
Randomized Algorithms for Very Large-Scale Linear Algebra

Gunnar Martinsson
The University of Colorado at Boulder

Collaborators: Edo Liberty, Vladimir Rokhlin, Yoel Shkolnisky, Arthur Szlam, Joel Tropp,
Mark Tygert, Franco Woolfe, . . .

Student: Nathan Halko (now at Spot Influence, LLC).

Paper: N. Halko, P.G. Martinsson, J. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 2011.

Slides: Posted under the “Talks” tab on my webpage (google “Gunnar Martinsson”).

Objective:

Given an n× n matrix A, for a very large n (say n ∼ 106),
we seek to compute a rank-k approximation, with k ≪ n (say k ∼ 102 or 103),

A ≈ E F∗ =

k∑
j=1

ej f
∗
j .

n× n n× k k × n

Solving this problem leads to algorithms for computing:

• Eigenvectors corresponding to leading eigenvalues.
(Require ej = λj fj , and {fj}kj=1 to be orthonormal.)

• Singular Value Decomposition (SVD) / Principal Component Analysis (PCA).
(Require {ej}kj=1 and {fj}kj=1 to be orthogonal sets.)

• Spanning columns or rows.
(Require {ej}kj=1 to be columns of A, or require {f∗j}kj=1 to be rows of A.)

• etc

The problem being addressed is ubiquitous in applications.

Applications:

• Statistical analysis via Principal Component Analysis.

• Fast algorithms for elliptic PDEs: more efficient Fast Multipole Methods, fast direct
solvers, construction of special quadratures for corners and edges, etc.

• Data mining (machine learning, analysis of network matrices, etc).

• Diffusion geometry; a technique for constructing parameterizations on large collections
of data points organized (modulo noise) along non-linear low-dimensional manifolds.
Requires the computations of eigenvectors of graph Laplace operators.

• Nearest neighbor search for large clouds of points in high dimensional space.

• General pre-conditioners.

• Etc.

Question: Isn’t it well known how to compute standard factorizations?

Answer (perhaps a tendentious one): Yes — whenever the matrix fits in RAM.

Question: Isn’t it well known how to compute standard factorizations?

Answer (perhaps a tendentious one): Yes — whenever the matrix fits in RAM.

Review of existing methods I

For a dense n× n matrix that fits in RAM, excellent algorithms are already part of LAPACK
(and Matlab, etc).

• Double precision accuracy.

• Very stable.

• O(n3) asymptotic complexity. Reasonably small constants.

• Require extensive random access to the matrix.

When the target rank k is much smaller than n, there also exist O(n2 k) methods with similar
characteristics (the well-known Golub-Businger method, RRQR by Gu and Eisentstat, etc).

For smalla matrices the state-of-the-art is very satisfactory.
For kicks, we will improve on it anyway, but this is not the main point.

aOn a standard 2012 personal computer (or cell phone ...), “small” means n ≤ 10 000 or so.

Review of existing methods II

If the matrix is large, but can rapidly be applied to a vector (if it is sparse, or sparse in
Fourier space, or amenable to the FMM, etc.), so called Krylov subspace methods often
yield excellent accuracy and speed.

The idea is to pick a starting vector ω (often a random vector), “restrict” the matrix A to the
k-dimensionsal “Krylov subspace”

Span(ω, Aω, A2ω, . . . , Ak−1ω)

and compute approximate eigenvectors of the resulting matrix. Advantages:

• Very simple access to A.

• Extremely high accuracy possible.

Drawbacks:

• In standard implementations, the matrix is revisited O(k) times if a rank-k approximation
is sought. (Blocked versions exist, but the convergence analysis is less developed.)

• There are numerical stability issues. These are well-studied and can be overcome, but
they make the algorithms less portable (between applications, hardware platforms, etc.).

“New” challenges in algorithmic design:

The existing state-of-the-art methods of numerical linear algebra that we have very briefly
outlined were designed for an environment where the matrix fits in RAM and the key to
performance was to minimize the number of floating point operations required.

Currently, communication is becoming the real bottleneck:

• While clock speed is hardly improving at all anymore, the cost of a flop keeps going
down rapidly. (Multi-core processors, GPUs, cloud computing, etc.)

• The cost of slow storage (hard drives, flash memory, etc.) is also going down rapidly.

• Communication costs are not decreasing rapidly.
– Moving data from a hard-drive.
– Moving data between nodes of a parallel machine. (Or cloud computer ...)
– The amount of fast cache memory close to a processor is not improving much.

(In fact, it could be said to be shrinking — GPUs, multi-core, etc.)

