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The talk will describe “fast direct” techniques for solving the linear systems arising from the

discretization of linear boundary value problems (BVPs) of the form

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, and where A is an elliptic differential

operator. Examples include:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Example: Poisson equation with Dirichlet boundary data:{
−∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ.



Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-

ential operator via Finite Elements,

Finite Differences, . . .

↓

N ×N discrete linear system.

Very large, sparse, ill-conditioned.

↓

Fast solvers:

iterative (multigrid), O(N),

direct (nested dissection), O(N3/2).

↘

Conversion of the BVP to a Bound-

ary Integral Equation (BIE).

↓

Discretization of (BIE) using

Nyström, collocation, BEM, . . . .

↓

N ×N discrete linear system.

Moderate size, dense,

(often) well-conditioned.

↓

Iterative solver accelerated by fast

matrix-vector multiplier, O(N).
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What does a “direct” solver mean in this context?

Basically, it is a solver that is not “iterative” . . .

Given a computational tolerance ε, and a linear system

(2) Au = b,

(where the system matrix A is often defined implicitly), a direct solver constructs an

operator T such that

||A−1 − T|| ≤ ε.

Then an approximate solution to (2) is obtained by simply evaluating

uapprox = Tb.

The matrix T is typically constructed in a compressed format that allows the matrix-vector

product Tb to be evaluated rapidly.

Variation: Find factors B and C such that ||A− BC|| ≤ ε, and linear solves involving the

matrices B and C are fast. (LU-decomposition, Cholesky, etc.)



“Iterative” versus ”direct” solvers

Two classes of methods for solving an N ×N linear algebraic system

Au = b.

Iterative methods:

Examples: GMRES, conjugate gradi-

ents, Gauss-Seidel, etc.

Construct a sequence of vectors

u1, u2, u3, . . . that (hopefully!) con-

verge to the exact solution.

Many iterative methods access A only

via its action on vectors.

Often require problem specific pre-

conditioners.

High performance when they work well.

O(N) solvers.

Direct methods:

Examples: Gaussian elimination,

LU factorizations, matrix inversion, etc.

Always give an answer. Deterministic.

Robust. No convergence analysis.

Great for multiple right hand sides.

Have often been considered too slow for

high performance computing.

(Directly access elements or blocks of A.)

(Exact except for rounding errors.)



Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:

• Molecular dynamics.

• Scattering problems.

• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is often possible.

2. Problems that are relatively ill-conditioned:

• Scattering problems near resonant frequencies.

• Ill-conditioning due to geometry (elongated domains, percolation, etc).

• Ill-conditioning due to lazy handling of corners, cusps, etc.

• Finite element and finite difference discretizations.

Scattering problems intractable to existing methods can (sometimes) be solved.

3. Direct solvers can be adapted to construct spectral decompositions:

• Analysis of vibrating structures. Acoustics.

• Buckling of mechanical structures.

• Wave guides, bandgap materials, etc.



Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers whenever

possible. (Sometimes for good reasons.)

The effort to develop direct solvers aims to help in the development of general purpose

software packages solving the basic linear boundary value problems of mathematical physics.



How do you construct direct solvers with less than O(N3) complexity?

For sparse matrices, algorithms such as “nested dissection” achieve O(N1.5) or O(N2)

complexity by reordering the matrix.

More recently, methods that exploit data-sparsity have achieved linear or close to linear

complexity in a broad variety of environments.

In this talk, the data-sparse matrices under consideration have off-diagonal blocks that can

to high accuracy (say ten of fifteen digits) be approximated by low-rank matrices.



Fast direct solvers for elliptic PDEs based on data-sparsity:

(Apologies to co-workers: A. Gillman, L. Greengard, D. Gueyffier, V. Rokhlin, M. Tygert, P. Young, . . . )

1991 Data-sparse matrix algebra / wavelets: Beylkin, Coifman, Rokhlin, et al

1993 Fast inversion of 1D operators: V. Rokhlin and P. Starr

1996 scattering problems: E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms: G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods: W. Hackbusch, B. Khoromskijet, S. Sauter, . . . ,

2000 Cross approximation, matrix skeletons: etc., E. Tyrtyshnikov

2002 O(N3/2) inversion of Lippmann-Schwinger equations: Y. Chen,

2002 “Hierarchically Semi-Separable” matrices: M. Gu, S. Chandrasekharan.

