
Fast numerical methods for solving elliptic PDEs

Gunnar Martinsson
The University of Colorado at Boulder

Students: Collaborators:

Tracy Babb Vladimir Rokhlin (Yale)

JaeAnn Dwulet Joel Tropp (Caltech)

Adrianna Gillman Mark Tygert (Courant)

Nathan Halko

Patrick Young

• Methods for discretizing linear elliptic partial differential equations.
How do you approximate a linear boundary value problem such as, e.g.,

{−∆ u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

by a linear N ×N system Au = b suitable for solving on a computer?

• Fast solvers for linear systems associated with linear BVPs.
New: In many cases, A−1 can be computed in O(N) operations.

• Methods for computing approximate factorizations of low-rank matrices.
Given an m× n matrix X of ε-rank k, how do you compute a factorization

X ≈ Y Z.

m× n m× k k × n

New: Randomized methods that do this in O(mn log(k)) operations,
New: or does it in O(mnk) operations, but with a single pass over the data.

Definition of the term “fast”:

We say that a numerical method is fast if its execution time scales as O(N) as the
problem size N grows.

Methods whose complexity is O(N log N) or O(N log2 N) are also called “fast”.

Growth of computing power and the importance of algorithms

1980 2000

1

10

100

1000

CPU speed

Year

Consider the computational task of solving a linear system Au = b of N algebraic
equations with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

Using an O(N3) method, an increase in computing power by a factor of 1000
enables the solution of problems that are (1000)1/3 = 10 times larger.

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1

10

100

1000

CPU speed

Year

1980 2000

103

104

Problem size

YearYear

Consider the computational task of solving a linear system Au = b of N algebraic
equations with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

Using an O(N3) method, an increase in computing power by a factor of 1000
enables the solution of problems that are (1000)1/3 = 10 times larger.

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1

10

100

1000

CPU speed

Year

1980 2000

103

104

105

106

Problem size

Year

O(N3) method

O(N) method

Year

Consider the computational task of solving a linear system Au = b of N algebraic
equations with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

Using an O(N3) method, an increase in computing power by a factor of 1000
enables the solution of problems that are (1000)1/3 = 10 times larger.

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Caveat: It appears that Moore’s law is no longer operative.

Processor speed is currently increasing quite slowly.

The principal increase in computing power is coming from parallelization.

In consequence, successful algorithms must scale well both with problem size and
with the number of processors that a computer has.

To slightly offset the difficulty of parallelization, the cost of storage is decreasing.
However, the speed of access is increasing only slowly, again reinforcing the need
to keep data local in designing algorithms.

We will demonstrate that randomized algorithms form an excellent tool in
minimizing communication constraints.

Discretization of linear Boundary Value Problems

We consider stationary linear Boundary Value Problems of the form

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ. For instance:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Example: Laplace’s equation with Dirichlet boundary data:
{−∆ u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ.

Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-
ential operator via Finite Elements,
Finite Differences, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).

↘

Conversion of the BVP to a Bound-
ary Integral Operator (BIE).

↓

Discretization of (BIE) using
Nyström, collocation, BEM,

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).

Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-
ential operator via Finite Elements,
Finite Differences, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).
O(N) direct solvers.

↘

Conversion of the BVP to a Bound-
ary Integral Operator (BIE).

↓

Discretization of (BIE) using
Nyström, collocation, BEM,

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).
O(N) direct solvers.

What does a “direct” solver mean in this context?

Basically, it is a solver that is not “iterative” . . .

Given a computational tolerance ε, and a linear system

(2) Au = b,

(where the system matrix A is often defined implicitly), a direct solver constructs
an operator T such that

||A−1 − T|| ≤ ε.

Then an approximate solution to (2) is obtained by simply evaluating

uapprox = T b.

The matrix T is typically constructed in a compressed format that allows the
matrix-vector product T b to be evaluated rapidly.

