
Fast direct solvers for elliptic PDEs

Gunnar Martinsson

The University of Colorado at Boulder

Students: Collaborators:

Adrianna Gillman Denis Zorin (NYU)

Nathan Halko Eduardo Corona (NYU)

Sijia Hao Vladimir Rokhlin (Yale)

Patrick Young Mark Tygert (NYU)

The talk will describe “fast direct” techniques for solving the linear systems arising from the

discretization of linear boundary value problems (BVPs) of the form

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ, and where A is an elliptic differential

operator. Examples include:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Example: Poisson equation with Dirichlet boundary data:{
−∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ.

Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-

ential operator via Finite Elements,

Finite Differences, . . .

↓

N ×N discrete linear system.

Very large, sparse, ill-conditioned.

↓

Fast solvers:

iterative (multigrid), O(N),

direct (nested dissection), O(N3/2).

↘

Conversion of the BVP to a Bound-

ary Integral Operator (BIE).

↓

Discretization of (BIE) using

Nyström, collocation, BEM,

↓

N ×N discrete linear system.

Moderate size, dense,

(often) well-conditioned.

↓

Iterative solver accelerated by fast

matrix-vector multiplier, O(N).

Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-

ential operator via Finite Elements,

Finite Differences, . . .

↓

N ×N discrete linear system.

Very large, sparse, ill-conditioned.

↓

Fast solvers:

iterative (multigrid), O(N),

direct (nested dissection), O(N3/2).

O(N) direct solvers.

↘

Conversion of the BVP to a Bound-

ary Integral Operator (BIE).

↓

Discretization of (BIE) using

Nyström, collocation, BEM,

↓

N ×N discrete linear system.

Moderate size, dense,

(often) well-conditioned.

↓

Iterative solver accelerated by fast

matrix-vector multiplier, O(N).

O(N) direct solvers.

What does a “direct” solver mean in this context?

Basically, it is a solver that is not “iterative” . . .

Given a computational tolerance ε, and a linear system

(2) Au = b,

(where the system matrix A is often defined implicitly), a direct solver constructs an

operator T such that

||A−1 − T|| ≤ ε.

Then an approximate solution to (2) is obtained by simply evaluating

uapprox = Tb.

The matrix T is typically constructed in a compressed format that allows the matrix-vector

product Tb to be evaluated rapidly.

Variation: Find factors B and C such that ||A− BC|| ≤ ε, and linear solves involving the

matrices B and C are fast. (LU-decomposition, Cholesky, etc.)

“Iterative” versus ”direct” solvers

Two classes of methods for solving an N ×N linear algebraic system

Au = b.

Iterative methods:

Examples: GMRES, conjugate gradi-

ents, Gauss-Seidel, etc.

Construct a sequence of vectors

u1, u2, u3, . . . that (hopefully!) con-

verge to the exact solution.

Many iterative methods access A only

via its action on vectors.

Often require problem specific pre-

conditioners.

High performance when they work well.

O(N) solvers.

Direct methods:

Examples: Gaussian elimination,

LU factorizations, matrix inversion, etc.

Always give an answer. Deterministic.

Robust. No convergence analysis.

Great for multiple right hand sides.

Have often been considered too slow for

high performance computing.

(Directly access elements or blocks of A.)

(Exact except for rounding errors.)

Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:

• Molecular dynamics.

• Scattering problems.

• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is often possible.

2. Problems that are relatively ill-conditioned:

• Scattering problems near resonant frequencies.

• Ill-conditioning due to geometry (elongated domains, percolation, etc).

• Ill-conditioning due to lazy handling of corners, cusps, etc.

• Finite element and finite difference discretizations.

Scattering problems intractable to existing methods can (sometimes) be solved.

3. Direct solvers can be adapted to construct spectral decompositions:

• Analysis of vibrating structures. Acoustics.

• Buckling of mechanical structures.

• Wave guides, bandgap materials, etc.

Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers whenever

possible. (Sometimes for good reasons.)

The effort to develop direct solvers aims to help in the development of general purpose

software packages solving the basic linear boundary value problems of mathematical physics.

Fast direct solvers for elliptic PDEs in the literature:

(Apologies to co-workers: A. Gillman, L. Greengard, D. Gueyffier, V. Rokhlin, M. Tygert, P. Young, . . .)

1991 Data-sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin, et al

1993 Fast inversion of 1D operators V. Rokhlin and P. Starr

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, B. Khoromskijet, S. Sauter,. . . ,

2000 Cross approximation, matrix skeletons, etc., E. Tyrtyshnikov.

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 “Hierarchically Semi-Separable” matrices, M. Gu, S. Chandrasekharan.

2002 (1999?) H2-matrix methods, S. Börm, W. Hackbusch, B. Khoromskijet, S. Sauter.

2004 Inversion of “FMM structure,” S. Chandrasekharan, T. Pals.

2004 Proofs of compressibility, M. Bebendorf, S. Börm, W. Hackbusch,

2007 Accelerated nested diss. via HSS, S. Chandrasekharan, M. Gu, X.S. Li, J. Xia.

2008 Accelerated nested diss. via H-mats, L. Grasedyck, R. Kriemann, S. LeBorne.

2010 construction of A−1 via randomized sampling, L. Lin, J. Lu, L. Ying.

Current work: A. Barnett, J. Bremer, E. Michielsen, V. Rokhlin, M. Tygert, . . .

Current status — problems with non-oscillatory kernels (Laplace, elasticity, Stokes, etc).

Problems on 1D domains:

• Integral equations on the line: Done. O(N) with very small constants.

• Boundary Integral Equations in R2: Done. O(N) with small constants.

• BIEs on axisymmetric surfaces in R3: Done. O(N) with small constants.

Problems on 2D domains:

• “FEM” matrices for elliptic PDEs in the plane: O(N) algorithms exist. Work remains.

• Volume Int. Eq. in the plane (e.g. low frequency Lippman-Schwinger): O(N (logN)p)

algorithms exist. O(N) and high accuracy methods are under development.

• Boundary Integral Equations in R3: O(N (logN)p) algorithms exist. O(N) and high

accuracy methods are under development.

Problems on 3D domains:

• “FEM” matrices for elliptic PDEs: Very active area!

(Grasedyck & LeBorne; Michielssen; Xia; Ying; . . .)

• Volume Int. Eq.: Memory constraints currently seem problematic.

Current status — problems with oscillatory kernels (Helmholtz, Maxwell, etc.).

Direct solvers are extremely desirable in this environment!

Problems on 1D domains:

• Integral equations on the line: Done — O(N) with small constants.

• Boundary Integral Equations in R2: ???

• (“Elongated” surfaces in R2 and R3: Done — O(N logN).)

Problems on 2D domains:

• “FEM” matrices for Helmholtz equation in the plane: ???

(O(N1.5) inversion is possible.)

• Volume Int. Eq. in the plane (e.g. high frequency Lippman-Schwinger): ???

• Boundary Integral Equations in R3: ???

Problems on 3D domains:

• ???? (O(N2) inversion sometimes possible — memory requirement is a concern.)

Recent work by B. Engquist and L. Ying — very efficient pre-conditioners based on

structured matrix calculations. “Semi-direct.”

Direct solvers based on Hierarchically Semi-Separable matrices

Consider a linear system

Aq = f,

where A is a “block-separable” matrix consisting of p× p blocks of size n× n:

A =

D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j

n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n. (Say k ≈ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the i’th row use the

same basis matrices Ui for their column spaces (and analogously all blocks in the j’th

column use the same basis matrices Vj for their row spaces).