• “Deluge of data”. Driven by ever cheaper storage and acquisition techniques. Web
search, data mining in archives of documents or photos, hyper-spectral imagery, social
networks, gene arrays, proteomics data, sensor networks, financial transactions, . . .

The more powerful computing machinery becomes,
the more important efficient algorithm design becomes.

• Linear scaling (w.r.t. problem size, processors, etc.).

• Minimal data movement.

That randomization can be used to overcome some of the communication bottlenecks in
matrix computations has been pointed out by several authors:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)

A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

D. Achlioptas and F. McSherry (2001)

P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b, 2006c,
2006d, etc)

S. Har-Peled (2006)

A. Deshpande and S. Vempala (2006)

S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

T. Sarlós (2006a, 2006b, 2006c)

K. Clarkson, D. Woodruff (2009)

Literature survey: Halko, Martinsson, Tropp (2011).

Review of existing methods III

Examples of how randomization could be used:

• Random column/row selection
Draw at random some columns and suppose that they span the entire column space.
If rows are drawn as well, then spectral properties can be estimated.
Crude sampling leads to less than O(mn) complexity, but is very dangerous.

• Sparsification
Zero out the vast majority of the entries of the matrix. Keep a random subset of entries,
and boost their magnitude to preserve “something.”

• Quantization and sparsification
Restrict the entries of the matrix to a small set of values (-1/0/1 for instance).

The methods outlined can be as fast as you like, but must necessarily have very weak
performance guarantees. They can work well for certain classes of matrices for which
additional information is available.

Approach advocated here:

A randomized algorithm for computing a rank-k approximation to an m× n matrix.
It is engineered from the ground up to:

• Minimize communication.

• Handle streaming data, or data stored “out-of-core.”

• Easily adapt to a broad range of distributed computing architectures.

Computational profile:

• At least O(mn) complexity (in fact O(mnk) or O(mn log(k))).

• The accuracy ε is a user-set number.
(If the application permits, it could be ε = 10−12 or less.)

• Since the method is randomized, it has a failure probability η.
η is a user specified number.
The cost of the method grows as η → 0, but setting η = 10−10 is cheap.
For all practical purposes, the methods succeed with probability 1.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UΣV∗.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UΣV∗.

Algorithm:

1.

2.

3.

4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B: B = ÛΣV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UΣV∗.

Algorithm:

1.

2.

3.

4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B: B = ÛΣV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

||A− U︸︷︷︸
=QÛ

ΣV∗|| = ||A−QÛΣV∗︸ ︷︷ ︸
=B

|| = ||A−Q B︸︷︷︸
Q∗A

|| = ||A−QQ∗A||.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3 via
direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.

Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, . . . , ωk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, . . . , yk = Aωk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.

Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, . . . , ωk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, . . . , yk = Aωk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

What is perhaps surprising is that even in the general case, {qj}kj=1 often does almost as
good of a job as the theoretically optimal vectors (which happen to be the k leading left
singular vectors).

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.

Solving the primitive problem via randomized sampling — intuition:

1. Draw a random matrix Ω ∈ Rn×k.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form a “sample” matrix Y = AΩ ∈ Rm×k.

3. Form a orthonormal matrix Q ∈ Rm×k such that Y = QR.
For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then A = QQ∗A with probability 1.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UΣV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix Ω. Omega = randn(n,l)

2. Form the m× k sample matrix Y = AΩ. Y = A * Omega

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q' * A

5. Compute the SVD of the small matrix B: B = ÛΣV∗. [Uhat, Sigma, V] = svd(B)

6. Form the matrix U = QÛ. U = Q * Uhat

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UΣV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix Ω. Omega = randn(n,l)

2. Form the m× k sample matrix Y = AΩ. Y = A * Omega

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q' * A

5. Compute the SVD of the small matrix B: B = ÛΣV∗. [Uhat, Sigma, V] = svd(B)

6. Form the matrix U = QÛ. U = Q * Uhat

Single pass algorithms:

A is symmetric:

Generate a random matrix Ω.

Compute a sample matrix Y.

Find an ON matrix Q

such that Y = QQ∗Y.

Solve for T the linear system
Q∗Y = T (Q∗Ω).

Factor T so that T = Û Λ Û
∗.

Form U = QÛ.

Output: A ≈ UΛU∗

Note: With B as on the previous slide we have T ≈ BQ (sym. case) and T ≈ BW (nonsym. case).

Note: An alternative procedure based on “interpolative decompositions” is often more accurate.

