Iτ = Iα∪ Iβ . The left figure shows A(Iα, I

c
α) in red and A(Iβ, I

c
β) in blue. The right

figure shows A(Iτ , I
c
τ ) in green.
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CHAPTER 4

Interpolative decompositions and skeletonization

The rank-structured formats described in Chapters 1 – 3 become particularly effective when the off-
diagonal blocks in the matrix are factored using the interpolative decomposition (ID). When the ID is used,
the off-diagonal blocks in the compressed matrices are represented simply as sub-matrices of the original
matrix. This obviates the need to explicitly form them since they are uniquely determined by specifying
only the index vectors that identify the sub-blocks. Perhaps even more importantly, when the ID is used, all
long-range interactions are still expressed through the original kernel function. In other words, we in a sense
preserve “the physics” of the underlying equation.

The discussion in this chapter is framed around the same model problem as in Chapters Chapters 1 – 3:
We seek to solve a linear system

(4.1) Aq = f

where A is an N ×N dense coefficient matrix approximating a boundary integral operators such as in (1.1).
As always, we let I = 1 : N denote the global index vector.

4.1. The single level compression scheme revisited

Let us revisit the discussion in Section 1.2 of how to invert a block separable matrix, with now a slightly
different approach to reducing the size of the system. Our starting point is still a partition I = I1∪I2∪· · ·∪Ip
of the index vector, which induces a blocking (1.3) of the coefficient matrix. To keep the notation uncluttered,
we suppose that every Iτ holds precisely n indices, so that A consists of p × p blocks, each of size n × n.
As in Section 1.2 we assume that each off-diagonal block admits a factorization

(4.2) Aσ,τ = Uσ Ãσ,τ V∗τ , σ, τ ∈ {1, 2, . . . , p}, σ 6= τ.
n× n n× k k × k k × n

Where we deviate from our previous treatment is that we next extend each basis matrix Uτ by adding a
matrix Ur

τ with n − k columns to form a square change of basis matrix Uτ , and of course do the same for
the Vτ matrices. In other words, we form matrices

Uτ =
[

Uτ Ur
τ

]
n× n n× k n× (n− k)

and Vτ =
[

Vτ Vr
τ

]
n× n n× k n× (n− k)

When Uτ and Vτ have orthonormal columns, we add columns to make Uτ and Uτ unitary. We more gen-
erally allow the basis matrices to be non-orthogonal, however, in which case we insist only that Uτ and Vτ
should be well-conditioned. With the square change of basis matrices, the relation (4.2) takes the form

(4.3) Aσ,τ = Uσ
[

Ãσ,τ 0
0 0

]
V∗τ , σ, τ ∈ {1, 2, . . . , p}, σ 6= τ.

n× n n× n n× n n× n
The diagonal blocks are full rank, so the factorization analogous to (4.3) for σ = τ becomes

(4.4) Aτ,τ = Uτ

[
Ã

ss
τ,τ Ã

sr
τ,τ

Ã
rs
τ,τ Ã

rr
τ,τ

]
V∗τ ,

n× n n× n n× n n× n
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where the blocks are defined by the relationship

(4.5)
[

Ass
τ,τ Asr

τ,τ

Ars
τ,τ Arr

τ,τ

]
:= U−1

τ Aτ,τV−∗τ .

The letters “s” and “r” stand for skeleton and residual variables, respectively. The skeleton variables involve
global interactions, while the residual variables represent local interactions.

Using the new square change of basis matrices, we can write the coefficient matrix A in blocked form as

(4.6) A = U



Ã
ss
1,1 Ã

sr
1,1 Ã1,2 0 Ã1,3 0

Ã
rs
1,1 Ã

rr
1,1 0 0 0 0

Ã2,1 0 Ã
ss
2,2 Ã

sr
2,2 Ã2,3 0

0 0 Ã
rs
2,2 Ã

rr
2,2 0 0

Ã3,1 0 Ã3,2 0 Ã
ss
3,3 Ã

sr
3,3

0 0 0 0 Ã
rs
3,3 Ã

rr
3,3


V∗,

where we set p = 3 to keep things simple, and where U, and V are defined by

U =

 U1 0 0
0 U2 0
0 0 U3

 , and V =

 V1 0 0
0 V2 0
0 0 V3

 .
In the new basis, the linear system (4.1) takes the form

ÃV∗q = U−1f,

which we write out as

(4.7)