We get A =

D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

Then A admits the factorization:

A =

U1

U2

U3

U4

︸ ︷︷ ︸

=U

0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0

︸ ︷︷ ︸

=Ã

V∗

1

V∗
2

V∗
3

V∗
4

︸ ︷︷ ︸

=V∗

+

D1

D2

D3

D4

︸ ︷︷ ︸

=D

or

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

Lemma: [Variation of Woodbury] If an N ×N matrix A admits the factorization

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

then

A−1 = E (Ã+ D̂)−1 F∗ + G,

p n× p n pn× p k p k × p k p k × p n pn× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1U

)−1
, E = D−1UD̂, F = (D̂V∗D−1)∗, G = D−1 −D−1UD̂V∗D−1.

Note: All matrices set in blue are block diagonal.

The Woodbury formula replaces the task of inverting a p n× p n matrix by the task of

inverting a p k × p k matrix.

The cost is reduced from (p n)3 to (p k)3.

We do not yet have a “fast” scheme . . .

(Recall: A has p× p blocks, each of size n× n and of rank k.)

We must recurse!

Using a telescoping factorization of A (a “hierarchically block-separable” representation):

A = U(3)
(
U(2)

(
U(1)B(0)V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ +D(3),

we have a formula

A−1 = E(3)
(
E(2)

(
E(1) D̂

(0)
F(1))∗ + D̂

(1))
(F(2))∗ + D̂

(2))
(V(3))∗ + D̂

(3)
.

Block structure of factorization:

U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂
(0)

, which is small.

Formal definition of an HSS matrix

Suppose T is a binary tree.

For a node τ in the tree, let Iτ denote the corresponding index vector.

Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Numbering of nodes in a fully populated binary tree with L = 3 levels.

The root is the original index vector I = I1 = [1, 2, . . . , 400].

Formal definition of an HSS matrix

Suppose T is a binary tree.

For a node τ in the tree, let Iτ denote the corresponding index vector.

For leaves σ and τ , set Aσ,τ = A(Iσ, Iτ) and suppose that all off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ ̸= τ

n× n n× k k × k k × n

For non-leaves σ and τ , let {σ1, σ2} denote the children of σ, and let {τ1, τ2} denote the

children of τ . Set

Aσ,τ =

 Ãσ1,τ1 Ãσ1,τ2

Ãσ2,τ1 Ãσ2,τ2

Then suppose that the off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗τ σ ̸= τ

2k × 2k 2k × k k × k k × 2k

Name: Size: Function:

For each leaf Dτ n× n The diagonal block A(Iτ , Iτ).

node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .

For each parent Bτ 2k × 2k Interactions between the children of τ .

node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

An HSS matrix A associated with a tree T is fully specified if the factors listed above are

provided.

Choice of basis matrices (our approach is non-standard):

Recall: The HSS structure relies on factorizations such as (for k < n)

Aσ,τ = Uσ Ãσ,τ V∗τ

n× n n× k k × k k × n

For HSS matrix algebra to be numerically stable, it is critical that the basis matrices Uτ and

Vτ be well-conditioned.

The gold-standard is to have Uτ and Vτ be orthonormal (i.e. σj(Uτ) = σj(Vτ) = 1 for

j = 1, 2, . . . , k), and this is commonly enforced.

We have decided to instead use interpolatory decompositions in which:

1. Uτ and Vτ each contain the k × k identity matrix as a submatrix.

2. Uτ and Vτ are “reasonably” well-conditioned.

3. Ãσ,τ is a submatrix of A for all σ, τ .

Our choice leads to some loss of accuracy, but vastly simplifies the task of computing

compressed representations in the context of integral equations. (For instance, if the original

A represents a Nyström discretization, then the HSS representation on each level is also a

Nyström discretization, only with modified diagonal blocks, and on coarser discretizations.)

Sample environment: Discretization of 1D integral operators

For simplicity, consider a 100× 100 matrix A approximating the operator

[SΓ u](x) = u(x) +

∫
Γ
log |x− y|u(y) ds(y).

