
Fast direct solvers for elliptic PDEs

Gunnar Martinsson
The University of Colorado at Boulder

PhD Students: Collaborators:
Tracy Babb James Bremer (UC-Davis)

Adrianna Gillman (now at Dartmouth) Alex Barnett (Dartmouth)
Nathan Halko (now at Spot Influence, LLC) Eduardo Corona (NYU)

Sijia Hao Leslie Greengard (NYU)
Patrick Young (now at GeoEye Inc.) Terry Haut (LLNL)

Eric Michielssen (Michigan)
Vladimir Rokhlin (Yale)

Mark Tygert (NYU)
Denis Zorin (NYU)

The talk will describe “fast direct” techniques for solving the linear systems arising from the
discretization of linear boundary value problems (BVPs) of the form

(BVP)
{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, and where A is an elliptic differential
operator (constant coefficient, or not). Examples include:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Example: Poisson equation with Dirichlet boundary data:{
−∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ.

Discretization of linear Boundary Value Problems
↙

Direct discretization of the differen-
tial operator via Finite Elements, Fi-
nite Differences, spectral composite
methods, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).

↘

Conversion of the BVP to a Bound-
ary Integral Equation (BIE).

↓

Discretization of (BIE) using Nys-
tröm, collocation, BEM,

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).

Discretization of linear Boundary Value Problems
↙

Direct discretization of the differen-
tial operator via Finite Elements, Fi-
nite Differences, spectral composite
methods, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).
O(N) direct solvers.

↘

Conversion of the BVP to a Bound-
ary Integral Equation (BIE).

↓

Discretization of (BIE) using Nys-
tröm, collocation, BEM,

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).
O(N) direct solvers.

What does a “direct” solver mean in this context?

Basically, it is a solver that is not “iterative” . . .

Given a computational tolerance ε, and a linear system

(2) Au = b,

(where the system matrix A is often defined implicitly), a direct solver constructs an operator
S such that

||A−1 − S|| ≤ ε.

Then an approximate solution to (2) is obtained by simply evaluating

uapprox = Sb.

The matrix S is typically constructed in a data-sparse format (e.g. H-matrix, HSS, etc) that
allows the matrix-vector product Sb to be evaluated rapidly.

Variation: Find factors B and C such that ||A− BC|| ≤ ε, and linear solves involving the
matrices B and C are fast. (LU-decomposition, Cholesky, etc.)

“Iterative” versus ”direct” solvers

Two classes of methods for solving an N ×N linear algebraic system

Au = b.

Iterative methods:

Examples: GMRES, conjugate gradi-
ents, Gauss-Seidel, etc.

Construct a sequence of vectors
u1, u2, u3, . . . that (hopefully!) con-
verge to the exact solution.

Many iterative methods access A only
via its action on vectors.

Often require problem specific pre-
conditioners.

High performance when they work
well. O(N) solvers.

Direct methods:

Examples: Gaussian elimination,
LU factorizations, matrix inversion, etc.

Always give an answer. Deterministic.

Robust. No convergence analysis.

Great for multiple right hand sides.

Have often been considered too slow for
high performance computing.

(Directly access elements or blocks of A.)

(Exact except for rounding errors.)

Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves for a fixed operator:
• Molecular dynamics.
• Scattering problems.
• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is often possible.

2. Solving problems intractable to iterative methods (singular values do not “cluster”):
• Scattering problems near resonant frequencies.
• Ill-conditioning due to geometry (elongated domains, percolation, etc).
• Ill-conditioning due to lazy handling of corners, cusps, etc.
• Finite element and finite difference discretizations.

Scattering problems intractable to existing methods can (sometimes) be solved.

3. Direct solvers can be adapted to construct spectral decompositions:
• Analysis of vibrating structures. Acoustics.
• Buckling of mechanical structures.
• Wave guides, bandgap materials, etc.

Work in progress . . .

Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers whenever
possible. (Sometimes for good reasons.)

The effort to develop direct solvers aims to help in the development of general purpose
software packages solving the basic linear boundary value problems of mathematical
physics.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

The original grid.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

The original grid.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

The original grid.

(1)→

Leaves reduced.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

The original grid.

(1)→

Leaves reduced.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

Merge the leaves in pairs of two.

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.

Continue merging by pairs, organizing the domain in a tree of patches.

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.

Continue merging by pairs, organizing the domain in a tree of patches.

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.

Continue merging by pairs, organizing the domain in a tree of patches.

When you reach the top level, perform a solve on the reduced problem by brute force.

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Outline of direct solver

All direct solvers to be described are based on hierarchical domain decomposition.

Consider a PDE Au = f defined on a square Ω = [0, 1]. Put a grid on the square.

Split the domain into “small” patches we call “leaves” (they will be organized in a tree).

On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator). This
eliminates “internal” grid points from the computation. (“Static condensation.”)

Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.

Continue merging by pairs, organizing the domain in a tree of patches.

When you reach the top level, perform a solve on the reduced problem by brute force.

Then reconstruct the solution at all internal points via a downwards pass.

Full solution.

(6)←

Solve.

(5)←

Solve.

(4)←

Top level solve.

Upwards pass — build all solution operators:

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Downwards pass — solve for a particular data function (very fast!):

Full solution.

(6)←

Solve.

(5)←

Solve.

(4)←

Top level solve.

Upwards pass — build all solution operators:

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Downwards pass — solve for a particular data function (very fast!):

Full solution.

(6)←

Solve.

(5)←

Solve.

(4)←

Top level solve.

Note: The computational template outlined is the same as the classical multifrontal / nested
dissection method (George 1973, later Duff, Davis, etc). Typical complexities:

Build stage Solve stage

2D N3/2 → N N logN → N

3D N2 → N N4/3 → N

Novelty: High-order discretizations, integral equations, O(N) complexity for all stages.

Upwards pass — build all solution operators:

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Downwards pass — solve for a particular data function (very fast!):

Full solution.

(6)←

Solve.

(5)←

Solve.

(4)←

Top level solve.