Ã
ss
1,1 Ã

sr
1,1 Ã1,2 0 Ã1,3 0

Ã
rs
1,1 Ã

rr
1,1 0 0 0 0

Ã2,1 0 Ã
ss
2,2 Ã

sr
2,2 Ã2,3 0

0 0 Ã
rs
2,2 Ã

rr
2,2 0 0

Ã3,1 0 Ã3,2 0 Ã
ss
3,3 Ã

sr
3,3

0 0 0 0 Ã
rs
3,3 Ã

rr
3,3




q̃s

1

q̃r
1

q̃s
2

q̃r
2

q̃s
3

q̃r
3

 =



f̃
s
1

f̃
r
1

f̃
s
2

f̃
r
2

f̃
s
3

f̃
r
3,


where the new variables are defined by

(4.8) q̃τ =

[
q̃s
τ

q̃r
τ

]
:= V∗τqτ and f̃τ =

[
f̃
s
τ

f̃
r
τ

]
:= U−1

τ fτ .

Provided that each matrix Ã
rr
τ,τ is invertible, we can eliminate the “residual” variables from (4.7), to obtain

the reduced system

(4.9)

 D̃1 Ã1,2 Ã1,3

Ã2,1 D̃2 Ã2,3

Ã3,1 Ã3,2 D̃3


︸ ︷︷ ︸

=:Ã

 q̃s
1

q̃s
2

q̃s
3

 =

 f̃
s
1 − Ã

sr
1,1

(
Ã

rr
1,1

)−1
f̃
r
1

f̃
s
2 − Ã

sr
2,2

(
Ã

rr
2,2

)−1
f̃
r
2

f̃
s
3 − Ã

sr
3,3

(
Ã

rr
3,3

)−1
f̃
r
3

 ,
where the diagonal blocks are defined by

(4.10) D̃τ = Ã
ss
τ,τ − Ã

sr
τ,τ

(
Ã

rr
τ,τ

)−1
Ã

rs
τ,τ .

Once (4.9) has been solved, we can recover the residual variables from the formula

(4.11) q̃r
τ =

(
Ã

rr
τ,τ

)−1
f̃
r
τ −

(
Ã

rr
τ,τ

)−1
Ã

rs
τ,τ q̃s

τ .

Let us summarize our findings in a lemma that provides a formula for the inverse of a block separable
matrix:
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LEMMA 4.1. Let A denote a matrix that consists of p × p blocks, each of size n × n, and such that
every off-diagonal block admits a low-rank factorization (4.3) for some rank k < n. We assume that each
matrix Uτ and Vτ is non-singular, and define the blocks Ã

ss
τ,τ , Ã

sr
τ,τ , Ã

rs
τ,τ , and Ã

rr
τ,τ via the formulas (4.5).

Suppose that the matrix Ã defined in (4.9) in invertible, and also that every matrix Ã
rr
τ,τ is invertible. Then

A is invertible, and its inverse is given by the formula

(4.12) A−1 = E


D̃1 Ã1,2 . . . Ã1,p

Ã2,1 D̃2 . . . Ã2,p
...

...
...

Ãp,1 Ãp,2 . . . D̃p


−1

F∗ + G

pn× pn pn× pk pk × pk pk × pn pn× pn

where the diagonal blocks D̃τ are defined by (4.10), and where E, F, G are the block-diagonal matrices
whose diagonal blocks are given by

Eτ = V−∗τ
[

I

−
(
Ã

rr
τ,τ

)−1
Ã

rs
τ,τ

]
F∗τ =

[
I − Ã

sr
τ,τ

(
Ã

rr
τ,τ

)−1]U−1
τ

Gτ = V−∗τ
[

0 0

0
(
Ã

rr
τ,τ

)−1

]
U−1
τ

Lemma 4.1 is of course just a slight variation of Lemma 1.1. It has the advantage that it makes explicit
the fact that each matrix Gτ is of rank n−k. Another interesting difference to Lemma 1.1 is that the matrices
Ã

rr
τ,τ that need to be inverted are of size (n − k) × (n − k), which is in contrast to the n × n matrices Dτ

in Lemma 1.1. In general, this apparent advantage is offset by the added cost of building the square change
of basis matrices Uτ and Vτ , and the need to apply these to the diagonal blocks. However, for the particular
case where the interpolatory decomposition is used, all of these matrices, as well as their inverses, take on a
particularly simple form that makes them economical to use.

PROOF. The core of the proof of the relation (4.12) consists of the reduction of the linear system (4.7)
to (4.9), which we already described. All that remains is to work out the exact form of the matrices Eτ , Fτ ,
and Gτ . Let us start with the matrix Fτ which maps the vector f(Iτ ) to the right side f̃

s
1− Ã

sr
1,1

(
Ã

rr
1,1

)−1
f̃
r
1 in

(4.9). We find that

f̃
s
1 − Ã

sr
1,1

(
Ã

rr
1,1

)−1
f̃
r
1 =

[
I − Ã

sr
1,1

(
Ã

rr
1,1

)−1] [ f̃
s
τ

f̃
r
τ

]
=
[
I − Ã

sr
1,1

(
Ã

rr
1,1

)−1]U−1
τ︸ ︷︷ ︸

=:F∗τ

f(Iτ ).

