
Accelerating direct solvers using randomized methods

Gunnar Martinsson
The University of Colorado at Boulder

Collaborators: Robert van de Geijn, Adrianna Gillman, Nathan Heavner (PhD student),
Grigorio Quintana-Ortí, Sergey Voronin (former postdoc).

Slides: Google “Gunnar Martinsson,” then go to “Talks” tab.

Research support by:

Synopsis: The talk will describe techniques for computing a low-rank approximation to
a dense matrix through the use of randomized projections.

Context: Recent work on “Fast Direct Solvers” that exploit low-rank structures in
otherwise dense matrices→ “frontal matrices” in nested dissection, discretized
Boundary Integral Operators, Dirichlet-to-Neumann operators, etc.

Environment 1: Given a dense m× n matrix A (whose singular values decay), compute
an approximate factorization

A ≈ Q B
m× n m× k k × n

where k � min(min). Typically, we are given a tolerance and need to determine k.

Environment 2: Given a dense m× n matrix A (with m ≥ n) compute QR factorization

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n).

Environment 3: Given a rank-structured matrix A (HSS, HBS, HODLR, etc), compute a
data-sparse representation of it.

Theme: Improve efficiency via blocking and reducing communication.

Environment 1 — low rank approximation of matrices
Let A denote a given m× n matrix. (We implicitly assume that its singular values decay,
so that low-rank approximation makes sense.) Let ε > 0 be a given tolerance.

We then seek factors Q and B such that
A = Q B + E,

m× n m× k k × n m× n
where the error E satisfies

‖E‖ ≤ ε.

We typically also require that Q has orthonormal columns.

• Determining a reasonably optimal rank k is part of the problem.
We assume that k is substantially smaller than min(m,n).

• Standard software (LAPACK, Matlab, etc) lack built-in functionality for these tasks.

• Objective: Build “shell” algorithms that draw on BLAS3, LAPACK, etc, to solve the
low-rank approximation problems efficiently.

• Simple post-processing of the small factor B allows the computation of approximate
SVD A ≈ Uk Dk V∗k, and other standard factorizations.

Environment 1 — low rank approximation of matrices
Let A denote a given m× n matrix. (We implicitly assume that its singular values decay,
so that low-rank approximation makes sense.) Let ε > 0 be a given tolerance.

We then seek factors Q and B such that
A = Q B + E,

m× n m× k k × n m× n
where the error E satisfies

‖E‖ ≤ ε.

We typically also require that Q has orthonormal columns.

References:
• P.G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the decomposition of

matrices”. Applied and Computational Harmonic Analysis, 30(1), pp. 47–68, 2011.
Based on 2006 Yale CS research report YALEU/DCS/RR-1361.

• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions.” SIAM Review, 53(2), pp. 217–288, 2011.

• P.G. Martinsson and S. Voronin, “A randomized blocked algorithm for efficiently computing
rank-revealing factorizations of matrices.” SIAM J. on Scientific Comp., 38(5), S485 – S507, 2016.

An algorithmic template
We build a basis {qj}kj=1 for the column space of A, using a “greedy” algorithm:

(1) Q0 = []; B0 = []; A0 = A; j = 0;
(2) while ‖Aj‖ > ε

(3) j = j + 1
(4) Pick a unit vector qj ∈ ran(Aj−1).
(5) bj = q∗j Aj−1

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1
bj

]
(8) Aj = Aj−1 − qjbj
(9) end while

Simple condition: On line (4), pick qj as the largest column of Aj−1.
Then we recover column-pivoted Gram-Schmidt, which is often an excellent algorithm.
(Round-off errors make some minor modifications necessary; we will discuss this later.)
Problem 1: Hard to block efficiently. (Can be done, via, e.g. “tournament pivoting”.)
Problem 2: “Typically” gives reasonably close to optimal results, but can be quite bad.

An algorithmic template
We build a basis {qj}kj=1 for the column space of A, using a “greedy” algorithm:

(1) Q0 = []; B0 = []; A0 = A; j = 0;
(2) while ‖Aj‖ > ε

(3) j = j + 1
(4) Pick a unit vector qj ∈ ran(Aj−1).
(5) bj = q∗j Aj−1

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1
bj

]
(8) Aj = Aj−1 − qjbj
(9) end while

Optimal condition: On line (4), pick qj as a minimizer of

min
‖q‖=1

‖Aj−1 − qq∗Aj−1‖.

Problem: Computationally hard to find the minimizer.

An algorithmic template — now randomized
We build a basis {qj}kj=1 for the column space of A, using a “greedy” algorithm:

(1) Q0 = []; B0 = []; A0 = A; j = 0;
(2) while ‖Aj‖ > ε

(3) j = j + 1
(4a) Draw a random vector ω whose entries are iid Gaussian random variables.
(4b) Set y = Aj−1ω.
(4c) Normalize so that qj = 1

‖y‖ y.

(5) bj = q∗j Aj−1

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1
bj

]
(8) Aj = Aj−1 − qjbj
(9) end while

Simple to implement.
Often reasonably close to optimal.
Very easy to block.