2002 (1999?) H2-matrix methods: S. Börm, W. Hackbusch, B. Khoromskijet, S. Sauter.

2004 Inversion of “FMM structure”: S. Chandrasekharan, T. Pals.

2004 Proofs of compressibility: M. Bebendorf, S. Börm, W. Hackbusch, . . . .

2006 Accelerated nested diss. via H-mats: L. Grasedyck, R. Kriemann, S. LeBorne

[2007] S. Chandrasekharan, M. Gu, X.S. Li, J. Xia. [2010], P. Schmitz and L. Ying.

2010 construction of A−1 via randomized sampling: L. Lin, J. Lu, L. Ying.



Current status — problems with non-oscillatory kernels (Laplace, elasticity, Stokes, etc).

Problems on 1D domains:

• Integral equations on the line: Done. O(N) with very small constants.

• Boundary Integral Equations in R2: Done. O(N) with small constants.

• BIEs on axisymmetric surfaces in R3: Done. O(N) with small constants.

Problems on 2D domains:

• “FEM” matrices for elliptic PDEs in the plane: O(N) algorithms exist. Work remains.

• Volume Int. Eq. in the plane (e.g. low frequency Lippman-Schwinger): O(N (logN)p)

algorithms exist. O(N) and high accuracy methods are under development.

• Boundary Integral Equations in R3: O(N (logN)p) algorithms exist. O(N) and high

accuracy methods are under development.

Problems on 3D domains:

• “FEM” matrices for elliptic PDEs: Very active area!

(Grasedyck & LeBorne; Michielssen; Xia; Ying; . . . )

• Volume Int. Eq.: Can be done, but requires a lot of memory.



Current status — problems with oscillatory kernels (Helmholtz, time-harmonic Maxwell, etc.).

Direct solvers are extremely desirable in this environment!

Problems on 1D domains:

• Integral equations on the line: Done — O(N) with small constants.

• Boundary Integral Equations in R2: ???

• (“Elongated” surfaces in R2 and R3: Done — O(N logN).)

Problems on 2D domains:

• “FEM” matrices for Helmholtz equation in the plane: ???

(O(N1.5) inversion is possible.)

• Volume Int. Eq. in the plane (e.g. high frequency Lippman-Schwinger): ???

• Boundary Integral Equations in R3: ???

Problems on 3D domains:

• ???? (O(N2) inversion sometimes possible — memory requirement is a concern.)

Recent work by B. Engquist and L. Ying — very efficient pre-conditioners based on

structured matrix calculations. “Semi-direct.”



How do these algorithms actually work?

Let us consider the simplest case: fast inversion of an equation on a 1D domain.

Things are still very technical ... quite involved notation ...

What follows is a brief description of a method from an extreme birds-eye view.

We start by describing some key properties of the matrices under consideration.



For concreteness, consider a 100× 100 matrix A approximating the operator

[SΓ u](x) = u(x) +

∫
Γ
log |x− y|u(y) ds(y).

The matrix A is characterized by:

• Irregular behavior near the diagonal.

• Smooth entries away from the diagonal.

The contour Γ. The matrix A.
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Key observation: Off-diagonal blocks of A have low rank.

Consider two patches Γ1 and Γ2 and the corresponding block of A:

Γ1

Γ2 Γ1

Γ2

A12

The contour Γ The matrix A

The block A12 is a discretization of the integral operator

[SΓ1←Γ2 u](x) = u(x) +

∫
Γ2

log |x− y|u(y) ds(y), x ∈ Γ1.



Singular values of A12 (now for a 200× 200 matrix A):
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What we see is an artifact of the smoothing effect of coercive elliptic differential equations; it

can be interpreted as a loss of information.

This effect has many well known physical consequences:

• The intractability of solving the heat equation backwards.

• The St Venant principle in mechanics.

• The inaccuracy of imaging at sub-wavelength scales.

Such phenomena should be viewed in contrast to high-frequency scattering problems —

extreme accuracy of optics etc.



Now that we know that off-diagonal blocks of A have low rank, all we need to do is to

tessellate the matrix into as few such blocks are possible. A standard tessellation is:
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The numbers shown are ranks to precision ε = 10−10 (Ntot = 800).

Blocks with red and blue dots are stored as dense matrices.

Note how all blocks are well-separated from the diagonal. This is characteristic of both the

Fast Multipole Method, and H-matrix methods. (Our tessellation is slightly non-standard

since it’s based on a tree on parameter space rather than physical space.)
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Storing the matrix:

O(N logN) is simple.