References: Woolfe, Liberty, Rokhlin, and Tygert (2008), Clarkson and Woodruff (2009), HMT2009, HMT2011.

Single pass algorithms:

A is symmetric: A is not symmetric:

Generate a random matrix Ω. Generate random matrices Ω and Ψ.

Compute a sample matrix Y. Compute sample matrices Y = AΩ and Z = A∗Ψ.

Find an ON matrix Q Find ON matrices Q and W

such that Y = QQ∗Y. such that Y = QQ∗Y and Z = WW∗ Z.

Solve for T the linear system Solve for T the linear systems
Q∗Y = T (Q∗Ω). Q∗Y = T (W∗Ω) and W∗ Z = T∗ (Q∗Ψ).

Factor T so that T = Û Λ Û
∗. Factor T so that T = ÛΣ V̂

∗.

Form U = QÛ. Form U = QÛ and V = WV̂.

Output: A ≈ UΛU∗ Output: A ≈ UΣV∗

Note: With B as on the previous slide we have T ≈ BQ (sym. case) and T ≈ BW (nonsym. case).

Note: An alternative procedure based on “interpolative decompositions” is often more accurate.

References: Woolfe, Liberty, Rokhlin, and Tygert (2008), Clarkson and Woodruff (2009), HMT2009, HMT2011.

Note: If A has exact rank k, then the algorithm produces an exact answer with probability 1.

At least three “issues” need attention:

1. In practice, A does not have exact rank k.
There are tail singular modes that pollute the answer.

2. In practice, the rank of A is not known in advance.
Instead, we are typically given a rank ε, and need to find the rank.

3. Computations will be carried out in finite precision arithmetic.
Since the basis is by nature badly conditioned, care has to be exercised. But:

• If standard procedures of numerical linear algebra are followed, things work out fine.

• However, one must only ask reasonable things of the algorithm:
Good question: Find Uapprox, Σapprox, Vapprox s.t. ||A−UapproxΣapproxVapprox|| ≤ ε.
Bad question: Find Uapprox, Σapprox, Vapprox such that ||Uexact −Uapprox|| ≤ ε, etc.

We will in this talk henceforth ignore question 3 (in the interest of not propagating
misconceptions about what numerical analysts find interesting).

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question:

How much does the computation above cost?

Answer:

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

We will consider three proto-typical environments.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 1: A is presented as an array of real numbers in RAM.

Cost is dominated by the 2mnk flops required for steps 2 and 4.

The O(mnk) flop count is the same as that of standard methods such as Golub-Businger.
However, the algorithm above requires no random access to the matrix A — the data is
retrieved in two passes. (One pass in the modified version.)

Remark 1: Improved data access leads to a moderate gain (×2) in execution time.

Remark 2: Using a special structured random sampling matrix (for instance, a “subsampled
random Fourier transform” / “fast Johnson-Lindenstrauss transform”), substantial gain in
execution time, and asymptotic complexity of O(mn log(k)) can be achieved.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 1: A is presented as an array of real numbers in RAM.

Use a subsampled random Fourier Transform (SRFT)

Ω = D F S

n× k n× n n× n n× k

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a uniform
distribution on the unit circle in C.

• F is the discrete Fourier transform, Fpq =
1√
n
e−2πi(p−1)(q−1)/n.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1 in each
column. (In other words, the action of S is to draw k columns at random from DF.)

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).

Step (4) involves a second O(mnk) cost, but this can be eliminated via a variation of the
randomized sampling process that samples both the column space and the row space:

Given an m× n matrix A, find U, V, Σ of rank k such that A ≈ UΣV∗.

1. Choose an over-sampling parameter p and set ℓ = k + p. (Say p = k so ℓ = 2k.)

2. Generate SRFT’s Ω and Ψ of sizes n× ℓ, and m× ℓ.

3. Form the sample matrices Y = AΩ and Z = A∗Ψ.

4. Find ON matrices Q and W such that Y = QQ∗Y and Z = WW∗ Z.

5. Solve for the k × k matrix T the systems Q∗Y = T (W∗Ω) and W∗ Z = T∗ (Q∗Ψ).

6. Compute the SVD of the small matrix T = ÛΣ V̂
∗ (and truncate if desired).

7. Form U = QÛ and V = WV̂.

Observation 1: Forming AΩ and A∗Ψ in Step 2 has cost O(mn log(k)) since ℓ ∼ k.

Observation 2: All other steps cost at most O((m+ n) k2).