The matrices Eτ and Gτ are the matrices that we need to recover the original unknowns qτ from the solution
q̃s
τ of the reduced system. Using the relation (4.11), we find that

qτ = V−∗τ
[

q̃s
τ

q̃r
τ

]
= V−∗τ

[
q̃s
τ(

Ã
rr
τ,τ

)−1
f̃
r
τ −

(
Ã

rr
τ,τ

)−1
Ã

rs
τ,τ q̃s

τ

]
= V−∗τ

[
I

−
(
Ã

rr
τ,τ

)−1
Ã

rs
τ,τ

]
q̃s
τ + V−∗τ

[
0 0

0
(
Ã

rr
τ,τ

)−1

] [
f̃
s
τ

f̃
r
τ

]
= V−∗τ

[
I

−
(
Ã

rr
τ,τ

)−1
Ã

rs
τ,τ

]
︸ ︷︷ ︸

=:Eτ

q̃s
τ + V−∗τ

[
0 0

0
(
Ã

rr
τ,τ

)−1

]
U−1
τ︸ ︷︷ ︸

=:Gτ

f(Iτ ).

�
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4.2. LU factorization of a block separable matrix

The formulation in Section 4.1 that is based on square change of basis matrices is particularly convenient
for computing an LU decomposition of a block separable matrix, since it introduced large zero blocks that
we can exploit, cf. (4.6). To demonstrate how this works, let us use the same framework as in Section 4.1,
so that A is a blocked matrix, with the off-diagonal blocks satisfying (4.3). We split the diagonal blocks
into skeleton and residual components as in (4.5). However, we will in this section reorder the compressed
matrix Ã so that the residual variables all come first. To be precise, let us now define the global change of
basis matrices U and V via

U =

 Ur
1 0 0 U1 0 0

0 Ur
2 0 0 U2 0

0 0 Ur
3 0 0 U3

 and V =

 Vr
1 0 0 V1 0 0

0 Vr
2 0 0 V2 0

0 0 Vr
3 0 0 V3

 .
Then A admits the factorization

A = U



Ã
rr
1,1 0 0 Ã

rs
1,1 0 0

0 Ã
rr
2,2 0 0 Ã

rs
2,2 0

0 0 Ã
rr
3,3 0 0 Ã

rs
3,3

Ã
sr
1,1 0 0 Ã

ss
1,1 Ã1,2 Ã1,3

0 Ã
sr
2,2 0 Ã2,1 Ã

ss
2,2 Ã2,3

0 0 Ã
sr
3,3 Ã3,1 Ã3,2 Ã

ss
3,3


V∗.

We show the formulas for the particular case where p = 3, but the generalization should be obvious. Next,
we simply compute the LU factorization of each diagonal block Arr

τ,τ

(4.13) Ã
rr
τ,τ = LτWτ .

(In (4.13), we could not use the customary letter U for the upper triangular factor since this letter is already
taken for the basis matrix for the column space of the block.) Provided that each Ã

rr
τ,τ is non-singular, the

partial LU factorization of A takes the form

A = UL



I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

0 0 0 D̃1 Ã1,2 Ã1,3

0 0 0 Ã2,1 D̃2 Ã2,3

0 0 0 Ã3,1 Ã3,2 D̃3

WV∗

where the matrices L and W are defined by

L :=



L1 0 0 0 0 0
0 L2 0 0 0 0
0 0 L3 0 0 0

Ã
sr
1,1W−1

1 0 0 I 0 0

0 Ã
sr
2,2W−1

2 0 0 I 0

0 0 Ã
sr
3,3W−1

3 0 0 I



W :=



W1 0 0 L−1
1 Ã

rs
1,1 0 0

0 W2 0 0 L−1
2 Ã

rs
2,2 0

0 0 W3 0 0 L−1
3 Ã

rs
3,3

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 .

28



Local pivoting within a block can easily be introduced by simply inserting permutation matrices on the
left, right, or both sides in the factorization (4.13), and then modifying the subsequent formulas as necessary.
As always, pivoting across blocks would be far more challenging.

