
Randomized algorithms for pivoting and for computing
interpolatory and CUR factorizations

Per-Gunnar Martinsson
Dept. of Mathematics & Oden Institute for Computational Sciences and Engineering

University of Texas at Austin

Students, postdocs, collaborators: Ke Chen, Yijun Dong, Robert van de Geijn,
Abinand Gopal, Nathan Halko, Nathan Heavner, Francisco Igual, James Levitt, Gregorio

Quintana-Ortí, Joel Tropp, Sergey Voronin, Bowei Wu, Anna Yesypenko.

Slides: http://users.oden.utexas.edu/∼pgm/main_talks.html

Research support by:

Outline of talk

1. Efficient algorithms for computing CUR and interpolatory decompositions.

2. Randomized algorithms for computing full factorizations of matrices.
Column pivoted QR in particular.

Interpolative and CUR decompositions

Let A be an m× n matrix of approximate rank k.

The CUR or skeleton approximation of A takes the form

(1)
A ≈ C U R,

m× n m× k k × k k × n
where C holds a subset of the columns of A, and R holds a subset of the rows of A.
In other words, C = A(:, Js) and R = A(Is, :) for some index vectors Js and Is.

Closely related are the interpolatory decompositions

A ≈ C Z
m× n m× k k × n

A ≈ X R
m× n m× k k × n

A ≈ X As Z
m× n m× k k × k k × n

where C and R are as in (1), and where As = A(Is, Js).

The fact that the matrices R, C, and As are submatrices of A has important advantages:
• If A is sparse, then the factors R and C are sparse.
• If A is non-negative, then the factors R, C, and As are non-negative.
• The factorizations allow for data interpretation.
• Reduced storage, since we can store the index vectors rather than the factors.
• Invaluable in the context of modern Fast Multipole Methods and Fast Direct Solvers.

Special case: Exact rank deficiency. Suppose A is of size m× n and exact rank k.

Let I and J be permutations or the row and column indices, and split A into four parts

A(I, J) =

[
A11 A12
A21 A22

]
,

so that A11 is the leading k × k submatrix. If A11 is non-singular, then necessarily

(2) A22 = A21A−111A12.

The skeleton factorization (CUR) follows directly from (2):

A(I, J) =

[
A11
A21

]
︸ ︷︷ ︸

=C

A−111︸︷︷︸
=U

[
A11 A12

]︸ ︷︷ ︸
=R

.

Analogously, the interpolatory decomposition takes the form

A(I, J) =

[
I

A21A−111

]
︸ ︷︷ ︸

=X

A11︸︷︷︸
=As

[
I A−111A12

]
.︸ ︷︷ ︸

=Z

So existence of the CUR and the ID are straight-forward. But two questions arise:
(1) Are the factorizations well-conditioned?
(2) For a matrix of only approximate rank k, how close to optimal can you get?

Conditioning of the interpolatory decomposition

Recall the interpolatory decomposion:

A ≈ X As Z
m× n m× k k × k k × n

where As = A(Is, Js) is a k×k submatrix of A.

X and Z hold k × k identity matrices as submatrices. ⇒ σmin(X) = σmin(Z) = 1

So X and Z are well-conditioned iff their maximal singular values are controlled.

Claim: Pick Is and Js so that | det(A(Is, Js))| is maximized over all k × k submatrices.
Then

(3) sup
i,j
|X(i, j)| ≤ 1 and sup

i,j
|Z(i, j)| ≤ 1.

Proof: Use Cramer’s rule to bound entries of A21A−111 and A−111A12.

The bounds (3) imply that κ(X) ≤
√
1 + k(m− k) and κ(Z) ≤

√
1 + k(n− k).

So YES, a well-conditioned ID exists. (Finding it is another matter . . .)

What about CUR? It is in general not well conditioned.

Conditioning of the interpolatory decomposition

Recall the interpolatory decomposion:

A ≈ X As Z
m× n m× k k × k k × n

where As = A(Is, Js) is a k×k submatrix of A.