(H-matrix, Barnes-Hut)

O(N) is not that hard.

(H2-matrix, FMM)

Matrix-vector multiply:

O(N logN) is simple.

(H-matrix, Barnes-Hut)

O(N) is not that hard.

(H2-matrix, FMM)

Matrix inversion: A bit more complicated.
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O(N logN) is simple.
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Matrix-vector multiply:

O(N logN) is simple.

(H-matrix, Barnes-Hut)

O(N) is not that hard.

(H2-matrix, FMM)

Matrix inversion: A bit more complicated.

With A =

 A11 A12

A21 A22

. we have A−1 =

 B−111 −B−111 A12A
−1
22

−A−122 A21B
−1
11 A−122 + A−122 A21B

−1
11 A12A

−1
22

 ,

where B11 = A11 − A12A
−1
22 A21.
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Storing the matrix:

O(N logN) is simple.
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O(N) is not that hard.
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Matrix-vector multiply:

O(N logN) is simple.

(H-matrix, Barnes-Hut)

O(N) is not that hard.

(H2-matrix, FMM)

Matrix inversion: A bit more complicated.

With A =

 A11 A12

A21 A22

. we have A−1 =

 B−111 −B−111 A12A
−1
22

−A−122 A21B
−1
11 A−122 + A−122 A21B

−1
11 A12A

−1
22

 ,

where B11 = A11 − A12A
−1
22 A21.

Recurse for O(N(logN)2) (?) complexity.



We are in luck! The 1D case has a remarkable property:

Even off-diagonal blocks that touch the diagonal have low rank.
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The “trick” of including blocks touching the diagonal has the advantages that it leads to

much simpler algorithms, and less communication.

It has the slight disadvantage that the ranks increase somewhat.

It has a profound disadvantage in that standard (analytic) expansions of the kernel functions

do not work. This problem has only been overcome in the last few years.



Direct solvers based on Hierarchically Semi-Separable matrices

Consider a linear system

Aq = f,

where A is a “block-separable” matrix consisting of p× p blocks of size n× n:

A =


D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j

n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n. (Say k ≈ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the i’th row use the

same basis matrices Ui for their column spaces (and analogously all blocks in the j’th

column use the same basis matrices Vj for their row spaces).



We get A =


D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

Then A admits the factorization:

A =


U1

U2

U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã


V∗

1

V∗
2

V∗
3

V∗
4


︸ ︷︷ ︸

=V∗

+


D1

D2

D3

D4


︸ ︷︷ ︸

=D

or

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n



Lemma: [Variation of Woodbury] If an N ×N matrix A admits the factorization

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

then

A−1 = E (Ã+ D̂)−1 F∗ + G,

p n× p n pn× p k p k × p k p k × p n pn× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1U

)−1
, E = D−1UD̂, F = (D̂V∗D−1)∗, G = D−1 −D−1UD̂V∗D−1.

Note: All matrices set in blue are block diagonal.



The Woodbury formula replaces the task of inverting a p n× p n matrix by the task of

inverting a p k × p k matrix.

The cost is reduced from (p n)3 to (p k)3.

We do not yet have a “fast” scheme . . .

(Recall: A has p× p blocks, each of size n× n and of rank k.)



We must recurse!

Using a telescoping factorization of A (a “hierarchically block-separable” representation):

A = U(3)
(
U(2)

(
U(1)B(0) (V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ +D(3),

we have a formula

A−1 = E(3)
(
E(2)

(
E(1) D̂

(0)
(F(1))∗ + D̂

(1))
(F(2))∗ + D̂

(2))
(V(3))∗ + D̂

(3)
.

Block structure of factorization:

U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂
(0)

, which is small.



Formal definition of an HSS matrix

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N ].

For a node τ in the tree, let Iτ denote the corresponding index vector.

Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Numbering of nodes in a fully populated binary tree with L = 3 levels.

The root is the original index vector I = I1 = [1, 2, . . . , 400].



Formal definition of an HSS matrix

Suppose T is a binary tree.

For a node τ in the tree, let Iτ denote the corresponding index vector.