Variation: Find factors B and C such that ||A− BC|| ≤ ε, and linear solves
involving the matrices B and C are fast.

“Iterative” versus ”direct” solvers

Two classes of methods for solving an N ×N linear algebraic system

Au = b.

Iterative methods:

Examples: GMRES, conjugate gradi-
ents, Gauss-Seidel, etc.

Construct a sequence of vectors
u1, u2, u3, . . . that (hopefully!)
converge to the exact solution.

Many iterative methods access A only
via its action on vectors.

Often require problem specific pre-
conditioners.

High performance when they work well.
O(N) solvers.

Direct methods:

Examples: Gaussian elimination,
LU factorizations, matrix inversion, etc.

Always give an answer. Deterministic.

Robust. No convergence analysis.

Great for multiple right hand sides.

Have often been considered too slow for
high performance computing.

(Directly access elements or blocks of A.)

(Exact except for rounding errors.)

Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:

• Molecular dynamics.

• Scattering problems.

• Optimal design. (Local updates to the system matrix are cheap.)

A couple of orders of magnitude speed-up is possible.

2. Problems that are relatively ill-conditioned:

• Scattering problems at intermediate or high frequencies.

• Ill-conditioning due to geometry (elongated domains, percolation, etc).

• Ill-conditioning due to lazy handling of corners, cusps, etc.

• Finite element and finite difference discretizations.

Scattering problems intractable to existing methods can be solved.

3. Direct solvers can be adapted to construct spectral decompositions:

• Analysis of vibrating structures. Acoustics.

• Buckling of mechanical structures.

• Wave guides, bandgap materials, etc.

Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers
whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards putting
together a LAPACK-type environment for solving the basic linear boundary value
problems of mathematical physics.

Origins of fast direct solvers:

1991 Data-sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin, et al

1993 Fast inversion of 1D operators V. Rokhlin and P. Starr

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, et al,

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 inversion of “Hierarchically semi-separable” matrices, M. Gu,
S. Chandrasekharan, et al.

2007 factorization of discrete Laplace operators, S. Chandrasekharan, M. Gu,
X.S. Li, J. Xia.

2010 construction of A−1 via randomized sampling, L. Lin, J. Lu, L. Ying.

Current status — problems with non-oscillatory kernels (Laplace, elasticity, etc).

Problems on 1D domains:

• Integral equations on the line: Done. O(N) with very small constants.

• Boundary Integral Equations in R2: Done. O(N) with small constants.

• BIEs on axisymmetric surfaces in R3: Done. O(N) with small constants.

Problems on 2D domains:

• “FEM” matrices for elliptic PDEs in the plane: Some O(N (log N)p) inversion
algorithms exist. Work remains — general grids, improve constants, etc.

• Volume Int. Eq. in the plane (e.g. low frequency Lippman-Schwinger):
O(N (log N)p) inversion algorithms exist. Implementation is under way.

• Boundary Integral Equations in R3: O(N3/2) techniques exist. O(N log N)
techniques are being developed.

Problems on 3D domains:

• ????
(Memory requirements is a major concern.)

Current status — problems with oscillatory kernels (Helmholtz, Maxwell, etc).

Problems on 1D domains:

• Integral equations on the line: Done — O(N) with small constants.

• Boundary Integral Equations in R2: ???

• (“Elongated” surfaces in R2 and R3: Done — O(N log N).)

Problems on 2D domains:

• “FEM” matrices for Helmholtz equation in the plane: ???
(O(N3/2) inversion is possible.)

• Volume Int. Eq. in the plane (e.g. high frequency Lippman-Schwinger): ???
(O(N3/2) inversion is possible.)

• Boundary Integral Equations in R3: ???

Problems on 3D domains:

• ????
(O(N2) inversion possible — but again, memory requirements is a concern.)

How do these algorithms actually work?

Let us consider the simplest case: fast inversion of an equation on a 1D domain.

Things are still very technical ... quite involved notation ...