Practical speed of the SRFT-accelerated method

Consider the task of computing a rank-k SVD of a matrix A of size n× n.

t(direct) Speed of classical (Golub-Businger) method — O(k n2)

t(srft) Speed of randomized method with an SRFT — O(log(k)n2)

t(gauss) Speed of randomized method with a Gaussian matrix — O(k n2)

t(svd) Speed of a full SVD — O(n3)

We will show the

acceleration factor = t(direct)

t(srft)

for different values of n and k.

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

k k k

n = 1024 n = 2048 n = 4, 096

t(direct)/t(gauss)

t(direct)/t(srft)

t(direct)/t(svd)

Ac
ce

le
ra

tio
n

fa
ct

or

Notes:

• Significant speed-ups are achieved for common problem sizes. For instance,
m = n = 2000 and k = 200 leads to a speed-up by roughly a factor of 4.

• Many other choices of random matrices have been found. (Subsampled Hadamard
transform; wavelets; random chains of Given’s rotations, etc).

• Using a randomly drawn selection of columns as a basis for the range of a matrix A is
fine, provided the matrix has first been hit by a random rotation.

• Current theoretical results seem to overstate the risk of inaccurate results,
at least in typical environments.

• The idea was proposed by Liberty, Rokhlin, Tygert, Woolfe (2006).
– The SRFT (under the name fast Johnson-Lindenstrauss transform) was suggested

by Nir Ailon and Bernard Chazelle (2006) in a related context.
– Dissertation by Edo Liberty.
– Related recent work by Sarlós (on randomized regression).
– Overdetermined linear least-squares regression: Rokhlin and Tygert (2008).

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 2: A is presented as an array of real numbers in slow memory — on “disk”.

In this case, standard methods such as Golub-Businger become prohibitively slow due to
the random access requirements on the data.

However, the method described above works just fine. (Recall: Two passes only!)

Limitation 1: Matrices of size m× k and k × n must fit in RAM.

Limitation 2: For matrices whose singular values decay slowly (as is typical in the
data-analysis environment), the method above is typically not accurate enough.
Higher accuracy can be bought at modest cost — we will return to this point.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Cost of steps 2 and 4: Application of A and A∗ to k vectors.
Cost of steps 3,5,6: Dense operations on matrices of sizes m× k and k × n.

Case 3: A and A∗ admit fast matrix-vector multiplication.

In this case, the “standard” method is some variation of Krylov methods such as Lanczos (or
Arnoldi for non-symmetric matrices) whose cost TKrylov satisfy:

TKrylov ∼ k Tmat-vec-mult + O(k2 (m+ n))︸ ︷︷ ︸
With full “reorthogonalization”.

.

The asymptotic cost of the randomized scheme is the same; its advantage is again in how
the data is accessed — the k matrix-vector multiplies can be executed in parallel.

The method above is in important environments less accurate than Arnoldi,
but this can be fixed while compromising only slightly on the pass-efficiency.

Theory

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A−UΣV∗||? (Recall ek = ||A−QQ∗A||.)

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A−UΣV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the (k+1)’th singular value σk+1 of A.

Question: Is ek close to σk+1?

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A−UΣV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the (k+1)’th singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× k random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× k sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ||A−UΣV∗||? (Recall ek = ||A−QQ∗A||.)

Eckart-Young theorem: ek is bounded from below by the (k+1)’th singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× (k + p) random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× (k + p) sample matrix Y = AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

THEORY — Overview:

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

We seek to bound the error ek = ek(A,Ω) = ||A−QQ∗A||, which is a random variable.

1. Make no assumption on Ω. Construct a deterministic bound of the form

||A−QQ∗A|| ≤ · · ·A · · ·Ω · · ·

2. Assume Ω is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
||A−QQ∗A||

]
≤ · · ·A · · ·

3. Assume Ω is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in Ω to get

||A−QQ∗A|| ≤ · · ·A · · ·

that hold with probability at least · · · .

4. Brief comments about the case where Ω is an SRFT.

THEORY — Step 1 out of 4 (deterministic bound):

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

Partition the SVD of A as follows:

k n− k

A = U

 Σ1

Σ2

 V∗
1

V∗
2

 k

n− k

Define Ω1 and Ω2 via
Ω1 = V∗

1Ω and Ω2 = V∗
2Ω.

Theorem: [HMT2009,HMT2011] Assuming that Ω1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||Σ2|||2︸ ︷︷ ︸
theoretically minimal error

+ |||Σ2Ω2Ω
†
1|||

2.

Here, ||| · ||| represents either ℓ2-operator norm, or the Frobenius norm.

Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).

Recall: A = U

 Σ1 0

0 Σ2

 V∗
1

V∗
2

,

 Ω1

Ω2

 =

 V∗
1Ω

V∗
2Ω

, Y = AΩ, P projn onto Ran(Y).