An algorithmic template — now randomized and blocked
Pick a “block size” `.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× ` random matrix R.
(4) Compute the m× ` matrix Qnew = qr(AR,0).
(5) Bnew = Q∗newA
(6) Q = [Q Qnew]

(7) B =

[
B

Bnew

]
(8) A = A−QnewBnew

(9) end while

The scheme presented works very well for matrices whose singular values decay rapidly.
Note that every line can be executed by BLAS3, except (4) for which we use LAPACK.
When the singular values do not decay rapidly, we apply a power of A.

An algorithmic template — now randomized, blocked, and accuracy-enhanced
Pick a “block size” `, and a small integer q, say q = 1, or q = 2.

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× ` random matrix R.
(4) Compute the m× ` matrix Qnew = qr((AA∗)qAR,0).
(5) Bnew = Q∗newA
(6) Q = [Q Qnew]

(7) B =

[
B

Bnew

]
(8) A = A−QnewBnew

(9) end while

The only thing remaining is to deal with loss of orthonormality due to round-off errors.

An algorithmic template — now randomized, blocked, and accuracy-enhanced
Pick a “block size” `, and a small integer q, say q = 0, q = 1, or q = 2.

The “rand-QB” algorithm

(1) Q = []; B = [];
(2) while ‖A‖ > ε

(3) Draw an n× ` random matrix R.
(4a) Compute the m× ` matrix Y = qr((AA∗)qAR,0).
(4b) Reproject Y away from the range of Q: Y = Y−Q(Q∗Y).
(4c) Compute the m× ` matrix Qnew = qr(Y,0).
(5) Bnew = Q∗newA
(6) Q = [Q Qnew]

(7) B =

[
B

Bnew

]
(8) A = A−QnewBnew

(9) end while

With minor modifications, we can avoid updating A. This is crucial for sparse matrices,
and in situations where we can only access A via its action on vectors.

Given the “QB-factorization,” standard factorizations can easily be computed

Suppose that you have an approximate factorization

A = QB + E,

where Q is orthonormal and ‖E‖ is small.

How to get an approximate SVD: Perform a full SVD of the small matrix B:

[Û,D,V] = svd(B, ’econ’).

Then simply set U = QÛ and you will get a partial SVD

A = UDV∗ + E.

Note that the error is exactly the same as the error in the QB.

How to get an approximate QR: Perform a full QR of the small matrix B:

[Q̂,R,P] = qr(B,0).

Then simply set Q̃ = QQ̂ and you will get a partial QR

AP = Q̃R + E.

Again, the error is exactly the same as the error in the QB.

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 i
n

 s
e

c
o

n
d

s

n

Time for compression of n x n matrix. k=100 kstep=20

column pivoted QR

randomized QB (q=0)

randomized QB (q=1)

randomized QB (q=2)

randomized QB on GPU (q=0)

randomized QB on GPU (q=1)

randomized QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 s

e
c
o
n
d
s

n

Time for compression of n x n matrix. k=200 kstep=40

column pivoted QR

rand− QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

rand−QB on GPU (q=0)

rand−QB on GPU (q=1)

rand−QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.

Example: Accuracy for synthetic matrix with rapidly decaying spectrum

Consider a matrix defined by its SVD

A = U D V∗

m× n m× r r × r r × n
where r = min(m,n), where U and V are random orthonormal matrices, and

D = diag(1, α, α2, α3, . . .),

where α is chosen so that
α90 = 10−15.

In this example, n = 400.

Error ‖A− Ak‖ for the blocked (` = 20) version (A is 400× 400)

0 20 40 60 80 100

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

||
A

 −
 A

k
||

k

Spectral norm

0 20 40 60 80 100

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

Frobenius norm norm

svds

col−piv−QR

rand−QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

svds

col−piv−QR

rand−QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

Example: Accuracy for synthetic matrix with slowly decaying spectrum

Consider a matrix defined by its SVD

A = U D V∗

m× n m× r r × r r × n
where r = min(m,n), where U and V are random orthonormal matrices, and

D = diag(σ1, σ2, σ3, . . .),

where
σj =

1√
1 + 3 (j − 1)

.

In this example, m = 500 and n = 300.

Error ‖A− Ak‖ for the blocked (` = 20) version (A is 500× 300)

0 20 40 60 80 100

10
−2

10
−1

10
0

||
A

 −
 A

k
||

k

Spectral norm

0 20 40 60 80 100

10
−1

10
0

k

Frobenius norm norm

svds

col−piv−QR

rand−QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

svds

col−piv−QR

rand−QB (q=0)

rand−QB (q=1)

rand−QB (q=2)

Randomized low-rank approximation of matrices

The methods described so far are very easy to implement. Can be done in Matlab, or in
C/Fortran using standard subroutines (dgemm, dgeqrf).

Computational speed is good; in particular on GPUs.

The accuracy is very good. With two sweeps of power iteration (q = 2), it compares very
favorably to column-pivoted QR, and is almost as good as SVD.

Caveat: This is efficient only when the rank k is small, k � min(m,n).

Question: Can we device a method that works well for any rank?

Randomized low-rank approximation of matrices

The methods described so far are very easy to implement. Can be done in Matlab, or in
C/Fortran using standard subroutines (dgemm, dgeqrf).