What follows is a brief description of a method from an extreme birds-eye view.

We start by describing some key properties of the matrices under consideration.

For concreteness, consider a 100× 100 matrix A approximating the operator

[SΓ u](x) = u(x) +
∫

Γ
log |x− y|u(y) ds(y).

The matrix A is characterized by:

• Irregular behavior near the diagonal.

• Smooth entries away from the diagonal.

The contour Γ. The matrix A.

0
20

40
60

80
100

0

20

40

60

80

100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Plot of aij vs i and j The 50th row of A

(without the diagonal entries) (without the diagonal entries)

0
20

40
60

80
100

0

20

40

60

80

100
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Plot of aij vs i and j The 50th row of A

(without the diagonal entries) (without the diagonal entries)

Key observation: Off-diagonal blocks of A have low rank.

Consider two patches Γ1 and Γ2 and the corresponding block of A:

Γ1

Γ2 Γ1

Γ2

A12

The contour Γ The matrix A

The block A12 is a discretization of the integral operator

[SΓ1←Γ2 u](x) = u(x) +
∫

Γ2

log |x− y|u(y) ds(y), x ∈ Γ1.

Singular values of A12 (now for a 200× 200 matrix A):

0 5 10 15 20 25 30 35 40 45 50
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log10(σj)

j

What we see is an artifact of the smoothing effect of coercive elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:

• The intractability of solving the heat equation backwards.

• The St Venant principle in mechanics.

• The inaccuracy of imaging at sub-wavelength scales.

Such phenomena should be viewed in contrast to high-frequency scattering
problems — extreme accuracy of optics etc.

Let A be a matrix consisting of p× p blocks of size n× n:

A =

D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44

. (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j
n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n. (Say k ≈ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the i’th row
use the same basis matrices Ui for their column spaces (and analogously all blocks
in the j’th column use the same basis matrices Vj for their row spaces).

We get A =

D11 U1 Ã12 V∗2 U1 Ã13 V∗3 U1 Ã14 V∗4
U2 Ã21 V∗1 D22 U2 Ã23 V∗3 U2 Ã24 V∗4
U3 Ã31 V∗1 U3 Ã32 V∗2 D33 U3 Ã34 V∗4
U4 Ã41 V∗1 U4 Ã42 V∗2 U4 Ã43 V∗3 D44

.

Then A admits the factorization:

A =

U1

U2

U3

U4

︸ ︷︷ ︸
=U

0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0

︸ ︷︷ ︸
=Ã

V∗1

V∗2

V∗3

V∗4

︸ ︷︷ ︸
=V∗

+

D1

D2

D3

D4

︸ ︷︷ ︸
=D

or

A = U Ã V∗ + D,

p n× p n p n× p k p k × p k p k × p n p n× p n

Lemma: [Variation of Woodbury] If an N ×N matrix A admits the factorization

A = U Ã V∗ + D,

p n× p n p n× p k p k × p k p k × p n p n× p n

then

A−1 = E (Ã + D̂)−1 F∗ + G,

p n× p n pn× p k p k × p k p k × p n p n× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1 U

)−1
, E = D−1 U D̂, F = (D̂ V∗D−1)∗, G = D−1 − D−1 U D̂V∗D−1.

Note: All matrices set in blue are block diagonal.

The Woodbury formula replaces the task of inverting a p n× p n matrix by the
task of inverting a p k × p k matrix.

The cost is reduced from (p n)3 to (p k)3.

We do not yet have a “fast” scheme . . .

(Recall: A has p× p blocks, each of size n× n and of rank k.)

We must recurse!

Using a telescoping factorization of A:

A = U(3)
(
U(2)

(
U(1) B(0) V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ + D(3),

we have a formula

A−1 = E(3)
(
E(2)

(
E(1) D̂(0) F(1))∗ + D̂(1)

)
(F(2))∗ + D̂(2)

)
(V(3))∗ + D̂(3).