4.3. The ID and block separable matrices

Let us next explore the advantages of using the interpolatory decomposition for compressing the off-
diagonal blocks in a block separable matrix. To start off the discussion let us revisit the situation where we
compress a single block: We consider a simple partitioning of the index vector into two parts

I = I1 ∪ I2,

which lets us write (4.1) as a 2× 2 block matrix

(4.14)
[

A11 A12

A21 A22

] [
q1

q2

]
=

[
f1

f2

]
.

Let n1 and n2 denote the number of points in I1 and I2 respectively, so that N = n1 + n2. When A is a
discretized integral operator on a domain Γ, we may think of I1 as marking a set of nodes in a subregion Γ1,
as shown in Figure 4.1. We now use the ID to factorize A1,2 and A2,1 so that

(4.15) A1,2 = P1

[
I

S∗

]
A(Is

1, I2), and A2,1 = A(I2, I
s
1)
[
I T

]
P∗1,

where Is
1 denotes the index vector that lists the k “skeleton” indices chosen in the ID. (We for simplicity

restrict ourselves to the case where the same skeleton indices are used for both the columns and the rows.)
We refer to the indices in I1 that were not picked as skeleton points as the “residual” indices; we gather these
in the vector Ir

1 so that
I1 = Is

1 ∪ Ir
1.

Introducing the basis matrices

U1 = P1

[
I

S∗

]
, and V1 = P1

[
I

T∗

]
,

we can write (4.15) compactly as

(4.16) A1,2 = U1A(Is
1, I2), and A2,1 = A(I2, I

s
1)V∗1.

The key observation is now that it becomes particularly easy to extend the basis matrices U1 and V1 to square
well-conditioned “change of basis matrices”

U1 = P1

[
I 0

S∗ I

]
and V1 = P1

[
I 0

T∗ I

]
.

Moreover, the inverses of these matrices are given by

U−1
1 =

[
I 0
−S∗ I

]
P∗1 and V−1

1 =

[
I 0
−T∗ I

]
P∗1.

The simple forms of the matrices U1 and V1 and their inverses lead to several simplification in the
formulas in Sections 4.1 and 4.2. To start, let us revisit the formula for the four diagonal blocks in the
transformed system, cf. (4.5),[

Ass
1,1 Asr

1,1

Ars
1,1 Arr

1,1

]
:= U−1

1 A1,1V−∗1 =

[
I 0
−S∗ I

]
P∗1A(I1, I1)P1

[
I −T
0 I

]
=

[
I 0
−S∗ I

] [
A(Is

1, I
s
1) A(Is

1, I
r
1)

A(Ir
1, I

s
1) A(Ir

1, I
r
1)

] [
I −T
0 I

]
.
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Γ2

Γ1

Γ2

Γreduced
1

(a) (c)

(b) (d)

FIGURE 4.1. (a) The contour Γ is partitioned into pieces Γ1 and Γ2. (b) The linear system
blocked in accordance with the partitioning of the contour, cf. (4.14). (c) The points remain-
ing after compressing Γ1. (d) The reduced linear system (4.17); observe that only the small
gray block involves new matrix entries that need to be computed.

Multiplying the three matrices together, we obtain the formulas

Ã
ss
1,1 = A(Is

1, I
s
1),

Ã
sr
1,1 = A(Is

1, I
r
1)− A(Is

1, I
s
1)T,

Ã
rs
1,1 = A(Ir

1, I
s
1)− S∗A(Is

1, I
s
1),

Ã
rr
1,1 = A(Ir

1, I
r
1)− S∗A(Is

1, I
r
1)− A(Ir

1, I
s
1)T + S∗A(Is

1, I
s
1)T.

Eliminating the residual variables, we now end up with the compressed linear system

(4.17)
[

D̃1 A(Is
1, I2)

A(I2, I
s
1) A(I2, I2)

] [
q̃1

q2

]
=

[
f̃
s
1 − Ã

sr
1,1

(
Ã

rr
1,1

)−1
f̃ r

1

f2

]
,

where the compressed diagonal block is defined by

D̃1 = Ã
ss
1,1 − Ã

sr
1,1(Ã

rr
1,1)−1Ã

rs
1,1.

More generally, we can apply Lemma 4.1, to find that the inverse of the matrix A takes the form

A−1 =

[
E1 0
0 I

]([
D̃1 A(Is

1, I2)
A(I2, I

s
1) A(I2, I2)

])−1 [
F∗1 0
0 I

]
+

[
G1 0
0 0

]
,
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(1) loop over all nodes τ ,
(2) Form the complement of the index vector: Lτ = I\Iτ .
(3) Determine the row skeletons: [Uτ , J

row
τ ] = id row(A(Iτ , Lτ ), k).

(4) Determine the column skeletons: [Vτ , J
col
τ ] = id row(A(Lτ , Iτ )∗, k).