Note: The computational template outlined is the same as the classical multifrontal / nested
dissection method (George 1973, later Duff, Davis, etc). Typical complexities:

Build stage Solve stage

2D N3/2 → N N logN → N

3D N2 → N N4/3 → N

Novelty: High-order discretizations, integral equations, O(N) complexity for all stages.

Outline of talk

Part 1: Introduction (done)

Part 2: Case study — we will show in detail a direct solver designed
for variable coefficient problems with smooth solutions. A multi-
domain spectral collocation method will be used.

Part 3: Superficial description of direct solvers for integral equations
(mostly numerical examples).

Part 2 — case study: Variable coefficient problems with smooth solutions

Consider an elliptic Boundary Value Problem (BVP) of the form{
−∆u(x) + b(x) u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 and Γ = ∂Ω. The function b can be positive or negative (and large!).

We will describe a solver for (BVP) with the following characteristics:

• Direct solver: Excellent for problems for which iterative methods struggle
(e.g. Helmholtz). Extremely fast for problems with multiple right hand sides.

• High order: Based on composite spectral discretization with local 21× 21 point
Chebyshev tensor product grids. Capable of solving (BVP) to 10 correct digits or more.

• Linear complexity: O(N) or O(N logN) asymptotic complexity for all stages (for
non-oscillatory problems). High practical efficiency.

• Drawbacks: Memory hog, in particular in 3D.
Works best for problems with smooth solutions.

Part 2 — case study: Variable coefficient problems with smooth solutions

Consider an elliptic Boundary Value Problem (BVP) of the form{
−∆u(x) + b(x) u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 and Γ = ∂Ω. The function b can be positive or negative (and large!).

Several generalizations are possible:

• It is straight-forward to modify the scheme to more general elliptic operators

[Au](x) = −c11(x)[∂21u](x)− 2c12(x)[∂1∂2u](x)− c22(x)[∂22u](x)
+ c1(x)[∂1u](x) + c2(x)[∂2u](x) + c(x)u(x).

For instance, we can handle (heterogeneous) Laplace, Helmholtz, linear elasticity, etc.

• More general domains (L-shaped, curved domains, . . .).

• Free space problems (acoustic scattering) with Ω = R2.

• Local mesh refinement.

• Non-smooth boundary data. (At least localized non-smoothness.)

• Body loads can be included.

• Problems in 3D.

Prior work

The discretization scheme is similar to existing composite (or “multi-domain”) spectral
collocation methods by Hesthaven and others. In particular, quite similar to work of Pfeiffer,
Kidder, Scheel, Teukolsky, (2003).

The general idea of efficient direct solvers for block-sparse systems goes back to the nested
dissection and multifrontal methods by George (1973), Duff, and others. These have
complexity O(N1.5) for the “build stage” and O(N logN) for the “solve stage.”

Nested dissection with O(N) complexity was in the last several years described by Xia,
Chandrasekaran, Gu, Li (2009), Le Borne, Grasedyck, Kriemann (2007), Schmitz and Ying
(2012), Gillman and Martinsson (2011). Our scheme is heavily inspired by this work.

O(N) direct solvers for integral equations were developed by Martinsson, Rokhlin (2005),
Greengard, Gueyffier, Martinsson, Rokhlin (2009), Gillman, Young, Martinsson (2012), Ho,
Greengard (2012). Our direct solver is also related to an O(N1.5) complexity direct solver for
Lippman-Schwinger, see Chen (2002) & (2013). Also related to direct solvers for integral
equations based on H and H2 matrix arithemetic by Hackbusch (1998 and forwards), Börm,
Bebendorf, etc.

The solver relies on a composite spectral grid:

We will perform a local brute-force solve on each small square to build a local “solution
operator” in the form of a “Dirichlet-to-Neumann” operator.

The global “solution operator” will be built via a hierarchical merge process.

Classical spectral collocation — notation
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on Ω = [0, 1]2.

Pick an integer p and place a Cartesian mesh of p× p Chebyshev nodes on Ω.

Let {xj}p
2

j=1 denote an enumeration of the nodes in the grid.

Partition the index vector I = {1, 2, 3, . . . , p2} = Ii ∪ Ie as follows:

• Ii holds the (p− 2)2 interior nodes (blue dots).

• Ie holds the 4p− 4 exterior nodes (red dots).

Let D(1), D(2), and L, denote the p2 × p2 matrices approximating ∂/∂x1, ∂/∂x2, and −∆, in
the spectral sense (i.e. they are exact for tensor products of polynomials of degree ≤ p− 1.)

Classical spectral collocation — solving a Dirichlet problem
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0, 1]2. The domain is discretized using a p× p tensor product grid of Chebyshev nodes
split into Ie exterior nodes and Ii interior nodes.

Let B denote the diagonal matrix with entries [b(xj)]p
2

j=1 and let L be the spectral Laplacian.
Then A = L+ B is our spectral approximation of the differential operator.

Let u ∈ Rp2 denote a vector of approximate values of the solution u, u(j) ≈ u(xj).

For the exterior nodes, simply set u equal to the Dirichlet data: u(j) = f(xj) for j ∈ Ie.

For interior nodes, enforce the PDE via collocation: A(j, :)u = 0 for j ∈ Ii.

Set ui = u(Ii), ue = u(Ie), Ai,i = A(Ii, Ii), and Ai,e = A(Ii, Ie).
Then the collocation condition can be written

Ai,i ui + Ai,e ue = 0.

Solving for ui we find the solution process:

ue = fe = [f(xj)]j∈Ie

ui = − A−1
i,i Ai,e fe.

Classical spectral collocation — build the Dirichlet-to-Neumman (DtN) map
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0, 1]2. The domain is discretized using a p× p tensor product grid of Chebyshev nodes
split into Ie exterior nodes and Ii interior nodes.

At this point, we have constructed a linear map from Dirichlet data fe to the full solution
vector u via:

1. For exterior nodes, set the potential to equal the given Dirichlet data

ue = [f(xj)]j∈Ie = fe.