The matrix A is characterized by:

• Irregular behavior near the diagonal.

• Smooth entries away from the diagonal.

The contour Γ. The matrix A.

0
20

40
60

80
100

0

20

40

60

80

100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Plot of aij vs i and j The 50th row of A

(without the diagonal entries) (without the diagonal entries)

0
20

40
60

80
100

0

20

40

60

80

100
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Plot of aij vs i and j The 50th row of A

(without the diagonal entries) (without the diagonal entries)

Key observation: Off-diagonal blocks of A have low rank.

Consider two patches Γ1 and Γ2 and the corresponding block of A:

Γ1

Γ2 Γ1

Γ2

A12

The contour Γ The matrix A

The block A12 is a discretization of the integral operator

[SΓ1←Γ2 u](x) = u(x) +

∫
Γ2

log |x− y|u(y) ds(y), x ∈ Γ1.

Singular values of A12 (now for a 200× 200 matrix A):

0 5 10 15 20 25 30 35 40 45 50
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log10(σj)

j

... should do an HSS block as well ...

What we see is an artifact of the smoothing effect of coercive elliptic differential equations; it

can be interpreted as a loss of information.

This effect has many well known physical consequences:

• The intractability of solving the heat equation backwards.

• The St Venant principle in mechanics.

• The inaccuracy of imaging at sub-wavelength scales.

Such phenomena should be viewed in contrast to high-frequency scattering problems —

extreme accuracy of optics etc.

Numerical examples:

We invert a matrix approximating the operator

[Au](x) =
1

2
u(x)− 1

2π

∫
Γ
D(x, y)u(y) ds(y), x ∈ Γ,

where D is the double layer kernel associated with Laplace’s equation,

D(x, y) =
1

2π

n(y) · (x− y)

|x− y|2
,

and where Γ is either one of the countours:

Smooth star Star with corners Snake

(local refinements at corners) (# oscillations ∼ N)

Examples from “A direct solver with O(N) complexity for integral equations on one-dimensional

domains,” A. Gillman, P. Young, P.G. Martinsson, 2011, in review.

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Compression Inversion

N

T
im

e
in

se
co
n
d
s

The graphs give the times required for:

• Computing the HSS representation of the coefficient matrix.

• Inverting the HSS matrix.

Within each graph, the three lines correspond to the three contours considered:

� Smooth star.

◦ Star with corners.

⋄ Snake.

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

Transform inverse Matrix vector multiply

N

T
im

e
in

se
co
n
d
s

The graphs give the times required for:

• Transforming the computed inverse to standard HSS format.

• Applying the inverse to a vector (i.e. solving a system).

Within each graph, the three lines correspond to the three contours considered:

� Smooth star.

◦ Star with corners.

⋄ Snake.

10
3

10
4

10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

Approximation errors Stability

N

∥A
−

A
a
p
p
ro

x
∥

∥A
−
1

a
p
p
ro

x
∥

The graphs give the error in the approximation, and the norm of the inverse.

Within each graph, the three lines correspond to the three contours considered:

� Smooth star.

◦ Star with corners.

⋄ Snake.

Example: An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with Dirichlet

boundary data was solved using N = 6400 discretization points, with a prescribed accuracy

of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary integral operator was

σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.

99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Plot of σmin versus k for an interior Helmholtz problem

on the smooth pentagram. The values shown were

computed using a matrix of size N = 6400. Each

point in the graph required about 60s of CPU time.

Example: BIEs on rotationally symmetric surfaces (with Patrick Young)

γ

Generating curve

Γ

Surface

Let Γ be a surface of rotation generated by a curve γ, and con-

sider a BIE associated with Laplace’s equation:

(3)
1

2
σ(x) +

∫
Γ

n(y) · (x− y)

4π|x− y|3
σ(y) dA(y) = f(x). x ∈ Γ

To (3), we apply the Fourier transform in the azimuthal angle

(executed computationally via the FFT) and get

1

2
σn(x) +

∫
γ

kn(x, y)σn(y) dl(y) = fn(x), x ∈ γ, n ∈ Z.

