
Introduction to fast summation methods

Gunnar Martinsson
The University of Oxford

Slides available at: http://people.maths.ox.ac.uk/martinsson/

We consider a basic summation problem such as

ui =
N∑
j=1

G(xi − xj)qj, i = 1, 2, . . . , N,

where
{xi}Ni=1 is a given set of points in Rd, where
{qi}Ni=1 is a given set of real numbers which we call sources, and where
{ui}Ni=1 is a sought set of real numbers which we call potentials.

We have in mind the “kernel” G being a classical fundamental solution such as

G(x) = − 1
2π log |x|, or G(x) =

1
4π|x|, or G(x) =

eiκ|x|
4π|x|, or , . . .

“Evaluation of N potentials induced by N sources.”

We seek to:

• Reduce the computational complexity from O(N2) to O(N). (Or O(N logpN).)

• Meet any specified accuracy ε at tolerable cost. (Say ε = 10−3, 10−6, 10−9, . . .)
Having a knob that controls accuracy is very useful.

We consider a basic summation problem such as

ui =
N∑
j=1

G(xi − xj)qj, i = 1, 2, . . . , N,

where
{xi}Ni=1 is a given set of points in Rd, where
{qi}Ni=1 is a given set of real numbers which we call sources, and where
{ui}Ni=1 is a sought set of real numbers which we call potentials.

We have in mind the “kernel” G being a classical fundamental solution such as

G(x) = − 1
2π log |x|, or G(x) =

1
4π|x|, or G(x) =

eiκ|x|
4π|x|, or , . . .

“Evaluation of N potentials induced by N sources.”

We seek to:

• Reduce the computational complexity from O(N2) to O(N). (Or O(N logpN).)

• Meet any specified accuracy ε at tolerable cost. (Say ε = 10−3, 10−6, 10−9, . . .)

Having a knob that controls accuracy is very useful.

We consider a basic summation problem such as

ui =
N∑
j=1

G(xi − xj)qj, i = 1, 2, . . . , N,

where
{xi}Ni=1 is a given set of points in Rd, where
{qi}Ni=1 is a given set of real numbers which we call sources, and where
{ui}Ni=1 is a sought set of real numbers which we call potentials.

We have in mind the “kernel” G being a classical fundamental solution such as

G(x) = − 1
2π log |x|, or G(x) =

1
4π|x|, or G(x) =

eiκ|x|
4π|x|, or , . . .

“Evaluation of N potentials induced by N sources.”

We seek to:

• Reduce the computational complexity from O(N2) to O(N). (Or O(N logpN).)

• Meet any specified accuracy ε at tolerable cost. (Say ε = 10−3, 10−6, 10−9, . . .)
Having a knob that controls accuracy is very useful.

Easy special case. Suppose the points {xi}Ni=1 form a uniform lattice:

Then the sum simplifies to a convolution on a lattice, which is diagonalized by the
discrete Fourier transform F . In other words, we have u = G ∗ q in physical space, so
F(u) = F(G)F(q) in Fourier space, and consequently (up to multiplicative factors)

u = F−1 [F(G)F(q)] .

F and F−1 can be applied rapidly via the FFT, and the resulting computational method is
exact and very fast. (Some fussing is needed to get boundary conditions correct, etc.)

Fairly easy special case. Suppose the points {xi}Ni=1 are “evenly” distributed in a box:

Here we could introduce an artificial uniform grid. Then we would map the actual
charges to some “equivalent charges” on nearby grid points. Then use the FFT to
evaluate long range interactions, and compute local corrections for near field
interactions. Slightly messy, but works fine.

Alternative strategy: Use a non-uniform FFT.

Fairly easy special case. Suppose the points {xi}Ni=1 are “evenly” distributed in a box:

Here we could introduce an artificial uniform grid. Then we would map the actual
charges to some “equivalent charges” on nearby grid points. Then use the FFT to
evaluate long range interactions, and compute local corrections for near field
interactions. Slightly messy, but works fine.

