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Notation:

A vector x ∈ Rn is measured using the `2 (Euclidean) norm:

||x|| =



n∑

j=1

x2
j




1/2

.

A matrix A ∈ Rm×n is measured using the corresponding operator norm:

||A|| = sup
x6=0

||Ax||
||x|| .



Low-rank approximation

An N ×N matrix A has rank k if there exist matrices B and C such that

A = B C.

N ×N N × k k ×N

When k ¿ N , computing the factors B and C is advantageous:

• Storing B and C require O(N k) storage instead of O(N2).

• A matrix-vector multiply requires 2N k flops instead of N2 flops.

• Certain factorizations reveal properties of the matrix.

In actual applications, we are typically faced with approximation problems:

Problem 1: Given a matrix A and a precision ε, find the minimal k such that

min{||A− Ã|| : rank(Ã) = k} ≤ ε.

Problem 2: Given a matrix A and an integer k, determine

Ak = argmin{||A− Ã|| : rank(Ã) = k}.



The singular value decomposition (SVD) provides the exact answer.

Any m× n matrix A admits a factorization (assuming m ≥ n)

A = U D V t = [u1 u2 · · · un]




σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σn







vt
1

vt
2
...

vt
n




=
n∑

j=1

σj uj vt
j .

σj is the j’th “singular value” of A

uj is the j’th “left singular vector” of A

vj is the j’th “right singular vector” of A.

Then:
σj = inf

rank(Ã)=j−1
||A− Ã||.

and

argmin{||A− Ã|| : rank(Ã) = k} =
k∑

j=1

σj uj vt
j .



The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.
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For instance, to precision ε = 10−10, the matrix A has rank 11.
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Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
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ε = 10−10
σ11 = 1.46 · 10−10

For instance, to precision ε = 10−10, the matrix A has rank 11.



Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.



Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

Notes:

• Once Q has been constructed, it is in many environments possible to construct
standard factorization (such as the SVD/PCA) using O(N k2) operations.
Specifically, this is true if either

– matrix vector products x 7→ x′A can be evaluated rapidly, or,

– individual entries of A can be computed in O(1) operations.

• We seek a k that is as small as possible, but it is not a priority to make it
absolutely optimal.

• If the Q initially constructed has too many columns, but is accurate, then the
true optimal rank is revealed by postprocessing.



Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

We will discuss two environments:

Case 1:

We have a fast technique for evaluating
matrix-vector products. Let Tmult de-
note the cost. We assume Tmult ¿ N2.

Standard methods (e.g. Lanczos)
require O(Tmult k) operations.

The new methods are also O(Tmult k)
but are more robust, (more accurate,)
and better suited for parallelization.

Case 2:

A is a general N ×N matrix.

Standard methods (e.g. Gram-Schmidt)
require O(N2 k) operations.

The new method requires O(N2 log(k))
operations.



The methods that we propose are based on randomized sampling.

This means that they have a non-zero probability of giving an answer that is not
accurate to within the requested accuracy.

The probability of failure can be balanced against computational cost by the user.

It can very cheaply be rendered entirely negligible; failure probabilities less than
10−15 are standard. (In other words, if you computed 1 000 matrix factorizations a
second, you would expect to see one “failure” every 30 000 years.)



Definition: We say that an m× n matrix Ω is a Gaussian random matrix if

Ω =




ω11 ω12 · · · ω1n

ω21 ω22 · · · ω2n

...
...

...

ωm1 ωm2 · · · ωmn




,

where the numbers ωij are random variables drawn independently from a
normalized Gaussian distribution.

Note: The probability distribution of Ω is isotropic in the sense that if U ∈ O(m)
and V ∈ O(n), then U Ω V has the same distribution as Ω.

Note: In practise, the random numbers used will be constructed using “random
number generators.” The quality of the generators will not matter much.
(Shockingly little, in fact.)



We start with Case 1: We know how to compute the product x 7→ A x rapidly.



Algorithm 1:
Rapid computation of
a low-rank approxima-
tion.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix of ε-rank k.

• We seek a basis for Col(A).