Then discretize the sequence of equations on γ using the direct

solvers described (with special quadratures, etc).

We discretized the surface using 400 Fourier modes, and 800

points on γ for a total problem size of

N = 320 000.

For typical loads, the relative error was less than 10−10 and the

CPU times were

Tinvert = 2min Tsolve = 0.3sec.

Work in progress (with Sijia Hao): Extension to multibody acoustic scattering:

Individual scattering matrices are constructed via a relatively expensive pre-computation.

Inter-body interactions are handled via the wideband FMM and an iterative solver.

Work in progress (with Sijia Hao): Extension to multibody acoustic scattering:

Individual scattering matrices are constructed via a relatively expensive pre-computation.

Inter-body interactions are handled via the wideband FMM and an iterative solver.

Sample environment: Volume problems in 2D

Example: Consider an elliptic boundary value problem with variable coefficients

(BVP)

{
−∇ · (B(x)∇u(x)) + c(x)u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 with piecewise smooth boundary Γ.

(Assume the operator is coercive, B and c need not be smooth.)

Let A denote the N ×N matrix arising from an FD or FEM discretization of (BVP).

While A is sparse, its inverse (and LU factors) are dense.

However, they are highly compressible, and can be computed in O(N) operations.

Note: The inverse of A mimics the action of the solution operator

u(x) =

∫
Γ
G(x, y) f(y) dA(y),

where G is the Green’s function of the problem.

(Note that G is known analytically only for the most trivial domains Ω.)

Example: Inversion of a “Finite Element Matrix” (with A. Gillman)

A grid conduction problem — A is a “five-point stencil” — very large, sparse.

Each link has conductivity drawn from a uniform random distribution on [1, 2].

Solution strategy: Perform nested dissection on the grid. Use HSS algebra to accelerate

all computations involving dense matrices larger than a certain threshold. Total complexity

is O(N) (as compared to O(N1.5) for classical nested dissection).

N Tsolve Tapply M e3 e4

(sec) (sec) (MB)

5122 7.98 0.007 8.4 2.7523e− 6 6.6631e− 9

10242 26.49 0.014 18.6 - -

20482 98.46 0.020 33.1 - -

40962 435.8 0.039 65.6 - -

Tsolve Time required to compute all Schur complements (“set-up time”)

Tapply Time required to apply a Dirichlet-to-Neumann op. (of size 4
√
N × 4

√
N)

M Memory required to store the solution operator

e3 The l2-error in the vector Ã
−1
nn r where r is a unit vector of random direction.

e4 The l2-error in the first column of Ã
−1
nn .

Note: Similar work by S. Chandrasekharan, M. Gu, X.S. Li, J. Xia; L. Grasedyck,

R. Kriemann, S. LeBorne; P. Schmitz and L. Ying; E. Michielssen; . . .

Fun fact: For constant coefficient difference operators on regular grids, the Dirichlet-to-

Neumann operator for a general domain can be computed in O(
√
N) operations.

N = 1012 can be handled with ease on a laptop.

See Gillman & Martinsson, JCP, 229(24), pp. 9026–9041, 2010.

Example: O(N) nested dissection on general meshes in R2:

From A fast direct solver for elliptic problems on general meshes in 2D

by P. Schmitz and L. Ying, 2010.

Related work by S. Chandrasekharan, M. Gu, X.S. Li, J. Xia; Grasedyck & LeBorne; etc.

Example: Accelerated nested dissection on grids in R3:

From A fast direct solver for elliptic problems on Cartesian meshes in 3D

by P. Schmitz and L. Ying, 2010.

Related work by J. Xia et al; L. Grasedyck & S. LeBorne; E. Michielssen; etc.