Alternative strategy: Use a non-uniform FFT.

Fairly easy special case. Suppose the points {xi}Ni=1 are “evenly” distributed in a box:

Here we could introduce an artificial uniform grid. Then we would map the actual
charges to some “equivalent charges” on nearby grid points. Then use the FFT to
evaluate long range interactions, and compute local corrections for near field
interactions. Slightly messy, but works fine.

Alternative strategy: Use a non-uniform FFT.

Less easy case. What if the points are not evenly distributed at all ... ?

Say we have n points along the curve shown. Then the uniform grid will need
N = O(n)×O(n) points. So even using the FFT, we get complexity ∼ N logN ∼ n2 logn.
Geometries that involve local refinement would be even worse.

Less easy case. What if the points are not evenly distributed at all ... ?

Say we have n points along the curve shown. Then the uniform grid will need
N = O(n)×O(n) points. So even using the FFT, we get complexity ∼ N logN ∼ n2 logn.
Geometries that involve local refinement would be even worse.

The Fast Multipole Method (early 1980’s):

• Can handle non-uniform distributions.
• Linear complexity.
• Any requested tolerance ε can be met.
The price to pay is that complexity will be
O((log(1/ε))pN).

L. Greengard V. Rokhlin

Problem definition: Consider the task of evaluating the sum

(1) ui =
N∑
j=1

G(xi − xj)qj, i = 1, 2, . . . , N,

where
{xi}Ni=1 is a given set of points in a square Ω in the plane, where
{qi}Ni=1 is a given set of real numbers which we call sources, and where
{ui}Ni=1 is a sought set of real numbers which we call potentials.

The kernel G is given by

(2) G(x − y) =

{
log(x − y), when x 6= y
0 when x = y .

Note: A point x ∈ R2 is represented by the complex number

x = x1 + i x2 ∈ C.

Then the kernel in (2) is a complex representation of the fundamental solution to the
Laplace equation in R2 since

log |x − y | = Real
(
log(x − y)

)
.

(The factor of −1/2π is suppressed.)

Special case: Sources and targets are separate

Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

log(xi−yj)qj, i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

log(x − yj)qj

Direct evaluation
Cost is O(MN).

But recall that log(x − y) admits the separation of variables

log
(
x − y

)
= log

(
x − c

)
1 +

∞∑
p=1

−1
p

1
(x − c)p

(y − c)p,

where c is the center of the source box.

Special case: Sources and targets are separate

Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

log(xi−yj)qj, i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

log(x − yj)qj

Direct evaluation
Cost is O(MN).

But recall that log(x − y) admits the separation of variables

log
(
x − y

)
= log

(
x − c

)
1 +

∞∑
p=1

−1
p

1
(x − c)p

(y − c)p,

where c is the center of the source box.

Special case: Sources and targets are separate

Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

log(xi−yj)qj, i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

log(x − yj)qj

Multipole expansion:

It follows that u(x) = log(x − c)q̂0 +
∞∑
p=1

1
(x − c)p

q̂p.

where q̂0 =
n∑
j

qj and q̂p = −1p

N∑
j=1

(
yj − c)p qj.

Special case: Sources and targets are separate

Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

log(xi−yj)qj, i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

log(x − yj)qj

Multipole expansion — truncated to P + 1 terms:

It follows that u(x) = log(x − c)q̂0 +
P∑

p=1

1
(x − c)p

q̂p + EP where q̂p = −1p

N∑
j=1

(
yj − c)p qj.

The approximation error EP scales as EP ∼
(r
R

)P
=

(√
2a
3a

)P
=

(√
2
3

)P
, where

r =
√
2a is the radius of the magenta circle, and R = 3a is the radius of the green circle.

Special case: Sources and targets are separate

Charges qj at locations {yj}Nj=1.