• We can perform matrix-vector multiplies fast.

1. Fix a small positive integer p (representing how much “oversampling” we do).
Construct a Gaussian random matrix Ω of size n× (k + p).

2. Form the m× (k + p) matrix Y = AΩ.

3. Construct an m× (k + p) orthogonal matrix Q such that Y = QQ t Y .

Each column of Y is a sample from the column space of A.
The more samples we have, the more likely it is that

(1) ||A−QQt A|| ≤ ε.

If we were very lucky, then (1) would hold with p = 0.

Question: How large does p need to be in practice?



How to measure “how well we are doing”:

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = A Ω`.

Let Q` be an m× ` matrix such that Y` = Q` Qt
` Y`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].



Specific example to illustrate the performance:
Let A be a 200× 200 matrix arising from discretization of

[SΓ1←Γ2 u](x) = α

∫

Γ2

log |x− y|u(y) ds(y), x ∈ Γ1,

where Γ1 is shown in red and Γ2 is shown in blue:
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The number α is chosen so that ||A|| = σ1 = 1.
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How to measure “how well we are doing” — revisited:

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = A Ω`.

Let Q` be an m× ` matrix such that Y` = Q` Qt
` Y`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].
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Note: The development of an error estimator resolves the issue of not knowing
the numerical rank in advance!



Was this just a lucky realization?



Each dots represents one realization of the experiment with k = 50 samples:
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Important:

• What is stochastic is the run time, not the accuracy.

• The error in the factorization is (practically speaking) always within the
prescribed tolerance.

• Post-processing (practically speaking) always determines the rank correctly.
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So far, we have assumed that we have a fast matrix-vector multiplier at our disposal.

What happens if we do not?

In this case, Tmult = N2 so the computational cost of Algorithm I is

O(Tmult k + N k2) = O(N2 k + N k2).

When k ¿ N , Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: N2 (k + 10) +O(k2 N)

Multiplications required for Gram-Schmidt: N2 2 k

Other benefits (sometimes more important ones than CPU count):

• Data-movement.

• Parallelization.

• More accurate. (This requires some additional twists not yet described.)

However, many environments remain in which there is little or no gain.
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Algorithm 2: An O(N2 log(k)) algorithm for general matrices:

Proposed by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A Ω.

N × ` N ×N N × `

Key points:

• The entries of Ω are i.i.d. random numbers.

• The product x 7→ Ax can be evaluated rapidly.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct Ω with “some randomness” and “some structure”.
Then for each 1×N row a of A, the matrix-vector product

a 7→ aΩ

can be evaluated using N log(`) operations.



What is this “random but structured” matrix Ω?

Ω = D F S

N × ` N ×N N ×N N × `

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk =
1

N1/2
e−2πi(j−1)(k−1)/N .

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw ` columns at
random from D F .)

Note: Other successful choices of the matrix Ω have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).



Speed gain on square matrices of various sizes
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Empirical accuracy on 2,048-long convolution
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The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

The accuracy of the randomized method has recently been improved.



Theory / context

In the remainder of the talk we will focus on Algorithm 1 (for the case when fast
matrix-vector multiplies are available). For this case, we have fairly sharp
estimates of the “failure probabilities.”



The theoretical results to be presented are related to (and in some cases inspired
by) earlier work on randomized methods in linear algebra. This work includes:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)

A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

D. Achlioptas and F. McSherry (2001)

P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b,
2006c, 2006d)

S. Har-Peled (2006)

A. Deshpande and S. Vempala (2006)

S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

T. Sarlós (2006a, 2006b, 2006c)



Theorem (Martinsson, Rokhlin, Tygert 2006):

Let A be an M ×N matrix.

Let k and p be positive integers. (k is “rank” and p is the degree of “oversampling”)

Let Ω be an N × (k + p) Gaussian random matrix.

Let Q be an M × (k + p) matrix whose columns form an ON-basis for the columns of A Ω.

Set σk+1 = min
rank(B)=k

||A−B||.