Computational speed is good; in particular on GPUs.

The accuracy is very good. With two sweeps of power iteration (q = 2), it compares very
favorably to column-pivoted QR, and is almost as good as SVD.

Caveat: This is efficient only when the rank k is small, k � min(m,n).

Question: Can we device a method that works well for any rank?

Environment 2: Computing a traditional QR factorization

Given a dense m× n matrix A (with m ≥ n) compute QR (or RRQR)

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n). As usual, Q should be
ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Qj is a product of Householder reflectors. Each Pj is a permutation matrix
computed via randomized sampling.

Environment 2: Computing a traditional QR factorization
How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix G of size b×m and form

Y = G A
b× n b×m m× n

The rows of Y are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix Y:

Y P = Qtrash Rtrash

b× n n× n b× b b× n

Environment 2: Computing a traditional QR factorization

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

Environment 2: Computing a traditional QR factorization

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randCPQR

Faster!

Randomized CPQR is faster than CPQR, but is no better in terms of accuracy.

randUTVVery good

Randomized UTV is faster than CPQR, and attains very close to SVD accuracy!
Additionally, randUTV parallelizes well and supports partial factorization.

Environment 2: Computing a traditional QR factorization

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randCPQR

Faster!

Randomized CPQR is faster than CPQR, but is no better in terms of accuracy.

randUTVVery good

Randomized UTV is faster than CPQR, and attains very close to SVD accuracy!
Additionally, randUTV parallelizes well and supports partial factorization.

Environment 2: Computing a traditional QR factorization

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randCPQR

Faster!

Randomized CPQR is faster than CPQR, but is no better in terms of accuracy.

randUTVVery good

Randomized UTV is faster than CPQR, and attains very close to SVD accuracy!
Additionally, randUTV parallelizes well and supports partial factorization.

Environment 2: Accelerate FULL factorizations of matrices

Given a dense n× n matrix A, compute a factorization

A = U T V∗,
n× n n× n n× n n× n

where T is upper triangular, U and V are unitary.
Observe: More general than CPQR since we used to insist that V be a permutation.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors.

Our objective is in each step to find an approximation to the linear subspace spanned by
the b dominant singular vectors of a matrix. The randomized range finder is perfect for
this, especially when a small number of power iterations are performed. Easier and
more natural than choosing pivoting vectors.

Computational speed of randUTV — 1 core

0 2000 4000 6000 8000 10000

n

0

1

2

3

4

5
T

im
e
 /
 n

3
10

-10 No ON matrices

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

8

9

10
-10 Building ON matrices

SVD (dgesvd)

CPQR (dgeqp3)

randUTV q=2

randUTV q=1

randUTV q=0

Computational speed of randUTV (red) compared to SVD (black) and column pivoted
QR (blue). Each run is for a full factorization of an n× n matrix. We compare against
Intel MKL LAPACK. Observe that the vertical axis is execution time scaled by n3!

Computational speed of randUTV — 4 cores

0 2000 4000 6000 8000 10000

n

0

0.5

1

1.5

2

2.5

3
T

im
e
 /
 n

3
10

-10 No ON matrices

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4
10

-10 Building ON matrices

SVD (dgesvd)

CPQR (dgeqp3)

randUTV q=2

randUTV q=1

randUTV q=0

Computational speed of randUTV (red) compared to SVD (black) and column pivoted
QR (blue). Each run is for a full factorization of an n× n matrix. We compare against
Intel MKL LAPACK. Observe that the vertical axis is execution time scaled by n3!

Computational speed of randUTV — 12 cores

0 2000 4000 6000 8000 10000

n

0

0.5

1

1.5

2
T

im
e
 /
 n

3
10

-10 No ON matrices

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5
10

-10 Building ON matrices

SVD (dgesvd)

CPQR (dgeqp3)

randUTV q=2

randUTV q=1

randUTV q=0

Computational speed of randUTV (red) compared to SVD (black) and column pivoted
QR (blue). Each run is for a full factorization of an n× n matrix. We compare against
Intel MKL LAPACK. Observe that the vertical axis is execution time scaled by n3!

0 1000 2000 3000 4000

k

10
-4

10
-2

10
0

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000 4000

k

10
-4

10
-2

10
0

Frobenius norm errors

Rank-k approximation errors for the matrix “Fast Decay” of size 4000× 4000. The black
lines mark the theoretically minimal errors. The block size was b = 100 and the green

vertical lines mark block limits.

0 1000 2000 3000 4000

k

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||

Spectral norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

0 1000 2000 3000 4000

k

10
-3

10
-2

10
-1

10
0

Frobenius norm errors

Rank-k approximation errors for the matrix “BIE” of size 4000× 4000. The black lines
mark the theoretically minimal errors. The block size was b = 100 and the green vertical

lines mark block limits.

0 100 200 300

k

10
-4

10
-3

10
-2

10
-1

10
0

||
A

 -
 A

k
||

Spectral norm errors

0 100 200 300

k

10
-4

10
-3

10
-2

10
-1

10
0

Frobenius norm errors

svds

CPQR

randUTV: q=0

randUTV: q=1

randUTV: q=2

Rank-k approximation errors for k ≤ 300 for the matrix “Gap” of size 4000× 4000. The
black lines mark the theoretically minimal errors. The block size was b = 100 and the

green vertical lines mark block limits.