Potentials ui at locations {xi}Mi=1.

ui =
N∑
j=1

log(xi−yj)qj, i = 1, 2, . . . , M

ui = u(xi), i = 1, 2, . . . , M

u(x) =
N∑
j=1

log(x − yj)qj

Multipole expansion — truncated to P + 1 terms — costs:

Evaluate q̂p = −1p

N∑
j=1

(
yj − c)p qj for p = 0, 1, . . . , P — cost is O(N P).

Evaluate ui = log(xi − c) q̂0 +
P∑

p=1

1
(xi − c)p

q̂p — cost is O(M P).

The cost has been reduced from O(MN) to O(P(M + N)).

Definition: Let Ω be a square with center c = (c1, c2) and side length 2a. Then we say
that a point x = (x1, x2) ∈ R2 is well-separated from Ω if

max(|x1 − c1|, |x2 − c2|) ≥ 3a.

6a 2a c
Ω

Any point on or outside of the dashed square is well-separated from Ω.
Blue points are well-separated. Red points are not.

Definition:

Let Ω be a square with center c containing sources {qj}nj=1 at locations {yj}nj=1.

The outgoing expansion of Ω (to order P) is the vector q̂ ∈ CP+1 with numbers

q̂0 =
n∑

j=1
qj,

q̂p = − 1
p

n∑
j=1

(yj − c)j qj, p = 1,2,3, . . . ,P.

The outgoing expansion compactly encodes source strengths and source locations.

It allows you to evaluate the potential u caused by the sources in Ω (to precision that
depends on P and the distance to the sources).

“outgoing expansion” = “multipole expansion”

Single-level Barnes-Hut

We seek to evaluate all pairwise interactions between N particles in a box;
for now, assume that the particle locations {xi}Ni=1 are fairly evenly distributed.

Single-level Barnes-Hut

Place a square grid of boxes on top of the computational box.

Assume each box holds about m particles (so there are about N/m boxes).

Given a tolerance ε, pick P so that, roughly, (
√
2/3)P < ε (... details left out ...).

For each box, compute its outgoing expansion.

Single-level Barnes-Hut

How do you evaluate the potentials at the blue locations?

Single-level Barnes-Hut

How do you evaluate the potentials at the blue locations?

Directly evaluate interactions with the particles close by.

For all long-distance interactions, use the outgoing expansion!

Cost of the single-level Barnes-Hut algorithm:

Let m denote the number of particles in a box.

For each particle, we need to do the following:

Step 1: Evaluate the P outgoing moments: P
Step 2: Evaluate potentials from outgoing expansions: ((N/m)− 9)P
Step 3: Evaluate potentials from close particles: 9m

Using that P is a smallish constant we find

cost ∼ N2

m + Nm.

Set m ∼ N1/2 to obtain:
cost ∼ N1.5.

We’re doing better than O(N2) but still not great.

To get the asymptotic cost down further, we need a hierarchy of boxes (or a “tree of
boxes”) on the computational domain:

Level 0

1

Level 1

2

3

4

5

Level 2

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Level 3

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

For each box in the tree, compute its outgoing expansion.

How do you find the potential at the locations marked in blue?

Tessellate the remainder of the domain using as large boxes as you can, with the
constraint that the target box has to be well-separated from every box that is used.

Then replace the original sources in each well-separated box by the corresponding
multipole expansion.
The work required to evaluate one potential is now O(logN).

Cost of the multi-level Barnes-Hut algorithm:

Suppose there are L levels in the tree, and that there are about m particles in each box
so that L ≈ log4(N/m).

We let m be a fixed number (say m ≈ 200) so L ∼ log(N).

Observation: On each level, there are at most 27 well-separated boxes.

For each particle xi, we need to do the following:

Step 1: Evaluate the P outgoing moments for the L boxes holding xi: LP
Step 2: Evaluate potentials from outgoing expansions: 27LP
Step 3: Evaluate potentials from neighbors: 9m

Using that P is a smallish constant (say P = 20) we find

cost ∼ N L ∼ N log(N).

This is not bad.

The Barnes-Hut algorithm has asymptotic cost O(N logN) (at constant precision).

We will next improve the accuracy to the optimal O(N).