(5) Extract the skeleton index vectors Is,row
τ = Iτ (J row

τ ), and Is,col
τ = Iτ (Jcol

τ ).
(6) end loop

FIGURE 4.2. This algorithm computes an ID based HBS decomposition of a matrix A,
for a specified rank k. It is a single level scheme, as described in Sections 1.4 and 4.4.
The particular advantage of using the ID is that the sibling interaction matrices need not be
computed explicitly, as they are identified by the skeleton index vectors, Ãσ,τ =

A(Is,row
σ , Is,col

τ ).

where

E1 = V−∗1

[
I

−
(
Ã

rr
1,1

)−1
Ã

rs
1,1

]
= P1

[
I −T
0 I

] [
I

−
(
Ã

rr
1,1

)−1
Ã

rs
1,1

]
= P1

[
I + T

(
Ã

rr
1,1

)−1
Ar,s

1,1

−
(
Ã

rr
1,1

)−1
Ar,s

1,1

]
,

F∗1 =
[
I − Ã

sr
1,1

(
Ã

rr
1,1

)−1]U−1
1 =

[
I − Ã

sr
1,1

(
Ã

rr
1,1

)−1] [ I 0
−S∗ I

]
P∗1

=
[
I + Ã

sr
1,1

(
Ã

rr
1,1

)−1
S∗ − Ã

sr
1,1

(
Ã

rr
1,1

)−1]
P∗1,

G1 = V−∗1

[
0 0

0
(
Ã

rr
1,1

)−1

]
U−1

1 = P1

[
I −T
0 I

] [
0 0

0
(
Ã

rr
1,1

)−1

] [
I 0
−S∗ I

]
P∗1

= P1

[
−T

I

] (
Ã

rr
1,1

)−1[−S∗ I
]
P∗1.

4.4. Compression using the ID — “skeletonization”

In Section 4.3, we saw how the ID leads to more economical expressions for the matrices that need to be
computed in order to invert or factorize an HBS matrix. Let us next address the question of how to find the
compressed representation in the first place. In principle, the answer is straight forwards, we simply apply
the procedure described in Section 1.4, but now use the ID to factorize each off-diagonal blocks. In other
words, for any block τ , the basis matrices Uτ and Vτ and the associated skeleton index vectors are computed
via the commands

[Uτ , J
row
τ ] = id row(A(Iτ , I

c
τ ), k), and [Vτ , J

col
τ ] = id row(A(Ic

τ , Iτ )∗, k),

and then the index vectors are derived via the formulas

Is,row
τ = Iτ (J rol

τ ), and Is,col
τ = Iτ (Jcol

τ ).

If we seek a symmetric factorization in which Is,col
τ = Is,row

τ and Uτ = Vτ , then we simply factorize the
blocks jointly, so that

[Uτ , Jτ ] = id row(
[
A(Iτ , I

c
τ ) A(Ic

τ , Iτ )∗
]
, k), and Is

τ = Iτ (Jτ ).

Enforcing symmetry this way turns out to not only simplify formulas and reducing storage, but it can also
improve the numerical stability of the inversion procedure. The price to pay is that the interaction ranks tends
to grow slightly. The corresponding compression algorithms are for future reference summarized in Figures
4.2 and 4.3.
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(1) loop over all nodes τ ,
(2) Form the complement of the index vector: Lτ = I\Iτ .
(3) Form the extended off-diagonal block: Wτ =

[
A(Iτ , Lτ ) A(Lτ , Iτ )∗

]
.

(4) Factorize the extended off-diagonal block: [Uτ , Jτ ] = id row(Wτ , k).
(5) Extract the reduced (“skeletonized”) index vector Is

τ = Iτ (Jτ ).
(6) end loop

FIGURE 4.3. A single level compression scheme using the ID and the HBS format. The
algorithm is identical to the one in Figure 4.2, except that we now enforce that the row and
the column skeletons be identical.

(1) loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
(2) loop over all boxes τ on level `,
(3) if τ is a leaf node
(4) Set Mτ = Iτ and form its complement Lτ = Ic

τ .
(5) else
(6) Let α and β denote the children of τ .
(7) Form the vector of skeleton points of the children: Mτ = [Is

α, I
s
β].

(8) Form the complement of the index vector Lτ = I(`+1)\Mτ .
(9) end if
(10) Form the off-diagonal block: Wτ =

[
A(Mτ , Lτ ) A(Lτ ,Mτ )∗

]
.