500 1000 1500 2000 2500 3000 3500 4000

10
-4

10
-3

10
-2

10
-1

Fast decay

500 1000 1500 2000 2500 3000 3500 4000
10

-2

10
-1

S-shaped decay

0 50 100 150 200 250 300

k

10
0

D
ia

g
o

n
a

l
e

n
tr

ie
s

Gap

Singular values

CPQR

randUTV: q=2

500 1000 1500 2000 2500 3000 3500 4000

k

10
-3

10
-2

10
-1

Single layer BIE

The diagonal entries of the T-matrix in the UTV decom-
position (red) provide excellent approximations to the true
singular values (black).

Environment 2: Accelerate FULL factorizations of matrices

Key points:

• All operations are blocked.

• Interaction with A is only through matrix-matrix multiply.

• Very fast Householder QR with column pivoting. https://github.com/flame/hqrrp/

• Randomized UTV factorization:
• Accuracy close to SVD.
• Very fast: similar or faster than CPQR.
• Admits partial factorizations, given a tolerance.
• Very communication efficient. On GPU we see ×15 acceleration over SVD.
To be slightly provocative: Better than CPQR in basically every respect!

References:
• P.G. Martinsson, Blocked rank-revealing QR factorizations: How randomized sampling can be used

to avoid single-vector pivoting. arXiv.org report #1505.08115, 2015.
• P.G. Martinsson, Gregorio Quintana-Ortí, Nathan Heavner, and R. van de Geijn, Householder QR

Factorization With Randomization for Column Pivoting (HQRRP). To appear in SISC.
• P.G. Martinsson, Gregorio Quintana-Ortí, Nathan Heavner, randUTV: A blocked randomized

algorithm for computing a rank-revealing UTV factorization. Appearing on arXiv within weeks.
• Recent work by Ming Gu and Jed Duersch of UC-Berkeley.

Environment 3: Randomized approximation of rank-structured matrices. (Plug!)
Loosely speaking, a matrix is rank-structured if its off-diagonal blocks have low rank to
some given precision. These matrices arise upon discretization of integral operators, in
accelerating nested dissection, in simulating Monte Carlo processes, etc.

A representative tessellation of a rank-structured ma-
trix. Each off-diagonal block (gray) has low numerical
rank. The diagonal blocks (red) are full rank, but are
small in size. Matrices of this type allow efficient matrix-
vector multiplication, matrix inversion, etc.

Environment 3: Randomized approximation of rank-structured matrices
Loosely speaking, a matrix is rank-structured if its off-diagonal blocks have low rank to
some given precision. These matrices arise upon discretization of integral operators, in
accelerating nested dissection, in simulating Monte Carlo processes, etc.

Many “formats” have been proposed, including:
• “Fast Multipole Method” matrices.
• H- and H2-matrices.
• Hierarchically Block Separable (HBS) matrices, a.k.a. “HSS” matrices.
• HODLR matrices (a.k.a. S-matrices).

All these formats allow for (more or less) efficient matrix computations involving a range
of operations such as matrix-vector multiply, matrix-matrix multiply, LU factorization,
matrix inversion, forming of Schur complements, etc.

Objective: Suppose a matrix A is rank-structured, that you are given a tessellation
pattern, and that you have an efficient technique for evaluating the matrix-vector product
x 7→ Ax. We then seek to build all factors in the rank-structured representation of A.

Applications: Build “frontal matrices” in nested dissection. Matrix-matrix multiplication
of two structured matrices. Convert from, say, FMM format, to HBS format. Et cetera.

Let A be a rank-structured matrix, for which we can rapidly evaluate x 7→ Ax and x 7→ A∗x.

Case 1: Suppose that in addition to matvec, we can also evaluate individual entries of A.
Then an HBS (a.ka. HSS) representation can be computed in O(N) operations.
Very computationally efficient in practice — requires only O(k) matvecs.

• P.G. Martinsson, A fast randomized algorithm for computing a Hierarchically Semi-Separable
representation of a matrix. 2008 arxiv report. 2011 SIMAX paper.

• Later improvements by Jianlin Xia, Sherry Li, etc.

Case 2: If all we have is the matvec, then we can still compute a rank-structured
representation of A using so called “peeling” algorithms. The price we have to pay is
that we now need O(k× logN) matvecs involving A and A∗.

The method is still very fast in many situations, and can save messy coding work. For
instance, implementing the matrix-matrix mutliplication, or changing the partition tree,
are quite hard to implement efficiently.

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP, 230(10), 2011.

• P.G. Martinsson, Compressing rank-structured matrices via randomized sampling. SISC, 38(4), 2016.

Question: What about Fast Direct Solvers?

Linear complexity nested dissection (ND)

ND is a well-known “divide-and-conquer” technique, due to George (1973).
To illustrate the idea, consider a rectangular grid with N = (2n + 1)× n gridpoints:

Let A denote the N × N matrix arising upon discretizing −∆u = f using the classical
5-point stencil on this regular grid.

We seek to compute an LU-factorization of A.

Important: A has a lot of sparsity.