Thm: Suppose Σ1Ω1 has full rank. Then ||A− PA||2 ≤ ||Σ2||2 + ||Σ2Ω2Ω
†
1||

2.

Proof: The problem is rotationally invariant ⇒ We can assume U = I and so A = ΣV∗.

Simple calculation: ||(I− P)A||2 = ||A∗(I− P)2A|| = ||Σ(I− P)Σ||.

Ran(Y) = Ran

 Σ1Ω1

Σ2Ω2

 = Ran

 I

Σ2Ω2Ω
†
1Σ1

Σ1Ω1

 = Ran

 I

Σ2Ω2Ω
†
1Σ1


Set F = Σ2Ω2Ω

†
1Σ1. Then P =

 I

F

 (I+ F∗F)−1[I F∗].

Use properties of psd matrices: I− P 4 · · · 4

 F∗F −(I+ F∗F)−1F∗

−F(I+ F∗F)−1 I


Conjugate by Σ to get Σ(I− P)Σ 4

 Σ1F
∗FΣ1 −Σ1(I+ F∗F)−1F∗Σ2

−Σ2F(I+ F∗F)−1Σ1 Σ2
2


Diagonal dominance: ||Σ(I− P)Σ|| ≤ ||Σ1F

∗FΣ1||+ ||Σ2
2|| = ||Σ2Ω2Ω

†
1||2 + ||Σ2||2.

THEORY — Step 2 out of 4 (bound on expectation of error):

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

Recall: |||A−QQ∗A|||2 ≤ |||Σ2|||2 + |||Σ2Ω2Ω
†
1|||2, where Ω1 = V∗

1Ω and Ω2 = V∗
2Ω.

Assumption: Ω is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices Ω1 and Ω2 also have a
Gaussian distribution. (As a consequence, the matrices U and V do not enter the analysis
and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . .).)

What is the distribution of Ω†
1 when Ω1 is a k × (k + p) Gaussian matrix?

If p = 0, then ||Ω†
1|| is typically large, and is very unstable.

Scatter plot showing distribution of k × (k + p) Gaussian matrices. p = 0

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=0

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices. p = 2

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=2

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices. p = 5

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=5

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices. p = 10

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=10

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices.

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p = 0

p = 2

p = 5

p = 10

k = 20 k = 40 k = 60

1/σmin is plotted against σmax.

Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ℓ Gaussian matrix where k < ℓ.
Let “g” denote a generic N (0, 1) variable and “r2j ” denote a generic χ2

j variable. Then

G ∼



g g g g g g · · ·

g g g g g g · · ·

g g g g g g · · ·

g g g g g g · · ·
...

...
...

...
... · · ·


∼



rℓ 0 0 0 0 0 · · ·

g g g g g g · · ·

g g g g g g · · ·

g g g g g g · · ·
...

...
...

...
... · · ·



∼



rℓ 0 0 0 0 0 · · ·

rk−1 g g g g g · · ·

0 g g g g g · · ·

0 g g g g g · · ·
...

...
...

...
... · · ·


∼



rℓ 0 0 0 0 · · ·

rk−1 rℓ−1 0 0 0 · · ·

0 g g g g · · ·

0 g g g g · · ·
...

...
...

...
... · · ·



∼



rℓ 0 0 0 0 · · ·

rk−1 rℓ−1 0 0 0 · · ·

0 rk−2 g g g · · ·

0 0 g g g · · ·
...

...
...

...
... · · ·


∼ · · · ∼



rℓ 0 0 0 0 · · ·

rk−1 rℓ−1 0 0 0 · · ·

0 rk−2 rℓ−2 0 0 · · ·

0 0 rk−3 rℓ−3 0 · · ·
...

...
...

...
... · · ·


Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ℓ = 2k.
More sophisticated methods are required to get to ℓ = k + 2.

THEORY — Step 2 out of 4 (bound on expectation of error):

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

Recall: |||A−QQ∗A|||2 ≤ |||Σ2|||2 + |||Σ2Ω2Ω
†
1|||2, where Ω1 = V∗

1Ω and Ω2 = V∗
2Ω.

Assumption: Ω is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices Ω1 and Ω2 also have a
Gaussian distribution. (As a consequence, the matrices U and V do not enter the analysis
and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . .).)

What is the distribution of Ω†
1 when Ω1 is a k × (k + p) Gaussian matrix?

If p = 0, then ||Ω†
1|| is typically large, and is very unstable.