Recall: We partition into L ∼ logN levels. Then the costs are:

Asymptotic
cost

How get to
O(N)?

Stage 1 — compute all outgoing expansions: O(N logN) Easy!
Each particle communicates with all L boxes that
contain it.
Stage 2 — compute all far field potentials: O(N logN) ???
Each particle gathers contributions from ∼ 27L
outgoing expansions.
Stage 3 — compute all near field potentials: O(N) No need to fix!
Each particle gathers contributions directly from all
particles in the same box, and from all particles in
the 8 immediate neighbors.

Reducing the cost of computing all outgoing expansions from O(N logN) to O(N):

For every leaf box τ , we directly compute the outgoing expansion from the source vector

q̂τ = Cτ q(Jτ).

(Just as before.)

Reducing the cost of computing all out-going expansions from O(N logN) to O(N):

Now consider a box Ωτ made up of four leaves: Ωτ = Ωσ1 ∪ Ωσ2 ∪ Ωσ3 ∪ Ωσ4
We seek an outgoing expansion that is valid outside the dotted magenta line.
In this region, the outgoing expansions of the children {σ1, σ2, σ3, σ4} are valid.
“Move” these expansions via a so called outgoing-from-outgoing translation operator:

q̂τ =
4∑

j=1
T(ofo)
τ,σj q̂σj .

Reducing the cost of computing all out-going expansions from O(N logN) to O(N):

Now consider a box Ωτ made up of four leaves: Ωτ = Ωσ1 ∪ Ωσ2 ∪ Ωσ3 ∪ Ωσ4
We seek an outgoing expansion that is valid outside the dotted magenta line.
In this region, the outgoing expansions of the children {σ1, σ2, σ3, σ4} are valid.
“Move” these expansions via a so called outgoing-from-outgoing translation operator:

q̂τ =
4∑

j=1
T(ofo)
τ,σj q̂σj .

Cost of constructing all outgoing expansions:

(Recall: L ∼ logN is the number of levels. P is the length of the expansion.)

Level L (the leaves) “outgoing from sources” NP
Level L− 1 (next coarser) “outgoing from outgoing” (Nboxes)P2

Level L− 2 “outgoing from outgoing” (Nboxes/4)P2

Level L− 3 “outgoing from outgoing” (Nboxes/16)P2

Level L− 4 “outgoing from outgoing” (Nboxes/64)P2

...
Total: NP + NboxesP2

We succeeded in attaining O(N) cost for computing all outgoing expansions.

Next we will device an O(N) scheme for computing so called incoming expansions.

The incoming expansion

Let Ωτ be a box (green).

Let cτ be the center of τ (black).

Let I(far)τ denote a list of all sources well-separated
from τ (red), and let φ denote the potential

φ(x) =
∑

j∈I(far)
τ

log(xi − yj)qj, x ∈ Ωτ .

The incoming expansion of τ is a vector û = [ûp]Pp=0 of complex numbers such that

(3) φ(x) ≈
P∑

p=0
ûp(x − cτ)p, x ∈ Ωτ .

The incoming expansion is a compact representation of the field generated by sources
that are well-separated from Ωτ (it encodes both the source locations and magnitudes).

Recall:

φ(x) ≈
P∑

p=0
ûp(x − cτ)p, x ∈ Ωτ .

Recall that each ûp = ûrp + i ûip is a complex number.
Taking real parts, and using polar coordinates,

x − cτ = r eiθ,

we get

Real(φ(x)) =ûr0+

ûr1 r
1 cos(1θ)− ûi1 r

1 sin(1θ) + · · ·
ûr2 r

2 cos(2θ)− ûi2 r
2 sin(2θ) + · · ·

ûr3 r
3 cos(3θ)− ûi3 r

3 sin(3θ) + · · ·

Classical expansion in harmonics.