For leaves σ and τ , set Aσ,τ = A(Iσ, Iτ ) and suppose that all off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ ̸= τ

n× n n× k k × k k × n

For non-leaves σ and τ , let {σ1, σ2} denote the children of σ, and let {τ1, τ2} denote the

children of τ . Set

Aσ,τ =

 Ãσ1,τ1 Ãσ1,τ2

Ãσ2,τ1 Ãσ2,τ2


Then suppose that the off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ ̸= τ

2k × 2k 2k × k k × k k × 2k



Name: Size: Function:

For each leaf Dτ n× n The diagonal block A(Iτ , Iτ ).

node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .

For each parent Bτ 2k × 2k Interactions between the children of τ .

node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

An HSS matrix A associated with a tree T is fully specified if the factors listed above are

provided.



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

We see that the columns of U1 must span the column space of the matrix A(I1, I
c
1) where I1

is the index vector for the first block and Ic1 = I\I1.

A(I1, Ic1)

The matrix A



What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

We see that the columns of U2 must span the column space of the matrix A(I2, I
c
2) where I2

is the index vector for the first block and Ic2 = I\I2.

A(I2, Ic2)

The matrix A



Let us consider a specific example.

Suppose that A is a discretization of the single layer operator

[SΓ u](x) = u(x) +

∫
Γ
log |x− y|u(y) ds(y).

Γ2

A(I2, Ic2)

The contour Γ. The matrix A.



Singular values of A(I2, Ic2)
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To precision 10−10, the matrix A(I2, Ic2) has rank 36.



Remark: In an HSS representation, the ranks are typically higher than in an H-matrix

representation.

Specifically, the block A(I2, Ic2) would typically be considered “inadmissible.”

Instead, in an H-matrix representation, you would compress blocks such as A(I2, I4):

Γ2

Γ4

A(I2, I4)

The contour Γ. The matrix A.



Singular values of A(I2, Ic2) and A(I2, I4):

0 20 40 60 80 100 120
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

σ
j
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σ
j
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(I
2
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I 4
))

j

To precision 10−10, the matrix A(I2, Ic2) has rank 36.

To precision 10−10, the matrix A(I2, I4) has rank 12.



Plot of A(I2, Ic2)

0

50

100

150

200

250

300

350

400 0
50

100
150

200
250

300
350

400

−0.2

−0.1

0

0.1

0.2

0.3

ji

A
(i,

j)



Plot of A(I2, Ic2)
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(Note: the z-axis has been rescaled)



Plot of A(I2, I4)
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Choice of basis matrices (our approach is non-standard):

Recall: The HSS structure relies on factorizations such as (for k < n)

Aσ,τ = Uσ Ãσ,τ V∗τ

n× n n× k k × k k × n

For HSS matrix algebra to be numerically stable, it is critical that the basis matrices Uτ and

Vτ be well-conditioned.

The gold-standard is to have Uτ and Vτ be orthonormal (i.e. σj(Uτ ) = σj(Vτ ) = 1 for

j = 1, 2, . . . , k), and this is commonly enforced.

We have decided to instead use interpolatory decompositions in which:

1. Uτ and Vτ each contain the k × k identity matrix as a submatrix.

2. Uτ and Vτ are “reasonably” well-conditioned.

3. Ãσ,τ is a submatrix of A for all σ, τ .

Our choice leads to some loss of accuracy, but vastly simplifies the task of computing

compressed representations in the context of integral equations. (For instance, if the original

A represents a Nyström discretization, then the HSS representation on each level is also a

Nyström discretization, only with modified diagonal blocks, and on coarser discretizations.)



Numerical examples

All numerical examples were run on standard office desktops (most of them on an older 3.2

GHz Pentium IV with 2GB of RAM).

Most of the programs are written in Matlab (some in Fortran 77).

Recall that the reported CPU times have two components:

(1) Pre-computation (inversion, LU-factorization, constructing a Schur complement)

(2) Time for a single solve once pre-computation is completed



1D numerical examples — speed of HSS matvec (at accuracy 10−10)

Logarithmic kernel: um =
∑N

n=1
n ̸=m

(
log |xm − xn|

)
qn with xn drawn at random from [0, 1].

Orthog poly: um =
∑N

n=1
pk+1(xm)pk(xn)−pk(xm)pk+1(xn)

xm−xn
qn with {xn}Nn=1 Gaussian nodes.