Sparsity pattern of A with column wise grid ordering.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2121

Let us divide the domain into three pieces:

Ω1 Ω2

Ω3

Note that there are no connections between nodes in Ω1 and Ω2.
In consequence, the non-zero blocks of the coefficient matrix are:

A =


A11 A13

A22 A23
A31 A32 A33


Now A13, At

31, A23, and At
32 have n = O(N0.5) columns.

Sparsity pattern of A with nested dissection ordering.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2121

Ω1 Ω2

Ω3
Recall that the coefficient
matrix is tessellated as

A =


A11 A13

A22 A23
A31 A32 A33

 .
Now suppose that we can somehow factor A11 = L11U11 and A22 = L22U22. Then

A =


L11U11 A13

L22U22 A23
A31 A32 A33

 =


L11

L22
A31U−111 A32U−122 I



I
I
S33



U11 L−111A13

U22 L−122A23
I

 .
So in order to compute an LU factorization of A, we need to:

• Compute the factorization A11 = L11U11. size ∼ N/2× N/2

• Compute the factorization A22 = L22U22. size ∼ N/2× N/2

• Compute the Schur complement S33 = A33 − A31U−111 L
−1
11A13 − A32U−122 L

−1
22A23.

Then compute the factorization S33 = L33U33. size ∼
√
N ×

√
N

Notice the obvious recursion!

Nested dissection − level 0

Nested dissection − level 1

Nested dissection − level 2

Nested dissection − level 3

Nested dissection − level 4

Problem: The Schur complements that need to be factored are dense.
The top level Schur complement is of size O(N0.5)×O(N0.5) → complexity O(N1.5).
In 3D, this Schur complement is of size O(N2/3)×O(N2/3) → complexity O(N2).

Build stage Solve stage Memory
2D O(N3/2) O(N logN) O(N logN)

3D O(N2) O(N4/3) O(N4/3)

Fix: The dense matrices are rank-structured. Conceptually, they behave like discretized
integral operators on the interface (e.g. a discretized Dirichlet-to-Neumann operator).
Such matrices admit very efficient LU factorization, inversion, etc.

By incorporating structured matrix algebra in nested dissection, solvers with overall
O(N) complexity result.

When run at low accuracy, excellent pre-conditioners often result.

To obtain a direct solver, fairly high local accuracies must be used:
• Local ranks grow.
• Still O(N), but high cost per degree of freedom, in particular in regards to storage.

Problem: The Schur complements that need to be factored are dense.
The top level Schur complement is of size O(N0.5)×O(N0.5) → complexity O(N1.5).
In 3D, this Schur complement is of size O(N2/3)×O(N2/3) → complexity O(N2).

Build stage Solve stage Memory
2D O(N3/2) O(N logN) O(N logN)

3D O(N2) O(N4/3) O(N4/3)

Fix: The dense matrices are rank-structured. Conceptually, they behave like discretized
integral operators on the interface (e.g. a discretized Dirichlet-to-Neumann operator).
Such matrices admit very efficient LU factorization, inversion, etc.

By incorporating structured matrix algebra in nested dissection, solvers with overall
O(N) complexity result.

When run at low accuracy, excellent pre-conditioners often result.

To obtain a direct solver, fairly high local accuracies must be used:
• Local ranks grow.
• Still O(N), but high cost per degree of freedom, in particular in regards to storage.

References:

Classical nested dissection:
• Original work by A. George (1973), A.J. Hoffman, M.S. Martin, and D.J. Rose (1973).
• Book “Direct Methods for Sparse Matrices” by I. Duff (1987).
• Book “Direct Methods for Sparse Linear Systems” by T. Davis (2006).
• Huge literature ... well-developed software packages ...

Acceleration to O(N) complexity:
• Le Borne, Grasedyck, & Kriemann (2007).
• Xia, Chandrasekaran, Gu, & Li (2009). → Purdue group.
• Martinsson (2009), Gillman & Martinsson (2011).
• Schmitz & Ying (2012).
• Darve & Ambikasaran (2013).
• Ho & Ying (2015).
• Solovyev (2015).
• Ghysels, Li, Rouet, Williams, Napov (2015).
• Chavez, Turkiyyah, Keyes (2016).
• Sushnikova, Oseledets (2016).
• Currently very active field!

Claim: Combining fast direct solvers and high-order discretization is compelling:
• FDS have high costs per DOF, so using fewer DOFs is critical.
• High-order methods are required for frequency domain wave propagation,
which is a primary target for FDS.
• High-order methods can be challenging for iterative solvers.