X and Z hold k × k identity matrices as submatrices. ⇒ σmin(X) = σmin(Z) = 1

So X and Z are well-conditioned iff their maximal singular values are controlled.

Claim: Pick Is and Js so that | det(A(Is, Js))| is maximized over all k × k submatrices.
Then

(3) sup
i,j
|X(i, j)| ≤ 1 and sup

i,j
|Z(i, j)| ≤ 1.

Proof: Use Cramer’s rule to bound entries of A21A−111 and A−111A12.

The bounds (3) imply that κ(X) ≤
√
1 + k(m− k) and κ(Z) ≤

√
1 + k(n− k).

So YES, a well-conditioned ID exists. (Finding it is another matter . . .)

What about CUR?

It is in general not well conditioned.

Conditioning of the interpolatory decomposition

Recall the interpolatory decomposion:

A ≈ X As Z
m× n m× k k × k k × n

where As = A(Is, Js) is a k×k submatrix of A.

X and Z hold k × k identity matrices as submatrices. ⇒ σmin(X) = σmin(Z) = 1

So X and Z are well-conditioned iff their maximal singular values are controlled.

Claim: Pick Is and Js so that | det(A(Is, Js))| is maximized over all k × k submatrices.
Then

(3) sup
i,j
|X(i, j)| ≤ 1 and sup

i,j
|Z(i, j)| ≤ 1.

Proof: Use Cramer’s rule to bound entries of A21A−111 and A−111A12.

The bounds (3) imply that κ(X) ≤
√
1 + k(m− k) and κ(Z) ≤

√
1 + k(n− k).

So YES, a well-conditioned ID exists. (Finding it is another matter . . .)

What about CUR? It is in general not well conditioned.

Optimality in terms of low rank approximation

Recall Eckart–Young theorem: inf{‖A− B‖ : B has rank k} = σk+1(A)

(Our default is that ‖ · ‖ refers to the `2 operator norm.)

Question: How close to optimal can you get with an ID or a CUR decomposition?

Very well studied subject.
Tends to be within factor ∼

√
kn of optimal in the worst case.

Often much better in practice, in particular when the singular values decay rapidly.

Theorem: Let A be an m× n matrix, and let k < min(m,n). There exists a matrix U of
size k × k, and index vector Is and Js of length k such that

‖A− CUR‖ ≤
(
1 + 2

√
k(
√
m +

√
n)
)
σk+1(A),

where
C = A(: , Js), R = A(Is, :).

References: Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L. (1997); Goreinov, S.A., Tyrtyshnikov,

E.E. (2001). Survey: Ballani, J. & Kressner, D. (2016).

Optimality in terms of low rank approximation

Recall Eckart–Young theorem: inf{‖A− B‖ : B has rank k} = σk+1(A)

(Our default is that ‖ · ‖ refers to the `2 operator norm.)

Question: How close to optimal can you get with an ID or a CUR decomposition?

Very well studied subject.
Tends to be within factor ∼

√
kn of optimal in the worst case.

Often much better in practice, in particular when the singular values decay rapidly.

Theorem: Let A be an m× n matrix, and let k < min(m,n). There exists a matrix U of
size k × k, and index vector Is and Js of length k such that

‖A− CUR‖ ≤
(
1 + 2

√
k(
√
m +

√
n)
)
σk+1(A),

where
C = A(: , Js), R = A(Is, :).

References: Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L. (1997); Goreinov, S.A., Tyrtyshnikov,

E.E. (2001). Survey: Ballani, J. & Kressner, D. (2016).

The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m× n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.

The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m× n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.
A classical solution — column pivoted QR: Simply execute k steps of Gram-Schmidt
orthogonalization on the columns of A. This results in a factorization

A(:, J) ≈ Q
[

R11 R12
]

m× n m× k k × k k × (n− k)

Set Js = J(1 : k), and pull out the factor R11 to form the column-ID:

A(:, J) ≈ QR11 [I R−111R12
]

= A(:, Js)Z(:, J).