Block structure of factorization:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂(0), which is small.

Many details are left out . . .

• How do you represent potentials?
Multipole expansions, proxy charges, interpolation, . . .
Choosing the right one can reduce the run-time by a factor of 10 or more.

• Generalization to

– Volume integral equations in R2.

– Boundary integral equations in R3.

– Volume integral equations in R3. (Currently practical only in certain
environments.)

• How do you compute the low-rank approximations in the telescoping
factorization in the first place?

– Note that in “traditional” fast methods such as the Fast Multipole Method,
the kernel is known and given in analytic form.

– In a direct method, determining the kernel is part of the problem.

Randomized methods for computing kernel approximations
(and lots of other things too)

We cast the kernel approximation problem as a low-rank approximation problem:

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

In other words, the columns of Q form an ON-basis for the range of A.

We want ` to be reasonably close to the theoretically minimal number,
but it is more important for the approximation to be accurate.

We for now assume that we know the approximate rank in advance;
in applications one is typically given a computational tolerance, and determining
the rank is part of the problem — we will deal with this complication shortly.

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

Any standard factorization can easily be obtained from Q.

To illustrate, suppose that we seek an approximate rank-` SVD

A ≈ U Σ V∗,

m× n m× ` `× ` `× n

where U and V are orthonormal, and Σ is diagonal with non-negative entries.

The following steps will do the job:

1. Form the (small) matrix B = Q∗A.

2. Compute the SVD of the (small) matrix B = ÛΣV∗.

3. Set U = QÛ.

Note: The Golub-Businger algorithm is very similar. In GS, you solve the
“primitive problem” via QR. This directly yields a factorization A ≈ QRP; then
set B = RP in Step 2, and execute Step 3 as described.

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, ω3, · · · ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, y3 = Aω3, · · · ∈ Rm.

3. Form orthonormal vectors q1, q2, q3, · · · ∈ Rm such that

Span(q1, q2, . . . , q`) = Span(y1, y2, . . . , y`).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank `, then Span{qj}`
j=1 = Ran(A) with probability 1.

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, ω3, · · · ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, y3 = Aω3, · · · ∈ Rm.

3. Form orthonormal vectors q1, q2, q3, · · · ∈ Rm such that

Span(q1, q2, . . . , q`) = Span(y1, y2, . . . , y`).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank `, then Span{qj}`
j=1 = Ran(A) with probability 1.

What is perhaps surprising is that even in the general case, {qj}`
j=1 often does

almost as good of a job as the theoretically optimal vectors (which happen to be
the ` leading left singular vectors).

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

Randomized algorithm — formal description:

1. Construct a random matrix Ω` of size n× `.
Suppose for now that Ω` is Gaussian.

2. Form the m× ` sample matrix Y` = AΩ`.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗` Y`.
(In other words, the columns of Q` form an ON basis for Ran(Y`).)

Error measure:

The error incurred by the algorithm is e` = ||A− Q` Q∗` A||.

The error e` is bounded from below by σ`+1 = inf{||A− B|| : B has rank `}.

Specific example to illustrate the performance:
Let A be a 200× 200 matrix arising from discretization of

[SΓ2←Γ1 u](x) = α

∫

Γ1

log |x− y|u(y) ds(y), x ∈ Γ2,

where Γ1 is shown in red and Γ2 is shown in blue:

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Γ1

Γ2

The number α is chosen so that ||A|| = σ1 = 1.

0 50 100 150
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

`

log10(e`)

(actual error)

log10(σ`+1)

(theoretically

minimal error)

Results from one realization of the randomized algorithm

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

1. Construct a random matrix Ω` of size n× `.
Suppose for now that Ω` is Gaussian.

2. Form the m× ` sample matrix Y` = AΩ`.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗` Y`.
(In other words, the columns of Q` form an ON basis for Ran(Y`).)

Error measure:

The error incurred by the algorithm is e` = ||A− Q` Q∗` A||.