(11) Factor the off-diagonal block: [Uτ , Jτ ] = id row(Wτ , ε).
(12) Build the vector of “skeleton” points Is

τ = Mτ (Jτ ).
(13) end loop
(14) Form the level ` compressed index vector: I(`) =

⋃
τ is on level `

Is
τ .

(15) end loop

FIGURE 4.4. Recursive skeletonization: Let A denote a given matrix, and let T be a tree
on the index vector, as described in Section 2.2. Then given a tolerance ε, the algorithm
described will build a symmetric skeletonization of A. In other words, for every node τ ,
it builds the index vector Is

τ that holds the skeleton nodes, and the matrix of basis vectors
Uτ needed in the HBS representation of A. This is a brute force compression scheme with
complexity O(N2). It is the foundation for the accelerated schemes described in Chapter 5.

4.5. Multilevel inversion: “recursive skeletonization”

Extending the single level skeletonization solver to a multi level solver is remarkably simple. The essen-
tial observation is that the off-diagonal blocks that need to be compressed are identified simply as submatrices
of the original off-diagonal blocks, as identified by the skeleton index vectors computed on the next finer
level. The resulting procedure is summarized in Figure 4.4.

The recursive skeletonization procedure can easily by visualized by plotting the points remaining after
processing each level. Figure 4.5 illustrates the procedure for a contour in two dimensions by plotting for
each level ` the nodes in the compressed Ĩ(`) that “survived” compression. Figure 4.6 shows the analogous
computation for a surface in 3D.
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The original set of points. After compressing the leaves (level 4).

After compressing level 3. After compressing level 2.

FIGURE 4.5. Recursive skeletonization on a contour in the plane.
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FIGURE 4.6. Recursive skeletonization on a surface in R3.
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CHAPTER 5

Constructing a rank-structured representation of a matrix

In Chapters 1 – 4, we described a data-sparse format that is well suited for many boundary integral
equations, and described how a matrix stored in such a format can efficiently be stored, applied to a vector,
and even inverted. We have also (cf. Sections 1.4, 4.4, and 4.5) described some conceptually natural ways to
compute the collection of small matrices that jointly form the rank-structured representation of the matrix.
These techniques were based on explicitly building the full N ×N matrix A, then looping over various off-
diagonal blocks that are of numerically low rank and compressing them using any of the techniques described
in Chapter ??. While such an approach tends to lead to the most lean compressed representation possible, it
is typically unaffordable with an O(N2) overall complexity. In this chapter, we describe techniques that in
many situations achieve the same objective in O(N) operations.

5.1. A heuristic description of the proxy surface compression technique

The key challenge in reducing the computational complexity in a compression algorithm is that compu-
tations need to be localized. A successful way to achieve localization is to exploit analytical properties in the
kernels of the integral equations. We will describe the techniques in detail in Section 5.2, but just to introduce
the key idea, let us suppose that we consider a BIE on a contour Γ, and seek to compress the interactions
between a patch Γτ and the rest of the contour, as illustrated in Figure 5.1(a). The idea is to enclose Γτ by a
“proxy” contour Γ

(proxy)
τ , cf. Figure 5.1(b). Then we know from potential theory that any harmonic field on

Γτ caused by sources outside of Γ
(proxy)
τ can be exactly replicated by a source distribution on Γ

(proxy)
τ alone.

This means that if we can build a local basis on Γτ that to some given precision ε spans every field generated
by sources on Γ

(proxy)
τ , then this basis will automatically span all fields generated by sources on the parts of

Γ that are outside of Γ
(proxy)
τ , and we are left with the inexpensive task of compressing only the interactions

between points in Γτ and those in the “near” part of the contour Γ
(near)
τ . The analogous situation in 3D is

illustrated in Figure 5.2.

Γτ

(a)

Γτ

Γ
(proxy)
τ

Γ
(far)
τ

Γ
(near)
τ

(b)

FIGURE 5.1. A contour Γ. (a) Γτ is drawn with a bold line. (b) The contour Γ
(near)
τ is

drawn with a thin solid line and Γ
(far)
τ with a dashed line.
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Γτ

• Points in Iτ .

• Points in I(near)
τ .

• Points in Γ
(proxy)
τ .

FIGURE 5.2. The geometry of the “proxy surface” described in Section 5.1 for a 3D com-
pression problem.

5.2. The proxy surface compression techniques

Let us start by considering the single-level skeletonization technique described in Figure 4.3. We start
by discussing how to compress a matrix A whose entries are given simply by the fundamental solution φ of
the Laplace equation, so that

(5.1) A(i, j) = φ(xi − xj), for i 6= j,

where {xi}Ni=1 are the quadrature nodes on Γ. The expensive computation that we seek to eliminate is the
formation and compression of the long block Wτ on line (10). We first note that we do not actually need the
off-diagonal blocks in Wτ themselves; all we need is the matrix Uτ and the index vector Jτ . We are going
to construct these by factoring a matrix Wproxy

τ that is much smaller than Wτ , but has the property that the
column space of Wproxy

τ contains the column space of Wτ . In other words

Col(Wτ ) ⊆ Col(Wproxy
τ ).