The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m× n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.
A classical solution — column pivoted QR: Simply execute k steps of Gram-Schmidt
orthogonalization on the columns of A. This results in a factorization

A(:, J) ≈ Q
[

R11 R12
]

m× n m× k k × k k × (n− k)

Set Js = J(1 : k), and pull out the factor R11 to form the column-ID:

A(:, J) ≈ QR11 [I R−111R12
]

= A(:, Js)Z(:, J).

Notes:
• Orthonormality must be maintained scrupulously. Use Householder or “double” Gram-Schmidt.
• CPQR can in principle fail (e.g. the “Kahan counter example”), but in practice it works very well.
• Reasonably computationally efficient for matrices that fit in RAM.
• Sophisticated versions of CPQR have been developed that guarantee close to optimal column

selection, as well as bounding all elements of R−111R12. (Gu & Eisenstat SISC 1996)

The column selection problem: How do you efficiently compute a CUR/ID?
Problem formulation: Given an m× n matrix A, and a target rank k, find an index vector
Js of length k, and a matrix Z of size k × n such that

A ≈ A(:, Js)Z.

We additionally require Z to contain the k × k identity matrix as a submatrix.
A classical solution — column pivoted QR: Simply execute k steps of Gram-Schmidt
orthogonalization on the columns of A. This results in a factorization

A(:, J) ≈ Q
[

R11 R12
]

m× n m× k k × k k × (n− k)

Set Js = J(1 : k), and pull out the factor R11 to form the column-ID:

A(:, J) ≈ QR11 [I R−111R12
]

= A(:, Js)Z(:, J).

Questions:
• Can you efficiently process large matrices that do not fit in fast memory?
• Can you efficiently process huge sparse matrices?
• Can you improve on the practical speed of CPQR? Even on the O(mnk) complexity?

The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n

The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n

Proof: Assume that

(4) A = EF

and that

(5) F = F(:, Js)Z.

Then
A(: , Js)Z

(2)
= EF(: , Js)Z

(3)
= EF = A.

The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n

Question: How do you find a k × n matrix F such that A = EF for some E?

The column selection problem — through a sketch
Simple theorem: Let A be an m× n matrix of exact rank k. Suppose:
(1) We have by some means computed a factorization

A = E F.
m× n m× k k × n

(2) We have solved the column selection problem for F, so that

F = F(:, Js) Z.
k × n k × k k × n

Then, automatically, we have also solved the column selection problem for A:

A = A(:, Js) Z.
m× n m× k k × n

Question: How do you find a k × n matrix F such that A = EF for some E?

Randomized embedding! Draw a k ×m Gaussian random matrix ΩΩΩ and set

F = ΩΩΩA.

The probability that A = EF for some E is 1. (Of course, E = AF†.)

We do not need to know the factor E! It just never enters the computation.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Basic version: Use a Gaussian random matrix.

Complexity is O(mnk) for a general dense matrix. Very high practical speed.

Complexity is O(nnz(A)k) for a sparse matrix. Again, high practical speed.

In some ways optimal sampling. Well supported by theory, e.g.:

E‖A− AF†F‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

(Skeletonization slightly increases the error: ‖A− A(:, Js)Z‖ ≥ ‖A− AF†F‖.)

Note: The probability that a set of k columns is sampled is in a certain sense
proportional to its spanning volume. This is precisely the property we are after.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Use a Gaussian matrix ΩΩΩ, and incorporate power iteration.

Replace F = ΩΩΩA in step (2) by F = ΩΩΩ
(
AA∗

)qA for a small integer q. Say q = 1 or q = 2.
(I.e. do classical subspace iteration.)

This makes row(F) better aligned with the space spanned by the dominant k right
singular vectors of A.

Enhances accuracy, at cost of more work. Strong supporting theory. E.g., with p = k:

E
[
‖A− AF†F‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)

σk+1(A).

Re-orthonormalization is sometimes required to avoid loss of accuracy due to round-off.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Use a structured random matrix ΩΩΩ. (“Fast Johnson-Lindenstrauss transform”)

Idea: Use a matrix ΩΩΩ for which ΩΩΩA can be evaluated efficiently.