The error e` is bounded from below by σ`+1 = inf{||A− B|| : B has rank `}.

Error estimate: f` = max1≤j≤10

∣∣∣∣(I − Q` Q∗`
)
y`+j

∣∣∣∣.
The computation stops when we come to an ` such that f` < ε× [constant].

Primitive problem: Given an m× n matrix A and an integer ` < min(m,n),
find an orthonormal m× ` matrix Q such that A ≈ QQ∗A.

1. Construct a random matrix Ω` of size n× `.
Suppose for now that Ω` is Gaussian.

2. Form the m× ` sample matrix Y` = AΩ`.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗` Y`.
(In other words, the columns of Q` form an ON basis for Ran(Y`).)

Error measure:

The error incurred by the algorithm is e` = ||A− Q` Q∗` A||.

The error e` is bounded from below by σ`+1 = inf{||A− B|| : B has rank `}.

Error estimate: f` = max1≤j≤10

∣∣∣∣(I − Q` Q∗`
)
y`+j

∣∣∣∣.
The computation stops when we come to an ` such that f` < ε× [constant].

0 50 100 150
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

`

log10(10 f`)

(error bound)

log10(e`)

(actual error)

log10(σ`+1)

(theoretically

minimal error)

Results from one realization of the randomized algorithm

Note: The development of an error estimator resolves the issue of not knowing
the numerical rank in advance!

Was this just a lucky realization?

No. In fact, the algorithm from a practical point of view behaves entirely like a
deterministic method — you hardly see any difference at all from run to run.

For the incredulous, a rigorous theory, and plenty of numerical examples, are
given in the following paper:

Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
N. Halko, P.G. Martinsson, J. Tropp — arXiv.org report 0909.4061.

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real n×n matrix A with singular
values σ1, σ2, σ3, Choose integers k ≥ 1 and p ≥ 2, and draw an n × (k + p)
standard Gaussian random matrix Ω. Construct the sample matrix Y = AΩ, and
let Q denote an orthonormal matrix such that Ran(Q) = Ran(Y). Then

E||A− QQ∗A||F ≤
(

1 +
k

p− 1

)1/2

n∑

j=k+1

σ2
j

1/2

.

Moreover,

E||A− QQ∗A|| ≤
(

1 +

√
k

p− 1

)
σk+1 +

e
√

k + p

p

n∑

j=k+1

σ2
j

1/2

.

Numerical experiments indicate that these estimates are close to sharp.

The paper also gives bounds on the tail probabilities; they turn out to decay as p−p.
For p = 20, the likelihood of “failure” is less than 10−17.

Given an m× n matrix A of ε-rank k, compute an approximate rank-k SVD A ≈ UΣV∗.

(1) Set ` = k + 10. (5) Form the small matrix B = Q∗ A.

(2) Draw an n× ` random matrix Ω. (6) Factor the small matrix B = ÛΣV∗.

(3) Form the m× ` sample matrix Y = AΩ. (7) Form U = QÛ.

(4) Compute an ON matrix Q s.t. Y = QQ∗Y. (8) Truncate the last 10 terms.

Let us compare the scheme as described above to standard (non-randomized)
methods in a few representative environments.

Given an m× n matrix A of ε-rank k, compute an approximate rank-k SVD A ≈ UΣV∗.

(1) Set ` = k + 10. (5) Form the small matrix B = Q∗ A.

(2) Draw an n× ` random matrix Ω. (6) Factor the small matrix B = ÛΣV∗.

(3) Form the m× ` sample matrix Y = AΩ. (7) Form U = QÛ.

(4) Compute an ON matrix Q s.t. Y = QQ∗Y. (8) Truncate the last 10 terms.

Assumption: A can rapidly be applied to vectors.
(Suppose A is sparse / FFT-able / an integral operator amenable to FMM / . . .)

The randomized scheme should be compared to Krylov-methods such as Arnoldi
and Lanzcos.