2. For the interior nodes, enforce the PDE via spectral collocation,

Ai,iui + Ai,eue = 0.

Solving for ui, we find ui = −A−1
i,i Ai,e fe.

New objective: We seek to build the Dirichlet-to-Neumann (DtN) map that maps given
Dirichlet data to the corresponding boundary fluxes. This map acts as a local solution
operator that encodes all information about the box that we need to solve the global problem.

Solution: Simply apply spectral differentiation to the constructed solution u = [ui, ue].

Classical spectral collocation — build the Dirichlet-to-Neumman (DtN) map
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0, 1]2. The domain is discretized using a p× p tensor product grid of Chebyshev nodes
split into Ie exterior nodes and Ii interior nodes.

At this point, we have constructed a linear map from Dirichlet data fe to the full solution
vector u via:

1. For exterior nodes, set the potential to equal the given Dirichlet data

ue = [f(xj)]j∈Ie = fe.

2. For the interior nodes, enforce the PDE via spectral collocation,

Ai,iui + Ai,eue = 0.

Solving for ui, we find ui = −A−1
i,i Ai,e fe.

New objective: We seek to build the Dirichlet-to-Neumann (DtN) map that maps given
Dirichlet data to the corresponding boundary fluxes. This map acts as a local solution
operator that encodes all information about the box that we need to solve the global problem.

Solution: Simply apply spectral differentiation to the constructed solution u = [ui, ue].

Classical spectral collocation — build the Dirichlet-to-Neumman (DtN) map
Recall: Our model problem is −∆u(x) + b(x) u(x) = 0 with Dirichlet BC on a square
Ω = [0, 1]2. The domain is discretized using a p× p tensor product grid of Chebyshev nodes
split into Ie exterior nodes and Ii interior nodes.

At this point, we have constructed a linear map from Dirichlet data fe to the full solution
vector u via:

1. For exterior nodes, set the potential to equal the given Dirichlet data

ue = [f(xj)]j∈Ie = fe.

2. For the interior nodes, enforce the PDE via spectral collocation,

Ai,iui + Ai,eue = 0.

Solving for ui, we find ui = −A−1
i,i Ai,e fe.

3. Now that u is known at all nodes, apply the spectral differentiation matrices D(1) or D(2)

to compute the boundary fluxes. (Corners get special treatment.)

Merging two DtN operators
Question: Given the DtN matrices of two boxes, how form the DtN matrix of the union box?

Merging two DtN operators
Question: Given the DtN matrices of two boxes, how form the DtN matrix of the union box?

Answer: Let the rectangular domain Ω be formed by two squares Ωα and Ωβ. The sets I1,
I2, and I3 form the exterior nodes, while I4 consists of the interior nodes.

Ωα ΩβI1 I2I3

Ic

Let vj denote the boundary fluxes on side j, and let uj denote the potential. Then from the
left and the right DtN maps we get the equilibrium equations v1

v3

 =

 Tα
1,1 Tα

1,3

Tα
3,1 Tα

3,3

  u1

u3

 , and

 v2

v3

 =

 Tβ
2,2 Tβ

2,3

Tβ
3,2 Tβ

3,3

  u2

u3

 .

Collating the two equilibrium equations (by eliminating v3) we get
Tα

1,1 0 Tα
1,3

0 Tβ
2,2 Tβ

2,3

Tα
3,1 −Tβ

3,2 Tα
3,3 − Tβ

3,3




u1

u2

u3

 =


v1

v2

0

 .

Eliminate u3 to find the desired map v1

v2

 = Tτ

 u1

u2


where

Tτ =

 Tα
1,1 0

0 Tβ
2,2

−
 Tα

1,3

Tβ
2,3

(Tα
3,3 − Tβ

3,3

)−1
[

1
2T

α
3,1 −1

2T
β
3,2

]
.

(We skipped a step — the corner nodes are eliminated by re-interpolating to Gaussian
nodes on the boundaries.)

Illustration of the merge operation

Before elimination of interior (blue) nodes:

After elimination of interior nodes:

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Pre-process: Put down a spectral composite grid on Ω:

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Eliminate the interior (blue) nodes.

Technically, we compute the Dirichlet-to-Neumann operator via a local spectral computation.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Eliminate the interior (blue) nodes.

Technically, we compute the Dirichlet-to-Neumann operator via a local spectral computation.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Upwards sweep: Merge boxes by pairs and eliminate the interior (blue) nodes.
To do this, use the computed DtN operators to enforce continuity of u and du/dn across
interior boundaries. Compute the DtN operator for the larger box.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Model problem: Given f and b, find u such that{
−∆u(x)− b(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω = [0, 1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Downwards sweep: We know u on the red nodes. We can use the computed DtN
operators to reconstruct u on the blue nodes.

Summary of the hierarchical scheme:

1. Construct a quad-tree: Partition the grid into a hierarchy of boxes.

2. Process the leaves: For each leaf box in the tree, construct its DtN
(Dirichlet-to-Neumann) operator.

3. Hierarchical merge: Loop over all levels of the tree, from finer to smaller. For each box
on a level, compute its DtN operator by merging the (already computed) DtN operators
of its children.

4. Process the root of the tree: After completing Step 3, the DtN operator for the entire
domain is available. Invert (or factor) it to construct the solution operator.

The first solve costs O(N1.5) operations.

Subsequent solves cost O(N logN) operations.

Remark: For simplicity, the algorithm is described in a level-by-level manner (process all
leaves first, then proceed one level at a time in going upwards). In fact, there is flexibility to
travel through the tree in any order that ensures that no node is processed before its
children. Since all Schur complements can be discarded once their information has been
passed on to a parent, smarter orderings can greatly reduce the memory requirements.

Note: There are no corner singularities!

The exact mathematical object we are approximating is the Dirichlet-to-Neumann operator
for a rectangle. This object exhibits complicated (singular) behavior near the corners.

However, we are only concerned with the projection of the exact operator onto a space of
smooth functions. In particular, we need high accuracy only for functions that are restrictions
of smooth global solutions.