To form Wproxy
τ , we proceed as follows: A small number of columns in Wτ represent interactions between

points in Iτ and points that are “near” Γτ . These columns we bring in to Wproxy
τ unchanged. The remaining

columns of Wτ represent far-field interactions, these make up the vast majority of the columns. But these
are all samples from a very low-dimensional space, namely the space of harmonic fields induced by charges
that are distant from Γτ . In forming Wproxy

τ , we replace all columns corresponding to far-field interactions
with a much smaller set of vectors that exhaustively span all possible far fields (to within precision ε).

To formalize matters, we must first make precise what we mean by far-field and near-field. Let Ψτ

denote a circle of minimal radius that encloses Γτ , and let Γ
(proxy)
τ denote a circle concentric to Ψτ but with

a radius 1.5 times as large (the number “1.5” is chosen somewhat arbitrarily but is usually a good choice),
see Figure 5.1. Now define Inear

τ as all points inside Γ
(proxy)
τ , but not in Iτ , and let I far

τ denote all remaining
points. In other words,

I = Iτ ∪ Inear
τ ∪ I far

τ︸ ︷︷ ︸
=Lτ

,

forms a disjoint partition of the index vector I . Then

Wτ =
[
A(Iτ , I

near
τ ) A(Inear

τ , Iτ )∗ | A(Iτ , I
far
τ ) A(I far

τ , Iτ )∗
]

P,
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(1) Set I(L) = 1 : N .
(2) loop over all levels, finer to coarser, ` = L, L− 1, . . . , 1
(3) loop over all boxes τ on level `,
(4) if τ is a leaf node
(5) Set Mτ = Iτ .
(6) else
(7) Let α and β denote the children of τ .
(8) Form the vector of skeleton points of the children: Mτ = [Ĩα, Ĩβ].
(9) end if
(10) Find the index vector Inear

τ of near-field points within I(`).
(11) Form the basis for the far field Aproxy

τ , as described in Section 5.2.
(12) Assemble the proxy matrix Wproxy

τ =
[
A(Mτ , I

near
τ ) A(Inear

τ ,Mτ )∗ Aproxy
τ

]
.

(13) Factor the proxy matrix: [Uτ , Jτ ] = id row(Wproxy
τ , ε).

(14) Extract the reduced (“skeletonized”) index vector Is
τ = Mτ (Jτ ).

(15) end loop
(16) Form the level ` compressed index vector: I(`) =

⋃
τ is on level `

Is
τ .

(17) end loop

FIGURE 5.3. Fast recursive skeletonization: Given a computational tolerance ε, this algo-
rithm builds the basis matrices and the index vectors that jointly form the ID version of the
HBS representation of a matrix.

where P is an permutation matrix that reorders the columns. To form Wproxy
τ , we replace the columns to

the right of the divider (which represent far-field interactions) by a matrix Aproxy
τ that samples the space of

harmonic fields that can be caused by sources outside Γ
(proxy)
τ . This sampling is done by placing a small

number of “proxy charges” on Γ
(proxy)
τ . Then

Col
([

A(Iτ , I
far
τ )

A(I far
τ Iτ )∗

])
⊆ Col(Aproxy

τ ).

The matrix Wproxy
τ is then given by the formula

Wproxy
τ =

[
A(Iτ , I

near
τ ) A(Inear

τ , Iτ )∗ Aproxy
τ

]
.

When the proxy surface technique is incorporated into the algorithm for recursive skeletonization in Figure
4.4, we obtain the accelerated recursive skeletonization method of Figure 5.3.

So far, we have considered only the particularly simple case when the matrix entries are given by
A(i, j) = φ(xi − xj), cf. (5.1). Let us very briefly describe how the scheme can be modified to handle
more realistic kernels. For instance, suppose that the matrix is associated with the double rather than the
single layer potential, so that

A(i, j) = n(y) · ∇yφ(x− y).

In this case, the matrix A(Iτ , I
far
τ ) represents evaluation of a harmonic field on Γτ caused by dipole charges

on Γfar
τ . These can be represented in exactly the same way, so no change is required. However, A(I far

τ , Iτ )∗

is the dual of the double layer potential, and represents evaluation of normal derivatives of a field generated
by monopoles on Γ

(far)
τ . We generate a basis by adding columns to Aproxy

τ that represent normal derivatives
of fields generated by monopoles on Γ

(proxy)
τ .