• The randomized method is more robust — error analysis does not depend on
the spectrum of A, the method cannot be crippled by a poor starting vector,
etc.

• The randomized method allows the ` matrix-vector products to be computed
concurrently, this enables parallelization, out-of-core execution, BLAS3, etc.

• The simple randomized method stated above produces larger errors than
Arnoldi, but there exist hybrid schemes (e.g. set Y = (AA∗)q AΩ) that
combine the best properties of the two methods.

Given an m× n matrix A of ε-rank k, compute an approximate rank-k SVD A ≈ UΣV∗.

(1) Set ` = k + 10. (5) Form the small matrix B = Q∗ A.

(2) Draw an n× ` random matrix Ω. (6) Factor the small matrix B = ÛΣV∗.

(3) Form the m× ` sample matrix Y = AΩ. (7) Form U = QÛ.

(4) Compute an ON matrix Q s.t. Y = QQ∗Y. (8) Truncate the last 10 terms.

Assumption: A is presented as an array of numbers stored in fast memory (RAM).

Then replace the Gaussian random matrix by a Subsampled Random Fourier
Transform. This can be applied in O(mn log(`)) operations. Since ` ∼ k, we find

complexity ∼ mn log(k) + (m + n)k2

Significant gains even for small matrices. Examples:

• m = n = 2000 and k = 100 gives a speed-up by a factor 4.5

• m = n = 4000 and k = 200 gives a speed-up by a factor 6.5

(The reference method was a highly optimized code using BLAS3, LAPACK, etc.)

Not my work (alas): [Liberty, Rokhlin, Tygert, Woolfe 2006]. Also [Ailon Chazelle 2006].

Given an m× n matrix A of ε-rank k, compute an approximate rank-k SVD A ≈ UΣV∗.

(1) Set ` = k + 10. (5) Form the small matrix B = Q∗ A.

(2) Draw an n× ` random matrix Ω. (6) Factor the small matrix B = ÛΣV∗.

(3) Form the m× ` sample matrix Y = AΩ. (7) Form U = QÛ.

(4) Compute an ON matrix Q s.t. Y = QQ∗Y. (8) Truncate the last 10 terms.

Assumption: A is presented as a huge array of numbers stored in slow memory.

The critical cost in this environment is the number of memory accesses that are
needed. Flop count is largely irrelevant.

• The algorithm as stated requires only two passes over the data.

• With minor modifications, only a single pass is required.

– This modified algorithm can execute on streaming data.

• Very few constraints on communication — excellent algorithm for parallel
implementation.

Given an m× n matrix A of ε-rank k, compute an approximate rank-k SVD A ≈ UΣV∗.

(1) Set ` = k + 10. (5) Form the small matrix B = Q∗ A.

(2) Draw an n× ` random matrix Ω. (6) Factor the small matrix B = ÛΣV∗.

(3) Form the m× ` sample matrix Y = AΩ. (7) Form U = QÛ.

(4) Compute an ON matrix Q s.t. Y = QQ∗Y. (8) Truncate the last 10 terms.

Assumption: A is presented as a huge array of numbers stored in slow memory.

Problem: The huge matrices we would like to handle (image processing, PCA of
stochastic data, etc) are typically very noisy in the sense that their singular values
decay slowly. This renders the algorithm above very inaccurate.

Remedy: Introduce ideas from Krylov methods, for instance, set

Y = (AA∗)q AΩ.

This magnifies the relative weight of the leading singular vectors at the price of
requiring 2q + 1 passes. However, q = 2 or q = 3 is often sufficient.

The resulting method allows the computation of the PCA of a huge (say
200 000× 200 000) and very noisy matrix on a laptop.

Example 1:

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion
geometry approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 9× 9 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

` j

Approximation error e` Estimated Eigenvalues λj

M
a
g
n
it

u
d
e

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.