Problem: Combining nested dissection and high-order discretization is problematic:
Matrix N Tbuild Tsolve R Epot Epot Epot

(seconds) (seconds) (MB) Helm-I Helm-II Helm-III
5-point stencil 40000 2.46e-1 5.32e-3 38.26 2.7e0 1.2e0 3.1e0
O(h2) 160000 1.29 2.74e-2 211.43 2.0e1 2.5e1 1.9e1

640000 6.87 1.33e-1 1073.39 3.1e-1 6.7e1 1.4e1
2560000 49.86 6.98e-1 5959.00 6.1e-2 8.8e1 3.7e1

10240000 277.31 3.134 27588.61 1.5e-2 1.6e1 3.5e1
9-point stencil 40000 6.78e-1 1.42e-2 123.82 ≥5.5e-2 ≥3.8e0 ≥1.3e0
O(h4) 160000 4.18 7.59e-2 726.62 ≥8.0e-3 ≥1.8e1 ≥3.2e-1

640000 35.83 3.80e-1 3509.28 ≥1.4e-4 ≥1.4e1 ≥9.6e-1
2560000 383.04 2.12 18817.29 ≥1.0e-5 ≥6.1e-1 ≥2.4e0

13-point stencil 40000 1.51 2.81e-2 285.08 ≥4.7e-4 ≥8.7e1 ≥8.6e-3
O(h6) 160000 9.76 1.59e-1 1575.29 ≥1.7e-5 ≥1.1e1 ≥1.3e-1

640000 164.33 9.03e-1 86661.39 ≥5.9e-7 ≥4.9e-1 ≥2.9e-1
2560000 1581.11 5.19 42191.17 ≥4.1e-9 ≥8.3e-2 ≥1.4e-1

Claim: Combining fast direct solvers and high-order discretization is compelling:
• FDS have high costs per DOF, so using fewer DOFs is critical.
• High-order methods are required for frequency domain wave propagation,
which is a primary target for FDS.
• High-order methods can be challenging for iterative solvers.

Problem: Combining nested dissection and high-order discretization is problematic:
Matrix N Tbuild Tsolve R Epot Epot Epot

(seconds) (seconds) (MB) Helm-I Helm-II Helm-III
5-point stencil 40000 2.46e-1 5.32e-3 38.26 2.7e0 1.2e0 3.1e0
O(h2) 160000 1.29 2.74e-2 211.43 2.0e1 2.5e1 1.9e1

640000 6.87 1.33e-1 1073.39 3.1e-1 6.7e1 1.4e1
2560000 49.86 6.98e-1 5959.00 6.1e-2 8.8e1 3.7e1

10240000 277.31 3.134 27588.61 1.5e-2 1.6e1 3.5e1
9-point stencil 40000 6.78e-1 1.42e-2 123.82 ≥5.5e-2 ≥3.8e0 ≥1.3e0
O(h4) 160000 4.18 7.59e-2 726.62 ≥8.0e-3 ≥1.8e1 ≥3.2e-1

640000 35.83 3.80e-1 3509.28 ≥1.4e-4 ≥1.4e1 ≥9.6e-1
2560000 383.04 2.12 18817.29 ≥1.0e-5 ≥6.1e-1 ≥2.4e0

13-point stencil 40000 1.51 2.81e-2 285.08 ≥4.7e-4 ≥8.7e1 ≥8.6e-3
O(h6) 160000 9.76 1.59e-1 1575.29 ≥1.7e-5 ≥1.1e1 ≥1.3e-1

640000 164.33 9.03e-1 86661.39 ≥5.9e-7 ≥4.9e-1 ≥2.9e-1
2560000 1581.11 5.19 42191.17 ≥4.1e-9 ≥8.3e-2 ≥1.4e-1

Question: How do you combine high-order schemes with fast direct solvers?
Potential solution: Use a discretization scheme specifically designed for FDS. It is
based on a multidomain spectral collocation discretization. (Joint work with A. Gillman.)

For simplicity, let us consider a “variable wave
speed” Helmholtz problem in 2D: Given f , g,
and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω.
We assume u is smooth.

The unknown function u is represented as a vector holding approximations to its
point-wise values at the grid points (collocation). Across domain boundaries, we enforce
continuity of potentials and normal derivatives.

Prior work: The discretization scheme is similar to existing composite (or “multi-domain”) spectral

collocation methods by Hesthaven and others. In particular: Pfeiffer, Kidder, Scheel, Teukolsky, (2003).

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Eliminate the interior (blue) nodes. (“Static condensation.”)
Technically, we compute the Dirichlet-to-Neumann operator via a local spectral
computation.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Eliminate the interior (blue) nodes. (“Static condensation.”)
Technically, we compute the Dirichlet-to-Neumann operator via a local spectral
computation.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Retabulate from Chebyshev to Legendre nodes on boundaries.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Top level solve: Invert the DtN operator for the top level box.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Key novelty: A high order scheme, with razor thin borders between boxes.

Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.2

−0.1

0

0.1

0.2

Approximate solution. ntot=1681 pts−per−wave=12.00

Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 21× 21 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note 3: Keeping a fixed number of points per wave-length works well for this scheme!

Hierarchical Poincaré-Steklov Method: numerical results — O(N) version

Problem N Tbuild Tsolve MB

Laplace
1.7e6 91.68 0.34 1611.19
6.9e6 371.15 1.803 6557.27
2.8e7 1661.97 6.97 26503.29
1.1e8 6894.31 30.67 106731.61

Helmholtz I
1.7e6 62.07 0.202 1611.41
6.9e6 363.19 1.755 6557.12
2.8e7 1677.92 6.92 26503.41
1.1e8 7584.65 31.85 106738.85

Helmholtz II
1.7e6 93.96 0.29 1827.72
6.9e6 525.92 2.13 7151.60
2.8e7 2033.91 8.59 27985.41

Helmholtz III
1.7e6 105.58 0.44 1712.11
6.9e6 510.37 2.085 7157.47
2.8e7 2714.86 10.63 29632.89

(About six accurate digits in solution.)