Spectral composite method: numerical results

Set Ω = [0, 1]2 and Γ = ∂Ω. Consider the problem{
−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x− x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x− x̂|).

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.2

−0.1

0

0.1

0.2

Approximate solution. ntot=1681 pts−per−wave=12.00

Spectral composite method: numerical results

Set Ω = [0, 1]2 and Γ = ∂Ω. Consider the problem{
−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x− x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x− x̂|).
The spectral computation on a leaf involves 21× 21 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tfactor tsolve Epot Egrad M M/N

(sec) (sec) (MB) (reals/DOF)
21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.

Spectral composite method: numerical results

Set Ω = [0, 1]2 and Γ = ∂Ω. Consider the problem{
−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x− x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x− x̂|).
The spectral computation on a leaf involves 41× 41 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tfactor tsolve Epot Egrad M M/N

(sec) (sec) (MB) (reals/DOF)
41 6561 6.7 1.50 0.0025 9.88931e-14 3.46762e-12 7.9 157.5
41 25921 13.3 4.81 0.0041 1.58873e-13 1.12883e-11 32.9 166.4
41 103041 26.7 18.34 0.0162 3.95531e-13 5.51141e-11 137.1 174.4
41 410881 53.3 75.78 0.0672 3.89079e-13 1.03546e-10 570.2 181.9
41 1640961 106.7 332.12 0.2796 1.27317e-12 7.08201e-10 2368.3 189.2

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.

Spectral composite method: numerical results

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

10
2

Problem size N

T
im

e
in

 s
ec

on
ds

t−factor (p=41)
t−factor (p=21)
t−solve (p=41)
t−solve (p=21)

The line tsolve scales perfectly linearly (until memory problems kick in), as expected.

Interesting: The line tfactor also scales almost linearly. (Unexpectedly?) What happens is
that tfactor is dominated by the leaf computation; we have not hit the O(N1.5) asymptotic yet.

Spectral composite method: numerical results — variable coefficients

Now consider the variable coefficient problem

−∆u(x)− κ2
(
1− b(x)

)
u(x) = 0 x ∈ Ω,

u(x) = f(x) x ∈ Γ,

where Ω = [0, 1]2, where Γ = ∂Ω, and where b(x) = (sin(4πx1) sin(4πx2))
2 .

The Helmholtz parameter was kept fixed at κ = 80, corresponding to a domain size of
12.7× 12.7 wave lengths. The boundary data was given by f(x) = cos(8x1)

(
1− 2x2

)
.

The error estimator Eint
N = uN (x̂)− u4N (x̂) where x̂ = (0.75, 0.25) is reported below:

p N pts per wave uN (x̂) Eint
N wN (ŷ) Ebnd

N

21 6561 6.28 -2.448236804078803 -1.464e-03 -32991.4583727724 2.402e+02
21 25921 12.57 -2.446772430608166 7.976e-08 -33231.6118304666 5.984e-03
21 103041 25.13 -2.446772510369452 5.893e-11 -33231.6178142514 -5.463e-06
21 410881 50.27 -2.446772510428384 2.957e-10 -33231.6178087887 -2.792e-05
21 1640961 100.53 -2.446772510724068 -33231.6177808723
41 6561 6.28 -2.446803898373796 -3.139e-05 -33233.0037457220 -1.386e+00
41 25921 12.57 -2.446772510320572 1.234e-10 -33231.6179029824 -8.940e-05
41 103041 25.13 -2.446772510443995 2.888e-11 -33231.6178135860 -1.273e-05
41 410881 50.27 -2.446772510472872 7.731e-11 -33231.6178008533 -4.668e-05
41 1640961 100.53 -2.446772510550181 -33231.6177541722

Example: Free space scattering
−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

Suppose that b is a smooth scattering potential such that for some rectangle Ω, we have

support(b) ⊂ Ω.

We also suppose that uin satisfies

−∆uin(x)− k2 uin(x) = 0, x ∈ Ω.

Solution strategy:

(1) Use the composite spectral method to construct the DtN map for the variable coefficient
problem in Ω.

(2) Use boundary integral equation techniques to find the DtN map for the constant
coefficient problem on Ωc.

(3) Glue the two DtN maps together and you’re all set!

Joint work with Adrianna Gillman and Alex Barnett.

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The scattering potential b

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(k x1))

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−7 (estimated)

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(k x1))

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−7 (estimated)

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The scattering potential b — now a photonic crystal with a wave guide.

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(k x1)).

A curved domain

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ =
{
(y1, y2) : 0 ≤ y1 ≤ 1 0 ≤ y2 ≤ 1

ψ(y1)

}
Ω = [0, 1]2

Consider a curved domain Ψ as shown above and the equation

(3)
{
−∆u(y)− κ2 u(y) = 0 y ∈ Ψ,

u(y) = f(y) y ∈ ∂Ψ.

The reparameterization is y1 = x1 and y2 = ψ(y1) y2, and so the Helmholtz equation (3)
takes the form
∂2u

∂x21
+

2ψ′(x1)x2
ψ(x1)

∂2u

∂x1∂x2
+

(
x22ψ

′(x1)
2

ψ(x1)2
+ ψ(x1)

2

)
∂2u

∂x22
+
x2ψ

′′(x1)

ψ(x1)

∂u

∂x2
+k2u = 0, x ∈ Ω.

Numerical results for curved domain

The equation is (constant coefficient) Helmholtz on a domain of size 35× 50 wave lengths.

Exact solution known Dirichlet data f = 1

N Epot Egrad E
(1)
N E

(2)
N E

(3)
N

25921 2.12685e+02 3.55772e+04 2.24618e-01 4.99854e-01 6.69023e-01
103041 3.29130e-01 5.89976e+01 1.10143e-02 5.28238e-03 6.14890e-02
410881 1.40813e-05 1.98907e-03 4.57900e-06 2.18438e-06 1.13415e-05

1640961 7.22959e-10 1.17852e-07 5.12914e-07 1.67971e-06 4.97764e-06
3690241 1.63144e-09 2.26204e-07 — — —

Spectral composite method: numerical results — L-shaped domain

Set Ω = [0, 2]2\[1, 2]2 and Γ = ∂Ω. Consider the problem{
−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x− x̂|).
We then know the exact solution.