Example 2: “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a
column of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2Approximation error e` Estimated Singular Values σj

M
a
g
n
it

u
d
e

Minimal error (est)
q = 0
q = 1
q = 2
q = 3

` j

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Numerical examples

The computational examples are assembled to illustrate the asymptotic scaling of
the methods.

Most of the examples are old: They were generated around 2005 on a PC from
2002 (a 2.8Ghz machine with 512Mb of RAM).

Other examples are more recent, these were implemented in Matlab.

Note: Still more bark than bite, but this will change . . .

Example: An exterior Laplace Dirichlet problem

We invert a matrix approximating the operator

[Au](x) =
1
2

u(x) +
1

2π

∫

Γ
D(x, y) u(y) ds(y), x ∈ Γ,

where D is the double layer kernel associated with Laplace’s equation,

D(x, y) = − 1
2π

n(y) · (x− y)
|x− y|2 ,

and where Γ is the countour:

Nstart Nfinal ttot tsolve Eres Epot σmin Memory

(sec) (sec) (MB)

400 301 5.3e-01 2.9e-03 4.7e-10 3.0e-06 1.3e-02 4.2e+00

800 351 9.6e-01 4.1e-03 2.2e-10 6.3e-10 1.2e-02 6.5e+00

1600 391 1.6e+00 6.3e-03 1.3e-10 1.6e-10 1.2e-02 9.2e+00

3200 391 1.8e+00 8.5e-03 6.6e-11 3.7e-10 1.2e-02 1.1e+01

6400 391 2.2e+00 1.2e-02 5.9e-11 8.9e-11 1.2e-02 1.4e+01

12800 390 2.6e+00 1.9e-02 3.6e-11 5.9e-11 1.2e-02 2.1e+01

25600 391 3.9e+00 3.4e-02 2.7e-11 4.7e-10 — 3.5e+01

51200 393 6.5e+00 6.5e-02 2.5e-11 5.3e-11 — 6.3e+01

102400 402 1.3e+01 1.2e-01 2.0e-11 — — 1.2e+02

Example: An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2.

The “combined field formulation” is used in forming the BIE.

k Nstart Nfinal ttot tsolve Eres Epot σmin M

(sec) (sec) (kB)

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 8.0e-01 1.7e-08 1.4e-08 3.3e-01 350984

Computational results for an exterior Helmholtz Dirichlet problem
discretized with 10th order accurate quadrature. The Helmholtz
parameter was chosen to keep the number of discretization points
per wavelength constant at roughly 45 points per wavelength (re-
sulting in a quadrature error about 10−12).

Eventually . . . the complexity is O(n + k3).

(Corresponding Laplace problems are much faster,
inversion of a 105 × 105 matrix takes less than 20 seconds.)

Example: An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with
Dirichlet boundary data was solved using N = 6 400 discretization points, with a
prescribed accuracy of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary integral
operator was σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.

99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.

What about finite element matrices?

These look quite different — very large, sparse, . . .

However, their inverses have the rank structure of discretized integral operators.

Example: Consider the Laplace BVP
{−∆ u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ.

The finite element method produces a large sparse matrix A whose action mimics
the action of the differential operator −∆.

The inverse of A mimics the action of the inverse operator

u(x) =
∫

Ω
G(x, y) f(y) dA(y),

where G is the Green’s function of the problem.
(Note that G is know analytically only for the most trivial domains Ω.)

Example: Inversion of a “Finite Element Matrix”

A grid conduction problem (the “five-point stencil”).

The conductivity of each bar is a random number drawn from a uniform
distribution on [1, 2].

If all conductivities were one, then we would get the standard five-point stencil:

A =

C −I 0 0 · · ·
−I C −I 0 · · ·
0 −I C −I · · ·
...

...
...

...

C =

4 −1 0 0 · · ·
−1 4 −1 0 · · ·

0 −1 4 −1 · · ·
...

...
...

...

.