Sample environment: BIEs on surfaces in R3

The scheme for BIEs in R2 can without modifications be applied to BIEs in R3.

However, the ranks then grow for larger patches, and the asymptotic complexity will be:

Inversion step: O(N1.5) (with small scaling constant)

Application of the inverse: O(N)

All geometric operations are now done with respect to an oct-tree.

It is sparsely populated since the object being discretized is two-dimensional.

Example: Triangulated aircraft

Computation carried out by Denis Gueyffier at Courant.

Laplace’s equation. 28 000 triangles. Standard office desktop.

Cost of very primitive inversion scheme (low accuracy, etc.): 15 min

Cost of applying the inverse: 0.2 sec

From Fast direct solvers for integral equations in complex three-dimensional domains,

by Greengard, Gueyffier, Martinsson, Rokhlin, Acta Numerica 2009.

Observation: Local updates to the geometry are very cheap. Adding a (not so very

aerodynamic) flap corresponds to a rank-15 update and can be done in a fraction of a second.

Note: While our codes are very primitive at this point, there exist extensive H/H2-matrix

based libraries with better asymptotic estimates for inversion. www.hlib.org

A conduction problem on a perforated domain

Geometry Potential

The Neumann-to-Dirichlet operator for the exterior boundary was computed.

The boundary was split into 44 panels, with 26 Gaussian quadrature nodes on each one.

This gives a relative accuracy of 10−10 for evaluating fields at points very close to the boundary (up

to 0.5% of the side-length removed).

Storing the N2D operator (in a data-sparse format) requires 120 floats per degree of freedom.

A conduction problem on a perforated domain — close to “percolation”

Geometry Potential

The Neumann-to-Dirichlet operator for the exterior boundary was computed.

The boundary was split into 44 panels, with 26 Gaussian quadrature nodes on each one.

This gives a relative accuracy of 10−10 for evaluating fields at points very close to the boundary (up

to 0.5% of the side-length removed).

Storing the N2D operator (in a data-sparse format) requires 118 floats per degree of freedom.

Observation:

Dense matrices that arise in numerical algorithms for elliptic PDEs are surprisingly well

suited to the HSS-representation. The format is robust to:

• Irregular grids.

• PDEs with non-smooth variable coefficients.

• Inversion, LU-factorization, matrix-matrix-multiplies, etc.

For oscillatory problems, the ranks grow as the wave-length of the problem is shrunk relative

to the size of the geometry, which eventually renders the direct solvers prohibitively

expensive. However, the methodology remains efficient for “surprisingly” small wave-lengths.

Some supporting theory and “intuitive arguments” exist, but the observed performance still

exceeds what one would expect, both in terms of the range of applicability and what the

actual ranks should be. (At least what I would expect!)

Additional talks on this subject:

• Dan Jiao: MS32, Monday 6:00pm - 6:25pm.

• Adrianna Gillman: CP20, Thursday 4:10pm - 4:30pm.

Assertions:

• Fast direct solvers excel for problems on 1D domains. (They should become the default.)

– Integral operators on the line.

– Boundary Integral Equations in R2.

– Boundary Integral Equations on rotationally symmetric surfaces in R3.

• Existing fast direct solvers for “finite element matrices” associated with elliptic PDEs in

R2 work very well. In R3, they can be game-changing in specialized environments.

Predictions:

• For BIEs associated with non-oscillatory problems on surfaces in R3, the complexity will

be reduced from O(N(logN)p) to O(N), with a modest scaling constant.

• Randomized methods will prove enormously helpful.

They have already demonstrated their worth in large scale linear algebra.

• Direct solvers for scattering problems will find users, even if expensive.

O(N1.5) or O(N2) flop counts may be OK, provided parallelization is possible.

• Direct solvers will provide a fantastic tool for numerical homogenization.

Open questions:

• How efficient can direct solvers be for volume problems in 3D?

• Are O(N) direct solvers for highly oscillatory problems possible?