Computing the incoming expansions for all boxes in O(N) operations

We seek to construct the incoming expansion for box τ (marked in green).
We use the outgoing expansions for all well-separated boxes:

ûτ =
∑

σ∈L(int)
τ

T(ifo)
τ,σ q̂σ

where Tτ,σ is the incoming-from-outgoing translation operator, and L(int)
τ is the

interaction list of box τ .

Computing the incoming expansions for all boxes in O(N) operations

We seek to construct the incoming expansion for box τ (marked in green):

Transfer the incoming expansion from the parent box, ν, and then add all contributions
from boxes in the interaction list:

ûτ = T(ifi)
τ,ν ûν +

∑
σ∈L(int)

τ

T(ifo)
τ,σ q̂σ.

Computing the incoming expansions for all boxes in O(N) operations

We seek to construct the incoming expansion for box τ (marked in green):
Transfer the incoming expansion from the parent box, ν, and then add all contributions
from boxes in the interaction list:

ûτ = T(ifi)
τ,ν ûν +

∑
σ∈L(int)

τ

T(ifo)
τ,σ q̂σ.

Summary of the Fast Multipole Method

As an initialization step, build a hierarchical tree of boxes to organize the points.

1. Loop over all leaf boxes in the tree.
For each box, compute its outgoing expansion directly from the sources it contains.

2. Loop over all parent boxes, going from smaller to bigger boxes.
For each parent box, compute its outgoing expansion from the expansions of its
children.

3. Loop over all parent boxes, going from bigger to smaller boxes.
For each parent box, compute its incoming expansion by combining a contribution
from the incoming expansion of its parent, with the contributions from outgoing
boxes in its “interaction list”.

4. Loop over all leaf boxes.
For each leaf box, evaluate the contribution from the far-field using the incoming
expansion, and add contributions from the near-field via direct evaluation.

Non-uniform particle distributions:
The ability to handle non-uniform distributions is a key advantage of the FMM.
Everything generalizes nicely (some tweaks required).
As an illustration, consider the following set of source locations:

Non-uniform particle distributions:
The ability to handle non-uniform distributions is a key advantage of the FMM.
Everything generalizes nicely (some tweaks required).
As an illustration, consider the following set of source locations:

Create boxes by adaptively refining the tree, keeping only non-empty boxes.

Picture from workshop homepage at https://icerm.brown.edu/programs/sp-s18/w2/

Important: This introduction to the FMM was brief and highly incomplete!

Extension to 3D: In 2D, the “interaction list” has at most 27 elements (27 = 62 − 32). In
3D, it typically has 189 elements (189 = 63 − 33). Moreover, multipole expansions in 3D
converge much more slowly. Instead of ε ≈ (

√
3/2)p/2, we have ε ≈ (1/

√
3)
√p. This

makes the cost of evaluating all “incoming-from-outgoing” translation operators
expensive. This cost can be greatly reduced, however, by using more sophisticated
translation operators (so called “diagonal forms”). Biros talk: Very high dim!

Helmholtz equation: If the whole computational domain is small in terms of
wave-lengths, then the FMM for Helmholtz equation looks very similar to what we just
showed. However, if the box is large in terms of wave-lengths, then very different
machinery is required. The high-frequency FMM is much more subtle! It does not rely
on rank-considerations alone.

Coding the FMM well is not that easy: If you can, it is recommended to use a
packaged version. The FMM for Laplace’s equation in two dimensions is OK, but 3D is
harder, and wideband Helmholtz is substantially harder.

Elliptic equations on lattices. Joint work with Adrianna Gillman.

Consider the discrete Poisson equation

[Au](n) = f (n), n ∈ Z2,

where A is the discrete Laplace operator

[Au](n) = 4u(n)− u(ns)− u(ne)− u(nn)− u(nw),

where n ∈ Z2 is a node in the lattice, and where
{ns, ne, nn, nw} are the nodes that are immediate neighbors
of n to the south, east, north, and west of n, respectively.

n nenw

ns

nn

We are interested in the discrete Poisson equation as a mathematical object in its own
right; not as an approximation to the continuum problem −∆u = f .