N Tsolve Tapply M e1 e2 e3 e4

(sec) (sec) (kB)

10 000 5.93e-1 2.82e-3 3.82e+2 1.29e-8 1.37e-7 2.61e-8 3.31e-8

40 000 4.69e+0 6.25e-3 9.19e+2 9.35e-9 8.74e-8 4.71e-8 6.47e-8

90 000 1.28e+1 1.27e-2 1.51e+3 — — 7.98e-8 1.25e-7

160 000 2.87e+1 1.38e-2 2.15e+3 — — 9.02e-8 1.84e-7

250 000 4.67e+1 1.52e-2 2.80e+3 — — 1.02e-7 1.14e-7

360 000 7.50e+1 2.62e-2 3.55e+3 — — 1.37e-7 1.57e-7

490 000 1.13e+2 2.78e-2 4.22e+3 — — — —

640 000 1.54e+2 2.92e-2 5.45e+3 — — — —

810 000 1.98e+2 3.09e-2 5.86e+3 — — — —

1000 000 2.45e+2 3.25e-2 6.66e+3 — — — —

Tapply Time required to apply a Dirichlet-to-Neumann op. (of size 4
√

N × 4
√

N)
e1 The largest error in any entry of Ã−1

n

e2 The error in l2-operator norm of Ã−1
n

e3 The l2-error in the vector Ã−1
nn r where r is a unit vector of random direction.

e4 The l2-error in the first column of Ã−1
nn .

Example: BIEs on rotationally symmetric surfaces

γ

Generating curve

Γ

Surface

Let Γ be a surface of rotation generated by a curve γ, and con-
sider a BIE associated with Laplace’s equation:

(3)
1
2
σ(x) +

∫

Γ

n(y) · (x− y)
4π|x− y|3 σ(y) dA(y) = f(x). x ∈ Γ

To (3), we apply the Fourier transform in the azimuthal angle
(executed computationally via the FFT) and get

1
2
σn(x) +

∫

γ

kn(x, y)σn(y) dl(y) = fn(x), x ∈ γ, n ∈ Z.

Then discretize the sequence of equations on γ using the direct
solvers described (with special quadratures, etc).

We discretized the surface using 400 Fourier modes, and 800
points on γ for a total problem size of

N = 320 000.

For typical loads, the relative error was less than 10−10 and the
CPU times were

Tinvert = 2min Tsolve = 0.3sec.

Work in progress: Extension to multibody acoustic scattering:

Individual scattering matrices are constructed via a relatively expensive
pre-computation.

Inter-body interactions are handled via the wideband FMM and an iterative
solver (GMRES appears to be working well).

Work in progress: Extension to multibody acoustic scattering:

Individual scattering matrices are constructed via a relatively expensive
pre-computation.

Inter-body interactions are handled via the wideband FMM and an iterative
solver (GMRES appears to be working well).

3D problems from Denis.

Computation carried out by Denis Gueyffier at Courant.

Taken from Greengard, Gueyffier, Martinsson, Rokhlin, “Fast direct solvers for
integral equations in complex three-dimensional domains”, Acta Numerica 2009.

Assertions:

• Fast direct solvers excel for problems on 1D domains:

– Integral operators on the line.

– Boundary Integral Equations in R2.

May well (should!) become standard solution technique in these environments.

• Fast direct solvers for large sparse “finite element matrices” associated with
elliptic PDEs in R2 work well. Very competitive in certain environments.

Predictions:

• Very efficient and versatile fast direct methods will be developed for BIEs
associated with non-oscillatory problems on surfaces in R3.

• Randomized methods will prove enormously helpful. They have already
demonstrated their worth in large scale linear algebra.

• Direct solvers for scattering problems will be widely used, even with O(N1.5)
or O(N2) scaling. They parallelize very well, can use distributed memory, etc.

Open questions:

• Will direct solvers be competitive for volume problems in R3?

• Are O(N) direct solvers for highly oscillatory problems possible?