0

0.5

1

1.5

2 0

0.5

1

1.5

2

−0.2

0

0.2

Approximate solution. ntot=19602 pts−per−wave=13.12

0

0.5

1

1.5

2 0

0.5

1

1.5

2

−0.5

0

0.5

x 10
−10

Error. ntot=19602 pts−per−wave=13.12

The approximate solution The error

Spectral composite method: numerical results — L-shaped domain

Set Ω = [0, 2]2\[1, 2]2 and Γ = ∂Ω. Consider the problem{
−∆u(x)− κ2(1− b(x))u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We pick f that generates a sort of plane wave at the line {(2, t) : 0 ≤ t ≤ 1}.

0

0.5

1

1.5

2 0

0.5

1

1.5

2

0

0.5

1

The function b

0

0.5

1

1.5

2 0

0.5

1

1.5

2

−5

0

5

Approximate solution. ntot=19602 pts−per−wave=26.25

The function b The approximate solution

Solutions for the L-shaped domain are in general singular near at the re-entrant corner.

Ignoring this problem leads to solutions with “only” 5 or 6 correct digits.

To achieve ten correct digits, local grid refinement is required.

New problem: Tabulation points on two boxes involved in a “merge” may not line up.
Solution: Down-sample via interpolation (joint work with S. Hao and A. Gillman).

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

Now consider a non-smooth scattering potential b:

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)f uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The computational grid. The support of b is the blue box.

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

The magnitude of the total field resulting from an incident field uin(x) = eiκx1 .

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

10
5

10
6

10
0

10
1

Problem size N

B
ui

ld
 u

p
tim

e
in

 s
ec

on
ds

Time (in seconds) required for building the scattering operator.

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

10
5

10
6

10
−2

10
−1

Problem size N

S
ol

ve
 ti

m
e

in
 s

ec
on

ds

Time (in seconds) required for doing a full solve given an incident field.

Example: Free space scattering


−∆uout(x)− k2 (1− b(x))uout(x) = −k2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0

0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

Levels of refinements

R
el

at
iv

e
er

ro
r

Error

int

Error
ext

The grid refinement strategy can also be used to handle piece-wise smooth boundary data.
Consider for instance a Helmholtz problem

(4)
{
−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

on a domain of size 8× 8 wave-lengths, and where f is the function with singularities of
strength f(t) ∼

√
|t− t0|.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Dirichlet boundary data f

The errors in the potential and the boundary flux (estimated):

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Level of refinements

E
rr

or

Eint

E
flow of south

E
flow of west

We can try something a little nastier still — now f(t) ∼ |t− t0|0.1.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Dirichlet boundary data f

... and obtain the errors:

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

Level of refinements

E
rr

or

Eint

E
flow of south

E
flow of west

The locally refined mesh

Recall: The method as presented relies on a hierarchical construction of
Dirichlet-to-Neumann operators for every box in a hierarchical tree.

Problem! The interior Helmholtz equation may encounter resonances — even for zero
Dirichlet data, there may be non-trivial solutions.

Conceptual problem : The DtN operator does not always exist.

Practical problem: The DtN operator can be very ill-conditioned.

Solution: Rather than the Dirichlet-to-Neumann map

T : u|Γ 7→ ∂u

∂n

∣∣∣∣
Γ

consider the impedance map

E : u|Γ + i
∂u

∂n

∣∣∣∣
Γ

7→ u|Γ − i
∂u

∂n

∣∣∣∣
Γ

The impedance map exists for every wave-number, and is a unitary map.

Joint work with Alexander Barnett and Adrianna Gillman of Dartmouth college.

The build stage can be accelerated to optimal O(N) complexity!

Consider the merge of two patches Ω(α) and Ω(β) with boundaries Γ1, Γ2, Γ3:

Ω(α) Ω(β)

Γ1 Γ2Γ3

In the composite spectral method we have

T =

 T
(α)
1,1 0

0 T
(β)
2,2

+

 T
(α)
1,3

T
(β)
2,3

 (T(α)
3,3 − T

(β)
3,3

)−1[−T(α)
3,1

∣∣ T(β)
3,2

]
︸ ︷︷ ︸

low rank update!

.

Consider the merge of two patches Ω(α) and Ω(β) with boundaries Γ1, Γ2, Γ3:

Ω(α) Ω(β)

Γ1 Γ2Γ3

In the composite spectral method we have

T =

 T
(α)
1,1 0

0 T
(β)
2,2

+

 T
(α)
1,3

T
(β)
2,3

 (T(α)
3,3 − T

(β)
3,3

)−1[−T(α)
3,1

∣∣ T(β)
3,2

]
︸ ︷︷ ︸

low rank update!

.

There is more structure!

Consider the merge of two patches Ω(α) and Ω(β) with boundaries Γ1, Γ2, Γ3:

Ω(α) Ω(β)

Γ1 Γ2Γ3

In the composite spectral method we have

T =

 T
(α)
1,1 0

0 T
(β)
2,2

+

 T
(α)
1,3

T
(β)
2,3

 (T(α)
3,3 − T

(β)
3,3

)−1[−T(α)
3,1

∣∣ T(β)
3,2

]
.

There is more structure:

• The blue terms are of low numerical rank (say rank 40 to precision 10−10).

• The red terms are “hierarchically block separable” matrices.
(Their off-diagonal blocks have low rank, cf. H-matrices, etc).

The bottom line is that the solution operators can be built in optimal O(N) time.
(Not true when N is scaled to the wave-length for Helmholtz-type problems.)

Joint work with Adrianna Gillman.