Then

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1, ← Not good!

with probability at least
1− ϕ(p),

where ϕ is a decreasing function satisfying, e.g.,

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.
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The key bound in the proof is the line:

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)
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However, in many applications of interest, the entries of A may be very noisy, and
it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−1 × σ1.
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σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

Moreover, N may be very large — N ∼ 105 — N ∼ 108 · · ·



The key bound in the proof is the line:

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

However, in many applications of interest, the entries of A may be very noisy, and
it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

Moreover, N may be very large — N ∼ 105 — N ∼ 108 · · ·

The suboptimality is damning in data mining and signal processing applications.
Here we have HUGE matrices, and lots of noise.



Theorem: [Halko, Martinsson, Tropp 2009] Fix a real m×n matrix A with singular
values σ1, σ2, σ3, . . . . Choose integers k ≥ 1 and p ≥ 2, and draw an n × (k + p)
standard Gaussian test matrix Ω. Construct the data matrix Y = AΩ, and let PY

denote the orthogonal projection onto the range of Y . Then

E||(I − PY )A||F ≤
(

1 +
k

p− 1

)1/2



∞∑

j=k+1

σ2
j




1/2

.

Moreover,

E||(I − PY )A|| ≤
(

1 +

√
k

p− 1

)
σk+1 +

e
√

k + p

p




∞∑

j=k+1

σ2
j




1/2

.

• Numerical experiments indicate that these estimates are close to sharp.

• When σj ∼ βj , we have




∞∑

j=k+1

σ2
j




1/2

∼ σk+1
1

1− β
.

• Tail probabilities are often in a practical sense irrelevant.



Power method for improving accuracy:

Note that the error depends on how quickly the singular values decay.

The faster the singular values decay — the higher the relative weight of the
dominant modes are weighted in the samples.

Idea: The matrix B = (AA∗)q A has the same left singular vectors as A, and its
singular values are

σj(B) = (σj(A))2 q+1.

Much faster decay — so use the sample matrix

Z = B Ω = (AA∗)q A Ω

instead of

Y = A Ω.



Power method for improving accuracy:

The following theorem is inspired by results by Rokhlin, Szlam, and Tygert (2008):

Theorem: [Halko, Martinsson, Tropp 2009] Let m, n, and ` be positive integers
such that ` < n ≤ m. Let A be an m × n matrix and let Ω be an n × ` matrix.
Let q be a non-negative integer, set B = (A∗A)qA, and construct the sample matrix
Z = B Ω. Then

|||(I − PZ) A||| ≤ |||(I − PZ) B|||1/(2q+1)

where ||| · ||| denotes either the spectral norm or the Frobenius norm.

Since the `’th singular value of B = (A∗A)qA is σ2 q+1
` , any result of the type

||(I − PY ) A|| ≤ C σk+1,

where Y = AΩ and C = C(m,n, k), gets improved to a result

||(I − PZ)A|| ≤ C1/(2 q+1) σk+1

when Z = (A∗A)qA Ω.
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The matrix A being analyzed is a 9025× 9025 matrix arising in image processing.
(It is a graph Laplacian on the manifold of 9× 9 patches.)
The red crosses mark the singular values of A.



Some observations . . .



The observation that a “thin” Gaussian random matrix to high probability is
well-conditioned is at the heart of the celebrated Johnson-Lindenstrauss lemma:

Lemma: Let ε be a real number such that ε ∈ (0, 1), let n be a positive integer,
and let k be an integer such that

(2) k ≥ 4
(

ε2

2
− ε3

3

)−1

log(n).

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that

(3) (1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

Further, such a map can be found in randomized polynomial time.

It has been shown that an excellent choice of the map f is the linear map whose
coefficient matrix is a k × d matrix whose entries are i.i.d. Gaussian random
variables (see, e.g. Dasgupta & Gupta (1999)).
When k satisfies, (2), this map satisfies (3) with probability close to one.



The related Bourgain embedding theorem shows that such statements are not
restricted to Euclidean space:

Theorem:. Every finite metric space (X, d) can be embedded into `2 with
distortion O(log n) where n is the number of points in the space.

Again, random projections can be used as the maps.