• Subsampled Randomized Fourier Transform (SRFT). Can be applied using FFT like
methods. Cost is O(mnlog(k)) instead of O(mnk).

• Sparse random matrix. Put only a couple of non-zero entries in each column.
(Entries can be restricted to ±1 for additional efficiency.) O(mn) cost attainable.

Works quite well in practice. SRFTs are almost as good as Gaussians.
However, far weaker theory is available.

Cannot be combined with power iteration.

Ailon/Chazelle 2006; Liberty/Rokhlin/Tygert/Woolfe 2006; Halko/Martinsson/Tropp 2011; Clarkson/Woodruff 2013.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Discrete empirical interpolation method (DEIM)

Idea: Use the sample matrix F to build an approximate truncated SVD of A.
(Form SVD of (AF†)F.) Requires one additional matrix-matrix multiplication.

Then perform partially pivoted LU on a thin matrix formed by the singular vectors to pick
the spanning columns.

DEIM sometimes produces slightly more optimal column selection than CPQR.

DEIM can be faster than doing CPQR directly. (Which is perhaps counterintuitive!)

Often excellent choice.

Reference: Sorensen & Embree SISC 2016.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: “Poor man’s DEIM”

Idea: Skip forming the SVD, and just do partially pivoted LU on F∗ directly!

Very economical. Works about as well as either CPQR, or regular DEIM.

Becomes particularly accurate with one step of power iteration.

Inspired by work by Trefethen and Schreiber (SIMAX 1990) on Gaussian elimination on random matrices.

Algorithm: Select spanning columns through a sketch
Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p. (Say p = 5 or p = 10.)
Outputs: An index vector Js and a k × n interpolation matrix Z such that A ≈ A(:, Js)Z.
(1) Draw a (k + p)×m random matrix ΩΩΩ;
(2) Form a (k + p)× n matrix F holding samples from the row space, F = ΩΩΩA;
(3) Do k steps of Gram-Schmidt on the columns of F to form the factorization F ≈ F(:, Js)Z.

Variation: Other possibilities:

• Can use sophisticated methods à la Gu-Eisenstat RRQR in Step (3). Leads to
methods that are well supported by theory. Little improvement in practice, however.

• Can use the sketch to form an SVD. Then estimate leverage scores, and draw the
columns through randomized sampling on the index set {1,2, . . . ,n} using the
resulting probability distribution. Rarely competitive in practice.
(However, approaches of this type can be powerful for huge matrices where the
matrix-vector multiplication is not accessible.)

Numerical experiments

Question: Which type of random matrix should I use for the sketching?

We will compare:

• Optimality: How good of a basis for the row space do you get?

• Computational cost: What is the practical speed?

Numerical experiments

Question: Which type of random matrix should I use for the sketching?

We will compare:

• Optimality: How good of a basis for the row space do you get?

• Computational cost: What is the practical speed?

Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)

100 200 300 400 500 600 700
10-1

100

101

102

103
Spectral norm errors

100 200 300 400 500 600 700

100

101

102

103
Frobenius norm errors

The “MNIST” test matrix is dense and of size 784× 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.

NOTE TO SELF: Check whether it should be TRANSPOSE for MINST???

Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)

100 200 300 400
101

102

103

104
Spectral norm errors

100 200 300 400
102

103

104

105
Frobenius norm errors

The “large” test matrix is taken from a linear programming example. It is sparse, of size 4 282× 8 617,

with 20 635 nonzero entries.

Comparison of different random matrices — accuracy

Compare picking ΩΩΩ as (1) Gaussian, (2) SRFT, (3) sparse random.
(To be precise, in these experiments, we sketched the column space, not the row space.)

50 100 150 200 250 300
10-5

10-4

10-3

10-2

10-1
Spectral norm errors

50 100 150 200 250 300

10-4

10-3

10-2

10-1
Frobenius norm errors

The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000× 1 000.

CHECK INFO ON DETAILS ON SNN!