Hierarchical Poincaré-Steklov Method

Some observations:

• Has been tested on a broad range of problems.
• Variable coeffficients.
• Curved domains.
• Convection-diffusion, Yukawa, Helmholtz, etc.
Performance is generally in line with the simple example shown.

• Acceleration to O(N) complexity is done.
Can easily handle N ∼ 108 on a (good) desktop. Excellent constants.

(Well, excellent in 2D. More work required for 3D. . .)

Having a high-accuracy O(N) direct solver opens interesting possibilities:

1. Very fast time-stepping of parabolic problems.

2. Parallel-in-time integration of hyperbolic problems.

3. Coupling of different solvers, for instance “FEM-BEM” coupling.
Domain decomposition methods. Multiphysics.

Hierarchical Poincaré-Steklov Method

Some observations:

• Has been tested on a broad range of problems.
• Variable coeffficients.
• Curved domains.
• Convection-diffusion, Yukawa, Helmholtz, etc.
Performance is generally in line with the simple example shown.

• Acceleration to O(N) complexity is done.
Can easily handle N ∼ 108 on a (good) desktop. Excellent constants.
(Well, excellent in 2D. More work required for 3D. . .)

Having a high-accuracy O(N) direct solver opens interesting possibilities:

1. Very fast time-stepping of parabolic problems.

2. Parallel-in-time integration of hyperbolic problems.

3. Coupling of different solvers, for instance “FEM-BEM” coupling.
Domain decomposition methods. Multiphysics.

Hierarchical Poincaré-Steklov Method

Some observations:

• Has been tested on a broad range of problems.
• Variable coeffficients.
• Curved domains.
• Convection-diffusion, Yukawa, Helmholtz, etc.
Performance is generally in line with the simple example shown.

• Acceleration to O(N) complexity is done.
Can easily handle N ∼ 108 on a (good) desktop. Excellent constants.
(Well, excellent in 2D. More work required for 3D. . .)

Having a high-accuracy O(N) direct solver opens interesting possibilities:

1. Very fast time-stepping of parabolic problems.

2. Parallel-in-time integration of hyperbolic problems.

3. Coupling of different solvers, for instance “FEM-BEM” coupling.
Domain decomposition methods. Multiphysics.

Very fast time-stepping of parabolic problems
As a toy example, consider implicit time-stepping of the equation

−∂u(x, t)
∂t = −∆u, x ∈ Ω,

u(x, t) = f (x, t) x ∈ Γ,

u(x,0) = h(x) x ∈ Ω.

Say, for simplicity, that we use backwards Euler to discretize in time, with
∂un
∂t ≈

1
k
(
un − en−1

)
.

Then for each time-step we need to solve−∆un +
1
ku

n =
1
ku

n−1, Ω,

un = fn Γ.

This is very well suited for our direct solver.

Current work: Investigate stability with better time-stepping schemes (specifically
ESDIRK). Numerical experiments are very promising. Extension to Stokes, low
Reynolds number Navier-Stokes, etc.

Parallel-in-time integration of hyperbolic problems: Consider the equation
∂u(x, t)
∂t = B u(x, t), x ∈ Ω, t > 0

u(x,0) = f (x) x ∈ Ω,

where B is a skew-Hermitian operator (e.g. B =
√

∆ with Dirichlet/Neumann BC). The solution is

u(x, t) =
[
exp(t B) f

]
(x),

where exp(t B) is the time-evolution operator. Now suppose that we can approximate the oscillatory
function x 7→ exp(ix) by a rational function

RM(ix) =
M∑

m=−M

bm
ix − αm

,

where {bm} and {αm} are some complex numbers such that |RM(ix)| ≤ 1 for x ∈ R. We require that∣∣eix − RM(ix)
∣∣ ≤ δ, x ∈ [−τΛ, τΛ],

where τ is a time step, and where Λ is a “band-width” — in other words, we accurately resolve the parts of
B whose spectrum fall in the interval [−iΛ, iΛ]. Very high accuracy can be attained – say δ = 10−10 for
about 5 – 10 points per wavelength [Beylkin, Haut]. Then approximate

exp(τB) ≈
M∑

m=−M

bm
(
B − αm

)−1
.

Notes: The time-step τ can be large. Application of exp(τB) is almost instantaneous. Quite high memory
demands, but distributed memory is fine.

Parallel in time!
Current project: Shallow water equations on cubed sphere at LANL.