The Johnson-Lindenstrauss lemma (and to some extent the Bourgain embedding
theorem) expresses a theme that is recurring across a number of research areas
that have received much attention recently. These include:

• Compressed sensing (Candès, Tao, Romberg, Donoho).

• Approximate nearest neighbor search (Jones, Rokhlin).

• Geometry of point clouds in high dimensions (Coifman, Jones, Lafon, Lee,
Maggioni, Nadler, Singer, Warner, Zucker, etc).

• Construction of multi-resolution SVDs.

• Clustering algorithms.

• Search algorithms / knowledge extraction.

Note: Omissions! No ordering. Missing references. Etc etc.

Many of these algorithms work “unreasonably well.”



The randomized algorithm presented here is close in spirit to randomized
algorithms such as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)

• Routing of data in distributed computing with unknown network topology.

• Rabin-Karp string matching / verifying equality of strings.

• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is
stochastic. The quality of the final output is excellent.

The randomized algorithm that is perhaps the best known within numerical
analysis is Monte Carlo. This is somewhat lamentable given that MC is often a
“last resort” type algorithm used when the curse of dimensionality hits —
inaccurate results are tolerated simply because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for
many applications, more accurate versions have been developed.)



Observation: Mathematicians working on these problems often focus on
minimizing the distortion factor

1 + ε

1− ε

arising in the Johnson-Lindenstrauss bound:

(1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

In our environments, we do not need this constant to be particularly close to 1.
It should just not be “large” — say less that 10 or some such.

This greatly reduces the number of random projections needed! Recall that in the
Johnson-Lindenstrauss theorem:

number of samples required ∼ 1
ε2

log(N).



Observation: Multiplication by a random unitary matrix reduces any matrix to
its “general” form. All information about the singular vectors vanish. (The
singular values remain the same.)

This opens up the possibility for general pre-conditioners —
counterexamples to various algorithms can be disregarded.

The feasibility has been demonstrated for the case of least squares solvers for very
large, very over determined systems. (Work by Rokhlin & Tygert, Sarlós, . . . .)

Work on O(N2 (log N)2) solvers of general linear systems is under way.
(Random pre-conditioning + iterative solver.)

May stable fast matrix inversion schemes for general matrices be possible?



Observation: Robustness with respect to the quality of the random numbers.

The assumption that the entries of the random matrix are i.i.d. normalized
Gaussians simplifies the analysis since this distribution is invariant under unitary
maps.

In practice, however, one can use a low quality random number generator. The
entries can be uniformly distributed on [−1, 1], they be drawn from certain
Bernouilli-type distributions, etc.

Remarkably, they can even have enough internal structure to allow fast methods
for matrix-vector multiplications. For instance:

• Subsampled discrete Fourier transform.

• Subsampled Walsh-Hadamard transform.

• Givens rotations by random angles acting on random indices.

This was exploited in “Algorithm 2” (and related work by Ailon and Chazelle).
Our theoretical understanding of such problems is unsatisfactory.
Numerical experiments perform far better than existing theory indicates.



Even though it is thorny to prove some of these results (they draw on techniques
from numerical analysis, probability theory, functional analysis, theory of
randomized algorithms, etc), work on randomized methods in linear algebra is
progressing fast.

Important: Computational prototyping of these methods is extremely simple.

• Simple to code an algorithm.

• They work so well that you immediately know when you get it right.



Current research directions:

• Acceleration of BLAS / LINPACK functions.

– May actually soon be integrated in Matlab and Mathematica.

• Construction of reduced models for physical phenomena (“model reduction”).

– Wave propagation through media with periodic micro-structures.

– Scattering problems involving multiple scatterers.

• New estimates on spectral properties of random matrices.

• Acceleration of fast matrix algorithms such as the “Fast Multipole Method”.

• Approximation of very large very noisy data sets stored on disk or streamed.

The randomized algorithms solve two fundamental limitations of existing methods:

– Propagation of rounding errors.

– Very few passes over data. (Sometimes only one!)

Important applications that cannot be solved with existing technology:
Image and video processing / network analysis / statistical data processing / . . .