Comparison of different random matrices — execution time

The runtime of applying different subspace embeddings ΩΩΩ ∈ R`×m to an arbitrary dense
matrix of size m× n, scaled with respect to the ambient dimension m, at different
embedding dimension l and a fixed number of columns n = 1000.

Note: Observe that the dimension of the sketch is quite high in these examples.

Numerical experiments

Question: How should I postprocess the matrix, once I have extracted a sketch?

We will compare:

• Column pivoted QR

• DEIM: Form approximate SVD, then partially pivoted LU on the singular vectors.

• Partially pivoted LU directly on the sketching matrix. (“Poor man’s DEIM”)

• (Form approximate RSVD, then compute “leverage scores”, then draw columns
based on the leverage scores.)

In these experiments, we use Gaussian random matrices.

Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the runtime.

The runtime of various pivoting schemes on the sketches of size n× `, scaled with
respect to the problem size n, at different embedding dimension `.

Observe that the dimension of the sketch is quite high in these examples.

Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “MNIST” test matrix is dense and of size 784× 60 000 where each column holds one hard drawn digit

between 0 and 9. The matrix is 80% sparse.

Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “YaleFace64x64” test matrix holds 165 face images, each with 64× 64 pixels. The pictures have

been normalized, to create a dense matrix of size 165× 4096.

Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “snn” test matrix has been used in the CUR literature before. It is an artificial sparse matrix of size

1 000× 1 000.

Comparison of different methods for solving the column selection problem

We compare different ways to “postprocess” the extracted sketch F = ΩΩΩA.

These are experiments to test the accuracy / optimality.

The “large” test matrix is taken from a linear programming example. It is sparse, of size 4 282× 8 617,

with 20 635 nonzero entries.

Lessons from numerical experiments: A bit tendentious, perhaps. . .

• Gaussian matrices are highly recommended. Excellent general purpose tools.

• “Sparse random” is very fast in all environments. Slightly less accurate.

• Subsampled trigonometric transforms are about as accurate as Gaussians.
When the rank is large (say 500 or 1000), you see substantial speed gain.

• We tested three methods for picking columns from the sketch matrix:
1. Column pivoted QR.
2. DEIM. (Compute approximate RSVD, then do LU with partial pivoting.)
3. Partially pivoted LU.

They are about equally good at picking columns. DEIM perhaps slight winner.
Partially pivoted LU (“Poor man’s DEIM”) is the fastest by a margin.

• (We could not get techniques based on leverage scores to perform competitively in
this environment. Did we do something wrong? Advice welcome.)

Conclusion: Keep it simple!

Manuscript with full details forthcoming; joint work with Yijun Dong of UT-Austin.

Lessons from numerical experiments: A bit tendentious, perhaps. . .

• Gaussian matrices are highly recommended. Excellent general purpose tools.

• “Sparse random” is very fast in all environments. Slightly less accurate.

• Subsampled trigonometric transforms are about as accurate as Gaussians.
When the rank is large (say 500 or 1000), you see substantial speed gain.

• We tested three methods for picking columns from the sketch matrix:
1. Column pivoted QR.
2. DEIM. (Compute approximate RSVD, then do LU with partial pivoting.)
3. Partially pivoted LU.

They are about equally good at picking columns. DEIM perhaps slight winner.
Partially pivoted LU (“Poor man’s DEIM”) is the fastest by a margin.

• (We could not get techniques based on leverage scores to perform competitively in
this environment. Did we do something wrong? Advice welcome.)

Conclusion: Keep it simple!

Manuscript with full details forthcoming; joint work with Yijun Dong of UT-Austin.

Outline of talk

1. [Done] Algorithms for computing CUR and interpolatory decompositions.

2. Randomized algorithms for computing full factorizations of matrices.
Column pivoted QR in particular.

Randomized algorithms for computing full factorizations of matrices

Let us consider some standard matrix decompositions:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD

Not rank revealing. Rank revealing.
Fast. Slow.

Randomized algorithms for computing full factorizations of matrices

Let us consider some standard matrix decompositions:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Not rank revealing. Rank revealing.
Fast. Slow.