Problem N Tbuild Tsolve MB

Laplace
1.7e6 91.68 0.34 1611.19
6.9e6 371.15 1.803 6557.27
2.8e7 1661.97 6.97 26503.29
1.1e8 6894.31 30.67 106731.61

Helmholtz I
1.7e6 62.07 0.202 1611.41
6.9e6 363.19 1.755 6557.12
2.8e7 1677.92 6.92 26503.41
1.1e8 7584.65 31.85 106738.85

Helmholtz II
1.7e6 93.96 0.29 1827.72
6.9e6 525.92 2.13 7151.60
2.8e7 2033.91 8.59 27985.41

Helmholtz III
1.7e6 105.58 0.44 1712.11
6.9e6 510.37 2.085 7157.47
2.8e7 2714.86 10.63 29632.89

(About six accurate digits in solution.)

Thanks to A. Barnett for use of a work-station!

ϵ = 10−7 ϵ = 10−10 ϵ = 10−12

Problem Epot Egrad Epot Egrad Epot Egrad

Laplace 6.54e-05 1.07e-03 2.91e-08 5.52e-07 1.36e-10 8.07e-09

Helmholtz I 7.45e-06 6.56e-04 5.06e-09 4.89e-07 1.38e-10 8.21e-09

Helmholtz II 6.68e-07 3.27e-04 1.42e-09 8.01e-07 8.59e-11 4.12e-08

Helmholtz III 7.40e-07 4.16e-04 2.92e-07 5.36e-06 1.66e-09 8.02e-08

(5)
{
−∆u(x)− c1(x) ∂1u(x)− c2(x) ∂2u(x)− c(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

Laplace Let c1(x) = c2(x) = c(x) = 0 in (5).

Helmholtz I Let c1(x) = c2(x) = 0, and c(x) = κ2 where κ = 80 in (5). This represents a
vibration problem on a domain Ω of size roughly 12× 12 wave-lengths. (Recall that the
wave-length is given by λ = 2π

κ .)

Helmholtz II Let c1(x) = c2(x) = 0, and c(x) = κ2 where κ = 640 in (5). This corresponds
to a domain of size roughly 102× 102 wave-lengths.

Helmholtz III We again set c1(x) = c2(x) = 0, and c(x) = κ2 in (5), but now we let κ grow
as the number of discretization points grows to maintain a constant 12 points per
wavelength.

For details on O(N) methods, see:

A. Gillman and P.G. Martinsson
A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized
via a high-order composite spectral collocation method
In review. arxiv.org report #1307.2665.

Our work on linear complexity solvers is related to earlier work on linear complexity nested
dissection:

• Xia, Chandrasekaran, Gu, Li (2009)

• Le Borne, Grasedyck, Kriemann (2007)

• Schmitz and Ying (2012)

• Gillman and Martinsson (2011)

There may be short-cuts to finding the inverses ...

Recent work indicates that randomized sampling could be used to very rapidly find a
data-sparse representation of a matrix (in H / H2 / HSS / . . . format).

The idea is to extract information by applying the operator to be compressed to a sequence
of random vectors. In the present context, “applying the inverse” of course corresponds
simply to a linear solve.

• P.G. Martinsson, “A fast randomized algorithm for computing a Hierarchically
Semi-Separable representation of a matrix”. SIAM J. on Matrix Analysis and Appl.,
32(4), pp. 1251–1274, 2011. (Preprint version 2008.)

• “Fast construction of hierarchical matrix representation from matrix-vector
multiplication”, L. Lin, J. Lu, L. Ying., J. of Computational Physics, 230(10), 2011.

• “Randomized Sparse Direct Solvers”, Jianlin Xia, SIMAX, 34(1), 2013.

For more on randomized sampling in numerical linear algebra, see:
N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions.”
SIAM Review, 53(2), 2011. pp. 217–288.

Part 3 — Direct solvers for integral equations

Recall that many boundary value problems can advantageously be recast as boundary
integral equations. For instance, consider (sound-soft) acoustic scattering from a finite body:

(6)


−∆u(x)− k2 u(x) = 0 x ∈ R3\Ω

u(x) = f(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|uout(x)− ik uout(x)

)
= 0.

The BVP (6) is in many ways equivalent to the BIE

(7) −πiσ(x) +
∫
Γ

((
∂n(y) + ik

) eik|x−y|

|x− y|

)
σ(y) dS(y) = f(x), x ∈ ∂Ω.

The integral equation (7) has several advantages over the PDE (6), including:

• The domain of computation ∂Ω is finite.

• The domain of computation ∂Ω is 2D instead of 3D.

• The equation (7) is inherently well-conditioned (it is a “second kind Fredholm equation”).

A serious drawback of integral equations is that they lead to dense coefficient matrices.
Since we are interested in constructing inverses anyway, this is not a serious problem.

Part 3 — Direct solvers for integral equations, continued

It is possible to construct direct solvers that follow the same template as before.

Upwards pass — build all solution operators:

The original grid.

(1)→

Leaves reduced.

(2)→

After merge.

(3)→

After merge.

Downwards pass — solve for a particular data function (very fast!):

Full solution.

(6)←

Solve.

(5)←

Solve.

(4)←

Top level solve.

Our “solution operators” will be (conceptually) scattering matrices instead of DtN operators.

The operators will no longer be pure boundary operators.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space − level 6

The reduced matrix represents a Nyström discretization supported on the panels shown.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space − level 5

The reduced matrix represents a Nyström discretization supported on the panels shown.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space − level 4

The reduced matrix represents a Nyström discretization supported on the panels shown.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space − level 3

The reduced matrix represents a Nyström discretization supported on the panels shown.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space − level 2

The reduced matrix represents a Nyström discretization supported on the panels shown.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

The domain in physical space − level 1

The reduced matrix represents a Nyström discretization supported on the panels shown.

Example — BIEs on rotationally symmetric bodies (2011, with S. Hao and P. Young)

γ

Generating curve

Γ

Surface

Let Γ be a surface of rotation generated by a curve γ, and con-
sider a BIE associated with Laplace’s equation:

(8) 1

2
σ(x) +

∫
Γ

n(y) · (x− y)

4π|x− y|3
σ(y) dA(y) = f(x). x ∈ Γ

To (8), we apply the Fourier transform in the azimuthal angle
(executed computationally via the FFT) and get

1

2
σn(x) +

∫
γ

kn(x,y)σn(y) dl(y) = fn(x), x ∈ γ, n ∈ Z.