Equations of this type come up when studying random walks on lattices, in quantum
mechanical models, in modeling mechanical trusses and frames, and many more.

Long-range interactions are very similar to those for the analogous continuum
equations, but short range interactions are fundamentally different.

Recall: We are interested in the discrete Poisson equation

(4) [Au](n) = f (n), n ∈ Z2,

where A is the discrete Laplace operator [Au](n) = 4u(n)−u(ns)−u(ne)−u(nn)−u(nw).

We introduce the Fourier transform ũ(t) = [Fu](t) =
1
2π

∑
n∈Z2

u(n)e−in·t, t ∈ [−π, π]2.

Then F [Au](t) = σ(t)ũ(t), where

σ(t) = 4− eit1 − e−it1 − eit2 − e−it2 = 2
(
sin t1

2

)2
+ 2

(
sin t2

2

)2
= |t|2 + O(|t|4).

The equation (4) gets diagonal in Fourier space, σ(t)ũ(t) = f̃ (t), so its solution is

u(n) = F−1
[

1
σ(t)

f̃ (t)

]
(n), n ∈ Z2.

Multiplication in Fourier space corresponds to convolution in physical space, so in fact

u(n) = [φ ∗ f](n) =
∑

m∈Z2
φ(n−m) f (m), n ∈ Z2,

where φ is the fundamental solution

φ(n) = F−1
[

1
σ(t)

]
(n) =

1
2π

∫
[−π,π]2

eit·n 1
σ(t)

dt, n ∈ Z2.

Summary: The solution of the discrete Laplace equation

(5) [Au](n) = f (n), n ∈ Z2,

is given by a convolution against the lattice fundamental solution φ so that

u(n) =
∑

m∈Z2
φ(n−m) f (m), n ∈ Z2.

Plot of φ = F−1
[

1
σ(t)

]
:

Note: There is a technical issue in that 1
σ(t)
∼ 1
|t|2, so the Fourier integral is not

well-defined. What is shown is “regularized” version φ(n) =
1
2π

∫
(−π,π)2

e−in·t − 1
σ(t)

dt.

Summary: The solution of the discrete Laplace equation

(6) [Au](n) = f (n), n ∈ Z2,

is given by a convolution against the lattice fundamental solution φ so that

u(n) =
∑

m∈Z2
φ(n−m) f (m), n ∈ Z2.

Claim: The sum typeset in red is amenable to fast summation techniques analogous to
the FMM. Everything works very well.

Special case: A uniform load contained in a box.

Evaluate u(n) =
∑

m∈Z2
φ(n−m) f (m) where f is supported on the red nodes.

This works fine. Complexity O(N) where N is number of support nodes.

Hard to compete with the FFT, despite the incorrect boundary conditions.

Special case: A sparse load.

Evaluate u(n) =
∑

m∈Z2
φ(n−m) f (m) where f is supported on the red nodes.

Works great! Complexity O(Nload), where Nload denotes the number of support nodes.

There is very little competition in this environment. (I think . . . ???)

Special case: A lattice with defects.

Suppose the lattice has a few deviations from perfect periodicity.

Works great! Complexity is O(Nload + N3
defect), where Nload is the number of supported

nodes, and Ndefect is the number of deviations from periodicity.

Can actually be reduced to O(Nload + Ndefect) in many cases.

Special case: A finite lattice.

Consider a discrete boundary value problem
Au = f , on Ωi,

u = g, on ΓD,

∂νu = h, on ΓN,

whereA is the discrete Laplace operator, and where
Ωi are the interior nodes,
ΓD is the Dirichlet boundary,
ΓN is the Neumann boundary.

Using the discrete fundamental solution and “fast” algorithms, this problem can be
solved using O(Nboundary) operations, where, of course, Nboundary refers to the number
of boundary nodes.

Special case: A finite lattice — now with defects.

And yes, this problem can also be solved in complexity

O(Nload + Nboundary + Np
defect),

where p ∈ [1,3], depending on circumstances.