Luckily, the situation improves dramatically as p is slightly increased:

Theorem: If p ≥ 2, then E
[
||Ω†

1||F
]
≤ k

p−1 and E
[
||Ω†

1||
]
≤ e

√
k+p
p .

References: Chen & Dongarra (2005), HMT 2009/2011.

THEORY — Step 2 out of 4 (bound on expectation of error):

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

Recall: |||A−QQ∗A|||2 ≤ |||Σ2|||2 + |||Σ2Ω2Ω
†
1|||2, where Ω1 = V∗

1Ω and Ω2 = V∗
2Ω.

Theorem: [Halko, Martinsson, Tropp 2009] Suppose that p ≥ 2 and that Ω is drawn from a
Gaussian distribution. Then

E||A−QQ∗A||Frob ≤
(
1 +

k

p− 1

)1/2
min(m,n)∑

j=k+1

σ2
j

1/2

.

Moreover,

E||A−QQ∗A|| ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

min(m,n)∑
j=k+1

σ2
j

1/2

.

THEORY — Step 3 out of 4 (bound on tail probabilities):

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

Theorem: [Halko, Martinsson, Tropp 2009] Suppose that p ≥ 4 and that Ω is drawn from a
Gaussian distribution. Then for all u, t ≥ 1,

||A−QQ∗A|| ≤

(
1 + t

√
3k

p+ 1
+ u t

e
√
k + p

p+ 1

)
σk+1 +

t e
√
k + p

p+ 1

∑
j>k

σ2
j

1/2

except with probability at most 2 t−p + e−u2/2.

The theorem can be simplified by by choosing t and u appropriately. For instance,

||A−QQ∗A|| ≤

(
1 + 16

√
1 +

k

p+ 1

)
σk+1 + 8

√
k + p

p+ 1

∑
j>k

σ2
j

1/2

,

except with probability at most 3 e−p.

Note: A slightly weaker result appeared in: YALEU/DCS/RR-1361 — Martinsson, Rokhlin, Tygert (2006).

THEORY — Step 3 out of 4 (bound on tail probabilities):

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

Theorem: [Halko, Martinsson, Tropp 2009] Suppose that p ≥ 4 and that Ω is drawn from a
Gaussian distribution. Then for all u, t ≥ 1,

||A−QQ∗A|| ≤

(
1 + t

√
3k

p+ 1
+ u t

e
√
k + p

p+ 1

)
σk+1 +

t e
√
k + p

p+ 1

∑
j>k

σ2
j

1/2

except with probability at most 2 t−p + e−u2/2.

The theorem can be simplified by by choosing t and u appropriately. For instance,

||A−QQ∗A|| ≤
(
1 + 6

√
(k + p) · p log p

)
σk+1 + 3

√
k + p

∑
j>k

σ2
j

1/2

,

except with probability at most 3 p−p.

Note: A slightly weaker result appeared in: YALEU/DCS/RR-1361 — Martinsson, Rokhlin, Tygert (2006).

THEORY — Step 4 out of 4 — comments on the case where Ω is an SRFT:

Let A denote an m× n matrix with singular values {σj}min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ℓ = k + p.

Let Ω denote an n× ℓ “test matrix”, and let Q denote the m× ℓ matrix Q = orth(AΩ).

The current error analysis is disappointing:

• Failure probability decays very slowly with p (and depends on k).

• The number ℓ of samples required satisfies ℓ ∼ k log(k).
This is sharp, there is a “coupon collection” type problem.

But, happily, the practical observed behavior of the method is excellent.
In all actual applications we have tested, the SRFTs we have used perform essentially as
well as Gaussian test matrices. (Picking a slightly larger ℓ is advisable, say ℓ = 2k).

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60

−16

−14

−12

−10

−8

−6

−4

−2

0

k

lo
g
1
0
(σ

k
+
1
)

lo
g
1
0
(e

k
)

The red line indicates the sin-
gular values σk+1 of A. These
indicate the theoretically min-
imal approximation error.

The blue line indicates the ac-
tual errors ek incurred by one
instantiation of the proposed
method.

A is a discrete approximation of a certain compact integral operator. Curiously, the nature of A is in a
strong sense irrelevant: the error distribution depends only on (σj)

min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60

−16

−14

−12

−10

−8

−6

−4

−2

0

k

lo
g
1
0
(σ

k
+
1
)

lo
g
1
0
(e

k
)

The red line indicates the sin-
gular values σk+1 of A. These
indicate the theoretically min-
imal approximation error.

The blue line indicates the ac-
tual errors ek incurred by one
instantiation of the proposed
method.