Then discretize the sequence of equations on γ using the direct
solvers described (with special quadratures, etc).

We discretized the surface using 400 Fourier modes, and 800

points on γ for a total problem size of

N = 320 000.

For typical loads, the relative error was less than 10−10 and the
CPU times were

Tinvert = 2min Tsolve = 0.3sec.

Example — BIEs on rotationally symmetric bodies (2012, with S. Hao and P. Young)

We use a hybrid scheme — a direct solver on each single body domain is used to form a
block-diagonal pre-conditioner for GMRES. (No fast matrix algebra is used in this example
— acceleration is from FFT.)

Example — BIEs on rotationally symmetric bodies (2012, with S. Hao and P. Young)

N Nbody Tfmm

IGMRES Ttotal
Erel

∞
(precond /no precond) (precond /no precond)

10000 50× 25 1.23e+00 21 /358 2.70e+01 /4.49e+02 4.414e-04
20000 100×25 3.90e+00 21 /331 8.57e+01 /1.25e+03 4.917e-04
40000 200×25 6.81e+00 21 /197 1.62e+02 /1.18e+03 4.885e-04
80000 400×25 1.36e+01 21 / 78 3.51e+02 /1.06e+03 4.943e-04
20400 50×51 4.08e+00 21 /473 8.67e+01 /1.99e+03 1.033e-04
40800 100×51 7.20e+00 21 /442 1.56e+02 /3.17e+03 3.212e-05
81600 200×51 1.35e+01 21 /198 2.99e+02 /2.59e+03 9.460e-06

163200 400×51 2.50e+01 21 /102 5.85e+02 /2.62e+03 1.011e-05
40400 50×101 7.21e+00 21 /483 1.53e+02 /3.52e+03 1.100e-04
80800 100×101 1.34e+01 22 /452 2.99e+02 /6.31e+03 3.972e-05

161600 200×101 2.55e+01 22 /199 5.80e+02 /5.12e+03 2.330e-06
323200 400×101 5.36e+01 22 /112 1.25e+03 /5.84e+03 3.035e-06

Exterior Laplace problem solved on the multibody bowl domain with and without preconditioner.

Example — BIEs on rotationally symmetric bodies (2012, with S. Hao and P. Young)

N Nbody Tsetup Tfmm Tprecond IGMRES Ttotal Teval Erel
∞

20400 50× 51 4.41e-01 1.63e+01 5.96e-02 80 1.31e+03 1.43e-02 2.294e-02
40800 100× 51 1.22e+00 3.48e+01 2.79e-01 69 2.42e+03 2.83e-02 3.451e-03
81600 200× 51 3.24e+00 1.05e+02 1.11e+00 67 7.12e+03 5.87e-02 3.463e-03
40400 50× 101 8.15e-01 3.44e+01 7.47e-02 80 2.76e+03 2.81e-02 2.362e-02
80800 100× 101 2.19e+00 1.02e+02 2.52e-01 70 7.18e+03 5.59e-02 6.677e-06

161600 200× 101 5.51e+00 3.49e+02 1.10e+00 68 2.38e+04 1.12e-01 1.333e-07
Exterior Helmholtz problem solved on multibody bowl domain. Each bowl is 5 wavelength in length.

We do not give timings for standard iterative methods since in this example, they typically
did not converge at all (even though the BIE is a 2nd kind Fredholm equation).

Numerical example — BIE on surfaces in 3D (2013, with J. Bremer and A. Gillman)

Consider sound-soft scattering from a multi-body scatterer of size 4 wave-lengths:

The ellipsoids are not rotationally symmetric.

The global scattering matrix is computed using the HBS direct solver described.

Numerical example — BIE on surfaces in 3D (2013, with J. Bremer and A. Gillman)

The local truncation error is set to 10−3.

Grid dimensions N Nout ×Nin T E Ratio Predicted
2× 2× 2 12288 410× 401 1.02× 10+1 3.37× 10−04 - -
3× 3× 3 41472 464× 475 3.43× 10+1 4.81× 10−04 3.4 6.2
4× 4× 4 98304 483× 532 7.92× 10+1 1.57× 10−04 2.3 3.7
6× 6× 6 331776 504× 707 2.96× 10+2 7.03× 10−04 3.7 6.2
8× 8× 8 786432 513× 1014 6.70× 10+2 4.70× 10−04 2.3 3.7

10× 10× 10 1536000 518× 1502 2.46× 10+3 3.53× 10−04 3.7 2.7

Numerical example — BIE on surfaces in 3D (2013, with J. Bremer and A. Gillman)

Increasing the accuracy is possible, but comes at a cost.
Now the local truncation error is set to 10−6.

Grid dimensions N Nout ×Nin T E Ratio Predicted
2× 2× 2 49152 601× 584 1.61× 10+2 1.22× 10−07 - -
3× 3× 3 165888 676× 677 6.87× 10+2 4.92× 10−07 4.3 6.2
4× 4× 4 393216 703× 747 1.68× 10+3 5.31× 10−07 2.4 3.6
6× 6× 6 1327104 728× 925 6.66× 10+3 4.60× 10−06 4.0 6.2
8× 8× 8 3145728 742× 1237 1.59× 10+4 2.30× 10−07 2.4 3.6

Numerical example — BIE on surfaces in 3D (2013, with J. Bremer and A. Gillman)

Scattering from a deformed torus of size 4λ× 4λ× 1.5λ:

4th order discretization quadrature
Ntris N T E Nout ×Nin Ratio

128 2304 9.12× 10+00 4.78× 10+02 469× 589 -
512 9216 7.09× 10+01 2.59× 10−02 477× 607 7.8

2048 36864 5.29× 10+02 1.68× 10−02 475× 607 7.5
8192 147456 3.96× 10+03 2.50× 10−05 476× 611 7.5
32768 589824 2.06× 10+04 5.07× 10−05 477× 614 5.2

Numerical example — BIE on “edgy” surface (2013, with J. Bremer and A. Gillman)

Ntris N E T Nout ×Nin

192 21 504 2.60× 10−08 6.11× 10+02 617× 712

432 48 384 2.13× 10−09 1.65× 10+03 620× 694

768 86 016 3.13× 10−10 3.58× 10+03 612× 685

Results from a Helmholtz problem (acoustic scattering) on the domain exterior to the “edgy” cube.
The domain is about 3.5 wave-lengths in diameter.
Mesh refinement near edges & corners. The direct solver eliminates “extra” DOFs.