Sinc kernel: um =
∑N

n=1
sin((xm−xn)πN/5)

xm−xn
qn with (xn)

N
n=1 equispaced in [−1, 1].
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DIRECT: log problem
DIRECT: orthog poly
DIRECT: sinc
DIRECT: precomputed
HSS: log problem
HSS: orthog poly
HSS: sinc
FFTPACK
FFTW

Note: Close to FFT speed! Break-even point with dense < 100!



1D numerical examples — BIEs in R2

We invert a matrix approximating the operator

[Au](x) =
1

2
u(x)− 1

2π

∫
Γ
D(x, y)u(y) ds(y), x ∈ Γ,

where D is the double layer kernel associated with Laplace’s equation,

D(x, y) =
1

2π

n(y) · (x− y)

|x− y|2
,

and where Γ is either one of the countours:

Smooth star Star with corners Snake

(local refinements at corners) (# oscillations ∼ N)

Examples from “A direct solver with O(N) complexity for integral equations on one-dimensional

domains,” A. Gillman, P. Young, P.G. Martinsson, 2011, Frontiers of Mathematics in China.



1D numerical examples — BIEs in R2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

 

 

Smooth star
Star with corners
Snake
Smooth star (Helmholtz)
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The graphs give the times required for:

• Computing the HSS representation of the coefficient matrix.

• Inverting the HSS matrix.

Within each graph, the four lines correspond to the four examples considered:

� Smooth star ◦ Star with corners ⋄ Snake ∗ Smooth star (Helmholtz)



1D numerical examples — BIEs in R2
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data4

Transform inverse Matrix vector multiply
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The graphs give the times required for:

• Transforming the computed inverse to standard HSS format.

• Applying the inverse to a vector (i.e. solving a system).

Within each graph, the four lines correspond to the four examples considered:

� Smooth star ◦ Star with corners ⋄ Snake ∗ Smooth star (Helmholtz)



1D numerical examples — BIEs in R2
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The graphs give the error in the approximation, and the forwards error in the inverse.

Within each graph, the four lines correspond to the four examples considered:

� Smooth star ◦ Star with corners ⋄ Snake



1D numerical examples — BIEs in R2
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The graphs give the error in the approximation, and the norm of the inverse.

Within each graph, the four lines correspond to the four examples considered:

� Smooth star ◦ Star with corners ⋄ Snake



1D numerical examples — BIEs in R2

Example: An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with Dirichlet

boundary data was solved using N = 6400 discretization points, with a prescribed accuracy

of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary integral operator was

σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.



1D numerical examples — BIEs in R2

99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Plot of σmin versus k for an interior Helmholtz problem

on the smooth pentagram. The values shown were

computed using a matrix of size N = 6400. Each

point in the graph required about 60s of CPU time.



1D numerical examples — BIEs on rotationally symmetric surfaces

γ

Generating curve

Γ

Surface

Let Γ be a surface of rotation generated by a curve γ, and con-

sider a BIE associated with Laplace’s equation:

(3)
1

2
σ(x) +

∫
Γ

n(y) · (x− y)

4π|x− y|3
σ(y) dA(y) = f(x). x ∈ Γ

To (3), we apply the Fourier transform in the azimuthal angle

(executed computationally via the FFT) and get

1

2
σn(x) +

∫
γ

kn(x, y)σn(y) dl(y) = fn(x), x ∈ γ, n ∈ Z.

Then discretize the sequence of equations on γ using the direct

solvers described (with special quadratures, etc).

We discretized the surface using 400 Fourier modes, and 800

points on γ for a total problem size of

N = 320 000.

For typical loads, the relative error was less than 10−10 and the

CPU times were

Tinvert = 2min Tsolve = 0.3sec.



1D numerical examples — BIEs on rotationally symmetric surfaces

Work in progress (with Sijia Hao): Extension to multibody acoustic scattering:

Individual scattering matrices are constructed via a relatively expensive pre-computation.

Inter-body interactions are handled via the wideband FMM and an iterative solver.



1D numerical examples — BIEs on rotationally symmetric surfaces

Work in progress (with Sijia Hao): Extension to multibody acoustic scattering:

Individual scattering matrices are constructed via a relatively expensive pre-computation.

Inter-body interactions are handled via the wideband FMM and an iterative solver.



Extension to problems on 2D domain

As a model problem we consider a single layer potential on a deformed torus:

[Aσ](x) = σ(x) +

∫
Γ
log |x− y|σ(y) dA(y), y ∈ Γ,

where Γ is the domain
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The domain in physical space

This is not rotationally symmetric.