Parallel-in-time integration of hyperbolic problems: Consider the equation
∂u(x, t)
∂t = B u(x, t), x ∈ Ω, t > 0

u(x,0) = f (x) x ∈ Ω,

where B is a skew-Hermitian operator (e.g. B =
√

∆ with Dirichlet/Neumann BC). The solution is

u(x, t) =
[
exp(t B) f

]
(x),

where exp(t B) is the time-evolution operator. Now suppose that we can approximate the oscillatory
function x 7→ exp(ix) by a rational function

RM(ix) =
M∑

m=−M

bm
ix − αm

,

where {bm} and {αm} are some complex numbers such that |RM(ix)| ≤ 1 for x ∈ R. We require that∣∣eix − RM(ix)
∣∣ ≤ δ, x ∈ [−τΛ, τΛ],

where τ is a time step, and where Λ is a “band-width” — in other words, we accurately resolve the parts of
B whose spectrum fall in the interval [−iΛ, iΛ]. Very high accuracy can be attained – say δ = 10−10 for
about 5 – 10 points per wavelength [Beylkin, Haut]. Then approximate

exp(τB) ≈
M∑

m=−M

bm
(
B − αm

)−1
.

Notes: The time-step τ can be large. Application of exp(τB) is almost instantaneous. Quite high memory
demands, but distributed memory is fine. Parallel in time!

Current project: Shallow water equations on cubed sphere at LANL.

Parallel-in-time integration of hyperbolic problems: Consider the equation
∂u(x, t)
∂t = B u(x, t), x ∈ Ω, t > 0

u(x,0) = f (x) x ∈ Ω,

where B is a skew-Hermitian operator (e.g. B =
√

∆ with Dirichlet/Neumann BC). The solution is

u(x, t) =
[
exp(t B) f

]
(x),

where exp(t B) is the time-evolution operator. Now suppose that we can approximate the oscillatory
function x 7→ exp(ix) by a rational function

RM(ix) =
M∑

m=−M

bm
ix − αm

,

where {bm} and {αm} are some complex numbers such that |RM(ix)| ≤ 1 for x ∈ R. We require that∣∣eix − RM(ix)
∣∣ ≤ δ, x ∈ [−τΛ, τΛ],

where τ is a time step, and where Λ is a “band-width” — in other words, we accurately resolve the parts of
B whose spectrum fall in the interval [−iΛ, iΛ]. Very high accuracy can be attained – say δ = 10−10 for
about 5 – 10 points per wavelength [Beylkin, Haut]. Then approximate

exp(τB) ≈
M∑

m=−M

bm
(
B − αm

)−1
.

Notes: The time-step τ can be large. Application of exp(τB) is almost instantaneous. Quite high memory
demands, but distributed memory is fine. Parallel in time!
Current project: Shallow water equations on cubed sphere at LANL.

Hierarchical Poincaré-Steklov Method: Free space scattering
Consider the acoustic scattering problem

−∆uout(x)− κ2 (1− b(x))uout(x) = − κ2 b(x)uin(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

Suppose that b is a smooth scattering potential such that for some rectangle Ω, we have

support(b) ⊂ Ω.

We also suppose that uin satisfies

−∆uin(x)− κ2 uin(x) = 0, x ∈ Ω.

Solution strategy (“FEM-BEM coupling”):

1. Use HPS method to construct the DtN map for the variable coefficient problem in Ω.

2. Use boundary integral equation techniques to find the DtN map for the constant
coefficient problem on Ωc.

3. Glue the two DtN maps together and you’re all set!

Joint work with Adrianna Gillman and Alex Barnett.

Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — a “photonic crystal” with a wave guide.

Relative accuracy 10−7 with N ≈ 106. Time to build solution operator is about 60
seconds. Time to build the solution for a given incident wave is about one second.

Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(κ x1)).

Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — a graded “lens.”

Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — a “bathroom glass”.

Main themes

Randomized algorithms for low-rank approximation:
• Very simple to implement.
• Exploits parallelism through calls to dgemm, dgeqrf, etc.
• No need to specify rank in advance, just a tolerance.

Randomized UTV decomposition:
• Effective for any rank, including full rank.
• Very close to SVD accuracy when used for low-rank approximation.
• Easy to parallelize, execute out-of-core, etc. Perfect for GPUs.
• As fast as column pivoted QR, or faster. Much faster than SVD.
Excellent general-purpose factorization.

The “Hierarchical Poincaré-Steklov” fast direct solver.
• Based on high-order local spectral discretization.
• Plays nicely with nested dissection type solvers. (Including O(N) versions.)
• Enables parallel-in-time integration of hyperbolic PDEs.
• Enables “FEM-BEM coupling”, multiphysics, resonant wave problems, etc.

Tutorials, summer schools, etc:
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.

Software packages:
• ID: http://tygert.com/software.html
• RSVDPACK: https://github.com/sergeyvoronin (expansions are in progress)
• Column pivoted QR: https://github.com/flame/hqrrp (much faster than LAPACK!)

Papers (see also http://amath.colorado.edu/faculty/martinss/main_publications.html):
• P.G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the approximation of

matrices”. 2007 report YALE-CS-1361; 2011 paper in ACHA.
• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions.” SIAM Review, 2011.
• E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for the

low-rank approximation of matrices”. PNAS, 104(51), 2007.
• P.G. Martinsson, “A fast randomized algorithm for computing a Hierarchically Semi-Separable

representation of a matrix”. SIMAX, 32(4), 2011.
• P.G. Martinsson, “Compressing structured matrices via randomized sampling,” SISC 38(4), 2016.
• P.G. Martinsson, G. Quintana-Ortí, N. Heaver, and R. van de Geijn, “Householder QR Factorization

With Randomization for Column Pivoting.” To appear in SISC.