Numerical example — Volume int. eq. in 2D (2013, with E. Corona and D. Zorin)

Consider a volume integral equation in the plane:

q(x) +

∫
Ω
b(x) log |x− y| q(y) dy = f(x), x ∈ Ω,

where Ω = [0, 1]2, and where

b(x) = 1 + 0.5e−(x1−0.3)2−(x2−0.6)2 .

The domain is discretized on a uniform grid, with simplistic quadrature.

By exploiting internal structure (HBS structure) in the scattering matrices, we have built a
direct solver with optimal O(N) complexity for every step.

References:

• E. Corona, P.G. Martinsson, D. Zorin “An O(N) Direct Solver for Integral Equations in
the Plane” In review. (arXiv.org report 1303.5466).

• K. Ho and L. Ying, “Hierarchical interpolative factorization for elliptic operators:
differential equations.” In review. (arXiv.org report 1307.2895).

• K. Ho and L. Ying, “Hierarchical interpolative factorization for elliptic operators: integral
equations.” In review. (arXiv.org report 1307.2666).

Numerical example — Volume int. eq. in 2D (2013, with E. Corona and D. Zorin)

N Tbuild Tbuild Memory Memory
(non-accelerated) (accelerated) (non-acccelerated) (accelerated)

O(N1.5) O(N) O(N logN) O(N)

784 0.11 s 0.17 s 4.68 MB 4.48 MB
3,136 0.67 s 1.70 s 29.09 MB 25.24 MB

12,544 4.50 s 8.32 s 159.59 MB 123.07 MB
50,176 31.45 s 40.43 s 819.58 MB 538.51 MB

200,704 3.79 m 3.23 m 3.72 GB 2.23 GB
802,816 28.35 m 13.66 m 17.27 GB 9.23 GB

3,211,264 3.58 hr 54.795 m 70.99 GB 34.09 GB

Execution times in Matlab, on an Intel Xeon X5650 (6 core) 2.67 GHz.

Numerical example — Volume int. eq. in 2D (2013, with E. Corona and D. Zorin)

N Tsolve Tsolve Error
(non-accelerated) (accelerated)

784 0.0014 sec 0.0018 sec 1.6e-14
3,136 0.0064 sec 0.0090 sec 1.8e-14

12,544 0.0292 sec 0.0362 sec 8.6e-11
50,176 0.1320 sec 0.1546 sec 1.6e-10

200,704 0.5993 sec 0.6772 sec 2.3e-10
802,816 2.6611 sec 2.8193 sec 4.0e-10

3,211,264 11.816 sec 11.737 sec 5.1e-9

Execution times in Matlab, on an Intel Xeon X5650 (6 core) 2.67 GHz.

For a computed approximate inverse B ≈ A−1, the error reported is

Error = max
i

||v(i) − ABv(i)||
||v(i)||

where {v(i)}i is a collection of random vectors. (How many?)

Themes:

• Multi-resolution representations of operators.
Nested-dissection-type hierarchical domain decomposition.
Excellent localization→ less communication, easier to parallelize.

• Low rank approximations to compact operators.
Many operators in potential theory have exponentially decaying singular values.
Typically, this applies only to off-diagonal blocks.
Data-sparse matrix formats, H-matrix algebra, HSS-matrices, etc.

• Randomized compression algorithms.
Constructing a low-rank approximations can be done using randomized methods.
Highly efficient. Low communication costs.

• High-order discretizations.
Many of the physical problems modeled are inherently well-conditioned, and in this case,
well-conditioned mathematical formulations and numerical methods should be used.
Integral equation formulations are often highly preferable to PDE formulations.
Relative accuracy of 10−10 or better is often perfectly achievable.
When the physics is ill-conditioned (e.g. scattering), high accuracy is crucial.

Assertions:

• Fast direct solvers excel for many integral equations; they should become default.
(Integral eqns on R and R2, BIEs on curves and surfaces.)

• O(N) direct solvers for variable coefficient problems in R2 exist and work very well.
In R3, they can be game-changing in specialized environments.

• Direct solvers are perfect for managing local refinement near corners and edges.
They “squeeze out” the superfluous local degrees of freedom.

• Multidomain spectral collocation methods perform extremely well with direct solvers.

Predictions with (some. . .) empirical support:

• For BIEs associated with non-oscillatory problems on surfaces in R3, the complexity will be
reduced from O(N(logN)p) to O(N), with a modest scaling constant.

• Randomized methods will prove enormously helpful.

• Direct solvers will provide a fantastic tool for numerical homogenization, and for scattering
problems (despite lack of O(N) methods).

Open questions:

• Can direct solvers for variable coefficient problems in 3D compete with multigrid and related
methods? (My guess: No for “over-resolved” Laplace, and a single solve. Yes for certain
scattering problems, and for multiple RHS problems.)

• Are O(N) direct solvers for highly oscillatory problems possible?

References: P.G. Martinsson, “A direct solver for variable coefficient elliptic PDEs discretized via a
composite spectral collocation method.” J. of Computational Physics, 242(1), pp. 460–479, 2013.

A. Gillman and P.G. Martinsson “A direct solver with O(N) complexity for variable coefficient elliptic
PDEs discretized via a high-order composite spectral collocation method” arxiv.org #1307.2665.

A. Gillman, A. Barnett, and P.G. Martinsson “A spectrally accurate direct solution technique for
frequency-domain scattering problems with variable media” arxiv.org #1308.5998.