A is a discrete approximation of a certain compact integral operator. Curiously, the nature of A is in a
strong sense irrelevant: the error distribution depends only on (σj)

min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60

−16

−14

−12

−10

−8

−6

−4

−2

0

k

lo
g
1
0
(σ

k
+
1
)

lo
g
1
0
(e

k
)

The red line indicates the sin-
gular values σk+1 of A. These
indicate the theoretically min-
imal approximation error.

The blue line indicates the ac-
tual errors ek incurred by a dif-
ferent instantiation of the pro-
posed method.

A is a discrete approximation of a certain compact integral operator. Curiously, the nature of A is in a
strong sense irrelevant: the error distribution depends only on (σj)

min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60

−16

−14

−12

−10

−8

−6

−4

−2

0

k

lo
g
1
0
(σ

k
+
1
)

lo
g
1
0
(e

k
)

The red line indicates the sin-
gular values σk+1 of A. These
indicate the theoretically min-
imal approximation error.

The blue lines indicate the ac-
tual errors ek incurred by 10
different instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator. Curiously, the nature of A is in a
strong sense irrelevant: the error distribution depends only on (σj)

min(m,n)
j=1 .

Example 2:

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu

de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.

Example 3: “Eigenfaces”

We next process a data base containing m = 7254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column of
a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2Approximation error ek Estimated Singular Values σj

M
ag

ni
tu

de

Minimal error (est)
q = 0
q = 1
q = 2
q = 3

k j

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

E||A−QQ∗A|| ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

min(m,n)∑
j=k+1

σ2
j

1/2

.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)q A has the same left singular vectors as A, and singular values

σj((AA∗)q A) = (σj(A))
2 q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)q AΩ

instead of
Y = AΩ.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also similar
to “block power method,” “block Lanczos,” “subspace iteration.”

Input: An m× n matrix A, a target rank ℓ, and a small integer q.
Output: Rank-ℓ factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

(1) Draw an n× ℓ random matrix Ω. (4) Form the small matrix B = Q∗ A.
(2) Form the n× ℓ sample matrix Y = (AA∗)q AΩ. (5) Factor the small matrix B = ÛΣV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, the expectation of the error satisfies:

(1) E
[
||A− Acomputed

k+p ||
]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)

σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.

A numerically stable version of the “power method”:

Input: An m× n matrix A, a target rank ℓ, and a small integer q.
Output: Rank-ℓ factors U, Σ, and V in an approximate SVD A ≈ UΣV∗.

Draw an n× ℓ Gaussian random matrix Ω.
Set Q = orth(AΩ)

for i = 1, 2, . . . , q

W = orth(A∗Q)

Q = orth(AW)

end for
B = Q∗A

[Û, Σ, V] = svd(B)

U = QÛ.

Note: Algebraically, the method with orthogonalizations is identical to the “original” method
where Q = orth((AA∗)qAΩ).

Note: This is a classic subspace iteration.
The novelty is the error analysis, and the finding that using a very small q is often fine.
(In fact, our analysis allows q to be zero. . .)

Example 2 (revisited):

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu

de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.

Example 3 (revisited): “Eigenfaces”

We next process a data base containing m = 7254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column of
a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2Approximation error ek Estimated Singular Values σj

M
ag

ni
tu

de

Minimal error (est)
q = 0
q = 1
q = 2
q = 3

k j

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Example of application: Nearest neighbor search in RD

Picture of a cluster of points in 2D.

Lay on quad-tree.

What do in higher dimensions?

Random projections followed by low-dimensional search.
Several different projections are needed.

Final remarks:

• For large scale SVD/PCA of dense matrices, these algorithms are highly recommended;
they compare favorably to existing methods in almost every regard. Free software can
be downloaded → google Mark Tygert.

• The approximation error is a random variable, but its distribution is very narrowly
concentrated. Rigorous error bounds that are satisfied with probability 1− η where η is a
user set “failure probability” (e.g. η = 10−10 or 10−20).

• This talk mentioned error estimators only briefly, but they are important.
Can operate independently of the algorithm for improved robustness.
Typically cheap and easy to implement. Used to determine the actual rank.

• The theory can be hard, but experimentation is easy!
Concentration of measure makes the algorithms behave as if deterministic.

• To find out more:
– A tutorial long version of this talk is available on the NIPS 2009 website.
– Review article: N. Halko, P.G. Martinsson, J. Tropp, Finding structure with

randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Review, 53(2), 2011, pp. 217–288.