Performance of direct solver for the torus domain
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Observe that for a BIE with N = 25 600, the inverse can be applied in 0.09 seconds.

The asymptotic complexity is:

Inversion step: O(N1.5) (with small scaling constant)

Application of the inverse: O(N)
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Errors for the same problem as the previous slide.



A (useful) curious fact: The inversion procedure computationally constructs a Nyström

discretization of the domain at each of the levels.
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The domain in physical space − level 6

The reduced matrix represents a Nyström discretization supported on the panels shown.
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The reduced matrix represents a Nyström discretization supported on the panels shown.
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The reduced matrix represents a Nyström discretization supported on the panels shown.
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The reduced matrix represents a Nyström discretization supported on the panels shown.
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The reduced matrix represents a Nyström discretization supported on the panels shown.
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The reduced matrix represents a Nyström discretization supported on the panels shown.
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The reduced matrix represents a Nyström discretization supported on the panels shown.
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The code for the torus domain was based on a binary tree that partitioned the domain in

parameter space. This leads to high efficiency when it works, but is not very generic.

For a more robust code, we instead construct a binary tree in physical space:

For “regular” surfaces, the resulting oct-tree is sparsely populated, and interactions rank

max out at O(N1/2). The complexity therefore remains:

Inversion step: O(N1.5) (with small scaling constant)

Application of the inverse: O(N)



Such a code has been implemented and tested on model problems such as molecular surfaces

and aircraft fuselages.



Example: Triangulated aircraft

Computation carried out by Denis Gueyffier at Courant.

Laplace’s equation. 28 000 triangles. Standard office desktop.

Cost of very primitive inversion scheme (low accuracy, etc.): 15 min

Cost of applying the inverse: 0.2 sec

From Fast direct solvers for integral equations in complex three-dimensional domains,

by Greengard, Gueyffier, Martinsson, Rokhlin, Acta Numerica 2009.



Observation: Local updates to the geometry are very cheap. Adding a (not so very

aerodynamic) flap corresponds to a rank-15 update and can be done in a fraction of a second.

Note: While our codes are very primitive at this point, there exist extensive H/H2-matrix

based libraries with better asymptotic estimates for inversion. www.hlib.org



Comments on “fast” direct solvers for BIEs in R3

The cost of applying a computed inverse is excellent — a fraction of a second even for

problems with 105 or so degrees of freedom.

Storage requirements are acceptable — O(N) with a modest constant of scaling.

The cost of the inversion/factorization is O(N1.5) and is not entirely satisfactory.

Can it be reduced to O(N) or O(N logN)?

Recall that the problem is that the interaction of a block with m discretization points scales

as O(m0.5) as m grows. It is inversion/factorization/matrix-matrix multiplications of dense

matrices of size O(m0.5)×O(m0.5) that bring us down. (In the “1D” case, these matrices

were of size O(logm)×O(logm).)

Cure: It turns out these dense matrices are themselves HSS matrices!

Codes exploiting this fact to construct linear complexity direct solvers for surface BIEs are

currently being developed.



The “recursion on dimension” method described is very similar to nested dissection methods

for inverting/factoring sparse matrices arising from the finite element or finite difference

discretization of an elliptic PDE.

To illustrate, consider a square regular grid for the five-point stencil on a rectangular domain

with N = 2n× n grid points.

Ω1 Ω2

The coefficient matrix can be split as before

A =

 A11 A12

A21 A22


The ranks of A12 and A21 are n = O(N0.5).

Moreover, A12 and A21 consist mostly of zeros in this case!



The “recursion on dimension” method described is very similar to nested dissection methods

for inverting/factoring sparse matrices arising from the finite element or finite difference

discretization of an elliptic PDE.

To illustrate, consider a square regular grid for the five-point stencil on a rectangular domain

with N = 2n× n grid points.

Ω1 Ω3

Ω2

The coefficient matrix is tessellated as

A =


A11 A12

A21 A22 A23

A32 A33


Now A12, A

t
21, A

t
23, and A32 have n = O(N0.5) columns.

Having rank O(N0.5) is good, but being of size O(N0.5) is better!



Ω1 Ω3

Ω2

The coefficient matrix is tessellated as

A =


A11 A12

A21 A22 A23

A32 A33


To execute nested dissection, the recursive step consists of 3 tasks:

• Compute the factorization L11U11 = A11.