Randomized algorithms for computing full factorizations of matrices

Let us consider some standard matrix decompositions:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Not rank revealing. Rank revealing.
Fast. Slow.

The factorizations on the left can be blocked, which makes it possible to cast almost all
flops in efficient matrix-matrix multiplications. They are “communication efficient”.

In contrast, the rank revealing factorizations to the right all depend on algorithms that
proceed through a sequence of rank-one updates to the matrix. This makes them slow
when executed on modern hardware (even on a single core).

“BLAS3 on the left, BLAS2 on the right.”

Mea culpa: Our treatment is simplistic. Much progress has been made on
communication efficient implementations of CPQR, SVD, etc. See L. Grigori E-NLA talk.

Randomized algorithms for computing full factorizations of matrices

Let us consider some standard matrix decompositions:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Not rank revealing. Rank revealing.
Fast. Slow.

2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10
0

10
1

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Computational time to factorize matrix

CPQR

QR

Matlab on a standard office desktop with an i7-6700k CPU, circa 2016.

Randomized algorithms for computing full factorizations of matrices

Let us consider some standard matrix decompositions:

• Unpivoted QR (QR) • Column pivoted QR (CPQR)
• Partially pivoted LU • Fully pivoted LU

• SVD
Not rank revealing. Rank revealing.
Fast. Slow.

Objective: Build rank-revealing algorithms with speed similar to unpivoted QR.

Note: All methods in the remainder of the talk have complexity O(n3).
Our objective is to improve the scaling factor.
(And to make them more rank revealing to boot!)

Randomized algorithms for computing full factorizations of matrices

The idea of using “randomized scrambling” to avoid having to slog through all the
rank-one updates has a long history. For instance:

D. Stott Parker (1995): Can you forego pivoting when solving Ax = b via Gaussian
elimination, and still retain (some) stability?

(1) Randomly mix the columns by right multiplying A by a random unitary matrix V:

Arand = AV.

(2) Perform unpivoted QR on the new matrix

Arand = UR

The resulting factorization
A = ArandV∗ = URV∗

is provably “rank-revealing” and leads to stable linear solves.

For computational efficiency, Parker introduced a random structured matrix (a bit ahead
of the times) called a “random butterfly transform”.

Further refinements — Demmel, Dumitriu, Holtz, Grigori, Dongarra, etc.

Randomized algorithms for computing full factorizations of matrices

The idea of using “randomized scrambling” to avoid having to slog through all the
rank-one updates has a long history. For instance:

D. Stott Parker (1995): Can you forego pivoting when solving Ax = b via Gaussian
elimination, and still retain (some) stability?

(1) Randomly mix the columns by right multiplying A by a random unitary matrix V:

Arand = AV.

(2) Perform unpivoted QR on the new matrix

Arand = UR

The resulting factorization
A = ArandV∗ = URV∗

is provably “rank-revealing” and leads to stable linear solves.

For computational efficiency, Parker introduced a random structured matrix (a bit ahead
of the times) called a “random butterfly transform”.

Further refinements — Demmel, Dumitriu, Holtz, Grigori, Dongarra, etc.

Randomized algorithms for computing full factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
A∗A

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

Randomized algorithms for computing full factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
A∗A

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

0 100 200 300 400
10

-10

10
-5

10
0

Exact and estimated singular values

singular values

CPQR

randURV q=0

randURV q=1

randURV q=2

100 200 300 400
10

-4

10
-3

10
-2

10
-1

Exact and estimated singular values

singular values

CPQR

randURV q=0

randURV q=1

randURV q=2

Randomized algorithms for computing full factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
A∗A

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10
0

10
1

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Computational time to factorize matrix

CPQR

randURV q=2

randURV q=1

randURV q=0

QR

Randomized algorithms for computing full factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
A∗A

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.