We note that the power method can be viewed as a hybrid between the “basic” randomized
method, and a Krylov subspace method:

Krylov method: Restrict A to the linear space

Vq(ω) = Span(Aω, A2ω, . . . , Aqω).

“Basic” randomized method: Restrict A to the linear space

Span(Aω1, Aω2, . . . , Aωℓ) = V1(ω1)× V1(ω2)× · · · × V1(ωℓ).

“Power” method: Restrict A to the linear space

Span(Aqω1, A
qω2, . . . , A

qωℓ).

Modified “power” method: Restrict A to the linear space

Vq(ω1)× Vq(ω2)× · · · × Vq(ωℓ).

This could be a promising area for further work.

The observation that a “thin” Gaussian random matrix to high probability is well-conditioned
is at the heart of the celebrated Johnson-Lindenstrauss lemma:

Lemma: Let ε be a real number such that ε ∈ (0, 1), let n be a positive integer, and let k be
an integer such that

(2) k ≥ 4

(
ε2

2
− ε3

3

)−1

log(n).

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that

(3) (1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

Further, such a map can be found in randomized polynomial time.

It has been shown that an excellent choice of the map f is the linear map whose coefficient
matrix is a k × d matrix whose entries are i.i.d. Gaussian random variables (see,
e.g. Dasgupta & Gupta (1999)).
When k satisfies, (2), this map satisfies (3) with probability close to one.

The related Bourgain embedding theorem shows that such statements are not restricted to
Euclidean space:

Theorem:. Every finite metric space (X, d) can be embedded into ℓ2 with distortion O(log n)

where n is the number of points in the space.

Again, random projections can be used as the maps.

The Johnson-Lindenstrauss lemma (and to some extent the Bourgain embedding theorem)
expresses a theme that is recurring across a number of research areas that have received
much attention recently. These include:

• Compressed sensing (Candès, Tao, Romberg, Donoho).

• Approximate nearest neighbor search (Jones, Rokhlin).

• Geometry of point clouds in high dimensions (Coifman, Jones, Lafon, Lee, Maggioni,
Nadler, Singer, Warner, Zucker, etc).

• Construction of multi-resolution SVDs.

• Clustering algorithms.

• Search algorithms / knowledge extraction.

Note: Omissions! No ordering. Missing references. Etc etc.

Many of these algorithms work “unreasonably well.”

The randomized algorithm presented here is close in spirit to randomized algorithms such
as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)

• Routing of data in distributed computing with unknown network topology.

• Rabin-Karp string matching / verifying equality of strings.

• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is stochastic. The
quality of the final output is excellent.

The randomized algorithm that is perhaps the best known within numerical analysis is Monte
Carlo. This is somewhat lamentable given that MC is often a “last resort” type algorithm
used when the curse of dimensionality hits — inaccurate results are tolerated simply
because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for many
applications, more accurate versions have been developed.)

Observation: Mathematicians working on these problems often focus on minimizing the
distortion factor

1 + ε

1− ε

arising in the Johnson-Lindenstrauss bound:

(1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

In our environments, we do not need this constant to be particularly close to 1.
It should just not be “large” — say less that 10 or some such.

This greatly reduces the number of random projections needed! Recall that in the
Johnson-Lindenstrauss theorem:

number of samples required ∼ 1

ε2
log(N).

Observation: Multiplication by a random unitary matrix reduces any matrix to its “general”
form. All information about the singular vectors vanish. (The singular values remain the
same.)

This opens up the possibility for general pre-conditioners —
counterexamples to various algorithms can be disregarded.

The feasibility has been demonstrated for the case of least squares solvers for very large,
very over determined systems. (Work by Rokhlin & Tygert, Sarlós,)

Work on O(N2 (logN)2) solvers of general linear systems is under way.
(Random pre-conditioning + iterative solver.)

May stable fast matrix inversion schemes for general matrices be possible?

Observation: Robustness with respect to the quality of the random numbers.

The assumption that the entries of the random matrix are i.i.d. normalized Gaussians
simplifies the analysis since this distribution is invariant under unitary maps.

In practice, however, one can use a low quality random number generator. The entries can
be uniformly distributed on [−1, 1], they be drawn from certain Bernouilli-type distributions,
etc.

Remarkably, they can even have enough internal structure to allow fast methods for
matrix-vector multiplications. For instance:

• Subsampled discrete Fourier transform.

• Subsampled Walsh-Hadamard transform.

• Givens rotations by random angles acting on random indices.

This was exploited in “Algorithm 2” (and related work by Ailon and Chazelle).
Our theoretical understanding of such problems is unsatisfactory.
Numerical experiments perform far better than existing theory indicates.