Another complication that arises in real applications is that the matrix entries also incorporate effects
from the quadrature rule that is used to discretize the BIE. For the majority of the elements, this effect rep-
resents only a diagonal scaling, which presents no difficulty — we simply build a Aproxy

τ that represents the
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Generate an N × ` Gaussian random matrix R.
Evaluate S = A R using the fast matrix-vector multiplier.
loop over levels, finer to coarser, ` = L, L− 1, . . . , 2, 1

loop over all nodes τ on level `
if τ is a leaf node then

Iloc = Iτ
Rloc = R(Iτ , :)
Sloc = S(Iτ , :)− A(Iτ , Iτ ) Rloc

else
Let ν1 and ν2 be the two children of τ .
Iloc = [Ĩν1 , Ĩν2 ]

Rloc =

[
Rν1

Rν2

]
Sloc =

[
Sν1 − A(Ĩν1 , Ĩν2) Rν2

Sν2 − A(Ĩν2 , Ĩν1) Rν1

]
end if
[Uτ , Jτ ] = id decomp(S∗loc)
Rτ = U∗τ Rloc

Sτ = Sloc(Jτ , :)

Ĩτ = Iloc(Jτ )
end loop

end loop
For all leaf nodes τ , set Dτ = A(Iτ , Iτ ).
For all sibling pairs {ν1, ν2} set Ãν1,ν2 = A(Ĩν1 , Ĩν2).

FIGURE 5.4. Randomized compression of an HBS matrix.

“pure” kernel function, and then add the diagonal scaling at the end. Quadrature corrections that arise due to
singular kernels are in general more fundamental than mere diagonal scalings. However, they typically affect
only entries in the near field matrices, which means that the scheme as described handles them automatically,
with no need for any modifications, except that it may be prudent to explicitly ensure at each step that all
“modified” matrix entries truly are in the near field, and to include a mechanism for including these entries
in Wproxy

τ if needed.

The generalization from Laplace to other fundamental solutions is in principle straight-forward, but does
require some care in practice. For instance, if φ is the fundamental solution of the Helmholtz equation, then it
is not necessarily the case that every field ψ that satisfies−∆ψ−κ2ψ = 0 near Γτ can be stably represented
by placing monopoles on Γ

(proxy)
τ . The situation can be stabilized by placing both monopoles and dipoles

on Γ
(proxy)
τ , or by adding a second proxy surface that is separated by a quarter wavelength from the first.

5.3. Randomized compression of HBS matrices

5.4. Randomized compression of HODLR matrices

5.5. Adaptive Cross Approximation
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Build compressed representations of all off-diagonal blocks.
loop over levels ` = 0 : (L− 1)

Build the random matrices Ω1 and Ω2.
Ω1 = zeros(n, r)
Ω2 = zeros(n, r)
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Ω1(Iα, :) = randn(nα, r)
Ω2(Iβ, :) = randn(nβ, r)

end loop

Apply A to build the samples for the incoming basis matrices.
Y1 = AΩ2 − A(`)Ω2

Y2 = AΩ1 − A(`)Ω1

Orthonormalize the sample matrices to build the incoming basis matrices.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
Uα = qr(Y1(Iα, :)).
Uβ = qr(Y2(Iβ, :)).
Ω1(Iα, :) = Uα
Ω2(Iβ, :) = Uβ

end loop

Apply A∗ to build the samples for the outgoing basis matrices.
Z1 = A∗Ω2 −

(
A(`)

)∗
Ω2

Z2 = A∗Ω1 −
(
A(`)

)∗
Ω1

Take local SVDs to build incoming basis matrices and sibling interaction matrices.
We determine the actual rank, and update the U∗ basis matrices accordingly.
loop over boxes τ on level `

Let {α, β} denote the children of box τ .
[Uα,Bβ,α, Ûβ] = svd(Z1(Iα, :), ε).
[Uβ,Bα,β, V̂α] = svd(Z2(Iβ, :), ε).
Uβ ← UβÛβ .
Uα ← UαÛα.

end loop
end loop

Extract the diagonal matrices.
nmax = max {nτ : τ is a leaf}
Ω = zeros(N,nmax)
loop over leaf boxes τ

Ω(Iτ , 1 : nτ ) = eye(nτ ).
end loop
Y = AΩ− A(L)Ω
loop over leaf boxes τ

Dτ = Y(Iτ , 1 : nτ ).
end loop

FIGURE 5.5. Randomized compression of a HODLR matrix.
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