2000 3000 4000 5000 6000 7000 8000 9000 10000

n

10
-1

10
0

10
1

ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Computational time to factorize matrix - now with GPU numbers

CPQR

randURV q=2

randURV q=1

randURV q=0

QR

randURV q=2 (on gpu)

randURV q=1 (on gpu)

randURV q=0 (on gpu)

QR (on gpu)

Randomized algorithms for computing full factorizations of matrices

Improved URV factorization: Do q steps of power iteration (for q = 1 or q = 2, say):
1. Draw a Gaussian random matrix G and form Y =

(
A∗A

)qG.
2. Perform unpivoted QR on Y so that Y = VRtrash.
3. Perform unpivoted QR on AV so that AV = UR.
This results in a factorization

A =
(
AV
)
V∗ = URV∗

that is excellent at revealing the rank of A. Faster than CPQR, despite far more flops.
The method is extremely simple to code:

G = randn(n);

for j = 1:q

G = A*(A’*G);

end

[V,∼] = qr(G);

[U,R] = qr(A*V);

See arxiv 1812.06007 — joint with with Abinand Gopal.

Randomized pivoting in Householder QR

Given a dense n× n matrix A, compute a column pivoted QR factorization
A P ≈ Q R,

n× n n× n n× n n× n
where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

The pivot selection problem is very closely related to the problem of finding spanning
columns that we started with! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.

Randomized pivoting in Householder QR

Given a dense n× n matrix A, compute a column pivoted QR factorization
A P ≈ Q R,

n× n n× n n× n n× n
where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

The pivot selection problem is very closely related to the problem of finding spanning
columns that we started with! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.

Randomized pivoting in Householder QR
How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix G of size b×m and form

F = G A
b× n b×m m× n

The rows of F are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix F:

F P = Qtrash Rtrash

b× n n× n b× b b× n

Randomized pivoting in Householder QR

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n
Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

References: Martinsson arXiv:1505.08115; Duersch/Gu arXiv:1509.06820; Martinsson/Quintana-Ortí/Heavner/van de Geijn

SISC 2017; Duersch/Gu SISC 2017 and SIREV 2020.

Towards SVD like optimality: The randUTV algorithm

Given a dense n× n matrix A, compute a factorization

A = U T V∗,
n× n n× n n× n n× n

where T is upper triangular, U and V are unitary.
Observe: More general than CPQR since we used to insist that V be a permutation.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors.

Our objective is in each step to find an approximation to the linear subspace spanned by
the b dominant singular vectors of a matrix. The randomized range finder is perfect for
this, especially when a small number of power iterations are performed. Easier and
more natural than choosing pivoting vectors.

0 1000 2000 3000 4000

k

10
-4

10
-2

10
0

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000 4000

k

10
-4

10
-2

10
0

Frobenius norm errors

Rank-k approximation errors for the matrix “Fast Decay” of size 4000× 4000. The black
lines mark the theoretically minimal errors. The block size was b = 100 and the green

vertical lines mark block limits.

0 1000 2000 3000 4000

k

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000 4000

k

10
-3

10
-2

10
-1

10
0

Frobenius norm errors

Rank-k approximation errors for the matrix “BIE” of size 4000× 4000. The black lines
mark the theoretically minimal errors. The block size was b = 100 and the green vertical

lines mark block limits.

0 100 200 300

k

10
-4

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||

Spectral norm errors

0 100 200 300

k

10
-4

10
-3

10
-2

10
-1

10
0

Frobenius norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

Rank-k approximation errors for k ≤ 300 for the matrix “Gap” of size 4000× 4000. The
black lines mark the theoretically minimal errors. The block size was b = 100 and the

green vertical lines mark block limits.

500 1000 1500 2000 2500 3000 3500 4000

10
-4

10
-3

10
-2

10
-1

Fast decay

500 1000 1500 2000 2500 3000 3500 4000
10

-2

10
-1

S-shaped decay

0 50 100 150 200 250 300

k

10
0

D
ia

g
o

n
a

l
e

n
tr

ie
s

Gap

Singular values

CPQR

randUTV: q=2

500 1000 1500 2000 2500 3000 3500 4000

k

10
-3

10
-2

10
-1

Single layer BIE

The diagonal entries of the T-matrix in the UTV decom-
position (red) provide excellent approximations to the true
singular values (black).