• Compute the factorization L33U33 = A33.

• Compute the factorization L22U22 = A22 − A21A
−1
11 A12 − A23A

−1
33 A32︸ ︷︷ ︸

This is an HSS matrix!

.



Ω1 Ω3

Ω2

The coefficient matrix is tessellated as

A =


A11 A12

A12 A22 A23

A32 A33


To execute nested dissection, the recursive step consists of 3 tasks:

• Compute the factorization L11U11 = A11.

• Compute the factorization L33U33 = A33.

• Compute the factorization L22U22 = A22 − A21A
−1
11 A12 − A23A

−1
33 A32︸ ︷︷ ︸

This is an HSS matrix!

.



Example: Inversion of a “Finite Element Matrix” (with A. Gillman)

A grid conduction problem — A is a “five-point stencil” — very large, sparse.

Each link has conductivity drawn from a uniform random distribution on [1, 2].

Solution strategy: Perform nested dissection on the grid. Use HSS algebra to accelerate

all computations involving dense matrices larger than a certain threshold. Total complexity

is O(N) (as compared to O(N1.5) for classical nested dissection).



N Tsolve Tapply M e3 e4

(sec) (sec) (MB)

5122 7.98 0.007 8.4 2.7523e− 6 6.6631e− 9

10242 26.49 0.014 18.6 - -

20482 98.46 0.020 33.1 - -

40962 435.8 0.039 65.6 - -

Tsolve Time required to compute all Schur complements (“set-up time”)

Tapply Time required to apply a Dirichlet-to-Neumann op. (of size 4
√
N × 4

√
N)

M Memory required to store the solution operator

e3 The l2-error in the vector Ã
−1
nn r where r is a unit vector of random direction.

e4 The l2-error in the first column of Ã
−1
nn .



Related work:

Solvers of this type have attracted much attention recently, including:

• H-LU factorization of coefficient matrices by L. Grasedyck, S. LeBorne, S.Börm, et al.

(2006)

• Multifrontal methods accelerated by HSS-matrix algebra: J. Xia, S. Chandrasekaran,

S. Li. (2009)

Currently large effort at Purdue in this direction. (J. Xia, M. V. de Hoop, et al).

Massive computations on seismic wave propagation.

• L. Ying & P. Schmitz — general meshes in 2D, Cartesian meshes in 3D, etc. (2010).



Accelerated nested dissection on grids in R3

We have implemented the accelerated nested dissection method to solve the electrostatics

problems arising in transcranial magnetic stimulation (TMS). This environment is

characterized by:

• There is time to preprocess a given geometry.

• Given a load, the solution should be found “instantaneously.”

Joint work with Frantisek Cajko, Luis Gomez, Eric Michielssen, and, Luis

Hernandez-Garcia of U. Michigan.





Numerical results: Single CPU desktop. Local accuracy was 10−8.

Our benchmark was the “Pardiso” package in Intel’s MKL.

N Storage (MB) Factorization (sec) Solution (sec)

Pardiso FDS Pardiso FDS Pardiso FDS

323 = 32768 157 283 8 53 0.1 0.1

643 = 262144 2900 3313 549 1683 1.3 1.2

723 = 373248 4700 4693 1106 3142 2.2 1.9

813 = 531441 8152 6929 2330 5669 4.1 3.2

903 = 729000 12500 9550 4630 8658 7.2 4.7

Note: Direct solvers require substantially more memory than, e.g., multigrid.

Note: The gain over Pardiso is modest for small problem sizes, but:

• FDS has better asymptotic scaling as N grows.

• FDS is better suited for large-scale parallelization.

• FDS will be extremely fast for pure “boundary value problems” (this is speculation . . . )

• The FDS methods are still fairly immature; improvements are to be expected.





There may be short-cuts to finding the inverses ...

Recent work indicates that randomized sampling could be used to very rapidly find a

data-sparse representation of a matrix (in H / H2 / HSS / . . . format).

The idea is to extract information by applying the operator to be compressed to a sequence

of random vectors. In the present context, “applying the inverse” of course corresponds

simply to a linear solve.

• “Fast construction of hierarchical matrix representation from matrix-vector

multiplication”, L. Lin, J. Lu, L. Ying., J. of Computational Physics, 230(10), 2011.