A comparison of algorithms for computing rank-revealing factorizations

For the task of computing rank revealing factorizations, the classical choice has been
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).

A comparison of algorithms for computing rank-revealing factorizations

For the task of computing rank revealing factorizations, the classical choice has been
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTV

randCPQR

Very good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).

References on randomized algorithms for full factorizations:

Column pivoted QR:
• Martinsson arXiv:1505.08115, 2015.
• Duersch/Gu arXiv:1509.06820, 2015.
• Martinsson/Quintana-Ortí/Heavner/van de Geijn SISC 2017.
• Xiao/Gu/Langou, IEEE HiPC 2017. (And arXiv:1804.05138.)
• Duersch/Gu SISC 2017 and SIREV 2020.

UTV:
• Martinsson/Quintana-Ortí/Heavner, ACM TOMS, 2019.
• Heavner/Martinsson/Quintana-Ortí arXiv:2002.06960, 2020.

Fully pivoted LU:
• Melgaard/Gu arXiv:1511.08528, 2015.

Survey:
• Martinsson/Tropp, Acta Numerica 2020. (And arxiv:2002.01387)

Beating O(n3): Strassen-type methods

The essential feature of the randomized methods described is that they enable us to
expend almost all flops on the matrix-matrix computation, which is much faster per flop
than other matrix operations.

Alternatively, use asymptotically faster methods for the matrix-matrix multiplication:

• Strassen: O(n2.83). Stable. Reasonable breakeven point.

• Coppersmith-Winograd etc.: O(n2.37). Unstable. Unreasonable breakeven point.

Observation:

Randomization allows you to use “fast” matrix-matrix multiplication algorithms to
compute rank-revealing factorizations in a numerically stable way. In particular:

fast+stable matrix-matrix multiplication ⇒ fast+stable linear system solve

Original work: Demmel, Dumitriu, and Holtz; Num. Math., 108, 2007.

Key points:

• Interpolatory and CUR decompositions are useful and popular.
• Preserve properties like sparsity and non-negativity.
• Good for data interpretation.
• Storage efficient.
• Invaluable in the context of modern Fast Multipole Methods and Fast Direct Solvers.

• Randomized sketching is an excellent tool for computing the CUR/ID.
• Particularly effective for large sparse matrices.
• Great for huge matrices stored out of core.
• Improved asymptotic flop count — “fast Johnson-Lindenstrauss transforms”.
• As robust and accurate as deterministic methods.

Keep it simple, however! Gaussian sketch + partially pivoted LU excel together.

• Randomized algorithms for accelerating full factorizations of matrices.
• Enable blocking of column pivoted QR.
• Order of magnitude acceleration in some environments.
• The “randomized UTV” algorithm is very fast, and almost as precise as the SVD.

Particularly effective for out-of-core, GPU, distributed memory, etc.

Slides: http://users.oden.utexas.edu/∼pgm/main_talks/
Surveys:
• P.G. Martinsson and J. Tropp, “Randomized Numerical Linear Algebra: Foundations & Algorithms”.

Acta Numerica, 2020. Arxiv report 2002.01387.
Long survey summarizing major findings in the field in the past decade.

• P.G. Martinsson, “Randomized methods for matrix computations.” The Mathematics of Data,
IAS/Park City Mathematics Series, 25(4), pp. 187 - 231, 2018.
Book chapter that is written to be accessible to a broad audience. Focused on practical aspects
rather than theory.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), 2011, pp. 217-288.
Survey that describes the randomized SVD and its variations.

Tutorials, summer schools, etc:
• 2020: 3 lecture mini course on randomized linear algebra, KTH, Stockholm. Videos available.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.

Software:
• ID: http://tygert.com/software.html (ID, SRFT, CPQR, etc)
• RSVDPACK: https://github.com/sergeyvoronin (RSVD, randomized ID and CUR)
• HQRRP: https://github.com/flame/hqrrp/ (LAPACK compatible randomized CPQR)
• Randomized UTV: https://github.com/flame/randutv