• P.G. Martinsson, “A fast randomized algorithm for computing a Hierarchically

Semi-Separable representation of a matrix”. SIAM J. on Matrix Analysis and Appl.,

32(4), pp. 1251–1274, 2011.

For more on randomized sampling in numerical linear algebra, see:

N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions.”

SIAM Review, 53(2), 2011. pp. 217–288.



Question: When are the “boundary operators” compressible in HSS form?

Electrostatics on a network of resistors.

The object computed is the lattice “Neumann-

to-Dirichlet” boundary operator. It maps a

vector of fluxes on the blue nodes to a vector

of potentials on the blue nodes.

Question: How compressible is the N2D operator?

Case A: Constant conductivities — standard 4/-1/-1/-1/-1 five-point stencil.

Case B: Random conductivities — drawn uniformly from the interval [1, 2].

Case C: Periodic oscillations — high aspect ratio.

Case D: Random cuts — 5% of the bars were cut, the others have unit conductivity.

Case E: Large cracks.



Case C — periodic oscillations:
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Case E — large cracks:
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Memory requirements in floats per degree of freedom:

All operators were compressed to a relative accuracy of 10−10.

Nside Nside Nside Nside Nside

= 100 = 200 = 400 = 800 = 1600

General matrix 396 796 1596 3196 6396

Case A (constant conductivities) 97.7 98.6 98.1 96.8 95.7

Case B (periodic conductivities) 95.9 97.4 96.7 95.4 93.9

Case C (random conductivities) 97.8 99.7 98.8 97.5 96.0

Case D (random cuts) 95.5 97.5 96.6 95.4 94.1

Case E (cracks) 95.7 98.1 97.7 96.8 95.5

Key observations:

• The amount of memory required is essentially problem independent.

• Almost perfect linear scaling.



A conduction problem on a perforated domain

Geometry Potential

The Neumann-to-Dirichlet operator for the exterior boundary was computed.

The boundary was split into 44 panels, with 26 Gaussian quadrature nodes on each one.

This gives a relative accuracy of 10−10 for evaluating fields at points very close to the boundary (up

to 0.5% of the side-length removed).

Storing the N2D operator (in a data-sparse format) requires 120 floats per degree of freedom.



A conduction problem on a perforated domain — close to “percolation”

Geometry Potential

The Neumann-to-Dirichlet operator for the exterior boundary was computed.

The boundary was split into 44 panels, with 26 Gaussian quadrature nodes on each one.

This gives a relative accuracy of 10−10 for evaluating fields at points very close to the boundary (up

to 0.5% of the side-length removed).

Storing the N2D operator (in a data-sparse format) requires 118 floats per degree of freedom.



Question: When are the “boundary operators” compressible in HSS form?

Apparent answer: Almost always for non-oscillatory problems. (?)

Dense matrices that arise in numerical algorithms for elliptic PDEs are surprisingly well

suited to the HSS-representation. The format is robust to:

• Irregular grids.

• PDEs with non-smooth variable coefficients.

• Inversion, LU-factorization, matrix-matrix-multiplies, etc.

For oscillatory problems, the ranks grow as the wave-length of the problem is shrunk relative

to the size of the geometry, which eventually renders the direct solvers prohibitively

expensive. However, the methodology remains efficient for “surprisingly” small wave-lengths.

Some supporting theory and “intuitive arguments” exist, but the observed performance still

exceeds what one would expect, both in terms of the range of applicability and what the

actual ranks should be. (At least what I would expect!)



Assertions:

• Fast direct solvers excel for problems on 1D domains. (They should become the default.)

– Integral operators on the line.

– Boundary Integral Equations in R2.

– Boundary Integral Equations on rotationally symmetric surfaces in R3.

• Existing fast direct solvers for “finite element matrices” associated with elliptic PDEs in

R2 work very well. In R3, they can be game-changing in specialized environments.

Predictions:

• For BIEs associated with non-oscillatory problems on surfaces in R3, the complexity will

be reduced from O(N(logN)p) to O(N), with a modest scaling constant.

• Randomized methods will prove enormously helpful.

They have already demonstrated their worth in large scale linear algebra.

• Direct solvers for scattering problems will find users, even if expensive.

O(N1.5) or O(N2) flop counts may be OK, provided parallelization is possible.

• Direct solvers will provide a fantastic tool for numerical homogenization.

Open questions:

• How efficient can direct solvers be for volume problems in 3D?

• Are O(N) direct solvers for highly oscillatory problems possible?


