
Fast numerical methods for solving linear PDEs

Gunnar Martinsson
The University of Colorado at Boulder

Ph.D. Students: Collaborators:

Adrianna Gillman Edo Liberty (Yale)

Nathan Halko Vladimir Rokhlin (Yale)

Patrick Young Yoel Shkolnisky (Yale)

Joel Tropp (Caltech)

Mark Tygert (UCLA/Courant)

Franco Woolfe (Goldman Sachs)

• Methods {or discretizin} linear √artial di�erential equations
How do you approximate a linear boundary value problem such as, e.g.,{

−∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

by a linear N ×N system Ax = b suitable for solving on a computer?

� Fast solvers for linear systems associated with linear BVPs.
New: In many cases, A−1 can be computed in O(N) operations.

Such solvers are both “fast” and “direct”.

� Methods for computing approximate factorizations of low-rank matrices.
Given an m× n matrix of ε-rank k, how do you compute a factorization

A = B C

m× n m× k k × n

New. Randomized methods that do this in O(mn log(k)) operations.

Definition of the term “fast”:

We say that a numerical method is “” if its execution time scales as O(N) as
the problem size N grows.

Methods whose complexity is O(N logN) or O(N(logN)2) are also called “fast”.

Growth of computing power and the importance of algorithms

1980 2000

1

10

100

1000

CPU speed

Year

Consider the computational task of solving a linear system Ax = b of N algebraic
equations with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

Using an O(N3) method, an increase in computing power by a factor of 1000
enables the solution of problems that are (1000)1/3 = 10 times larger.

Using a method that scales asO(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1

10

100

1000

CPU speed

Year

1980 2000

103

104

Problem size

YearYear

Consider the computational task of solving a linear system Ax = b of N algebraic
equations with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

Using an O(N3) method, an increase in computing power by a factor of 1000
enables the solution of problems that are (1000)1/3 = 10 times larger.

Using a method that scales asO(N), problems that are 1000 times larger can be solved.

Growth of computing power and the importance of algorithms

1980 2000

1

10

100

1000

CPU speed

Year

1980 2000

103

104

105

106

Problem size

Year

O(N3) method

O(N) method

Year

Consider the computational task of solving a linear system Ax = b of N algebraic
equations with N unknowns.

Classical methods such as Gaussian elimination require O(N3) operations.

Using an O(N3) method, an increase in computing power by a factor of 1000
enables the solution of problems that are (1000)1/3 = 10 times larger.

Using a method that scales asO(N), problems that are 1000 times larger can be solved.

Caveat: It appears that Moore’s law is no longer operative.

Processor speed is currently increasing quite slowly.

The principal increase in computing power is coming from.

Successful algorithms must scale well
of processors that a computer has.

The methods of this talk all parallelize naturally.

“Iterative” versus ”direct” solvers

Two classes of methods for solving an N ×N linear algebraic system

Ax = b.

Iterative methods:

Examples: GMRES, conjugate gradi-
ents, Gauss-Seidel,etc.

Construct a sequence of vectors
x1, x2, x3, . . . that (hopefully!) con-
verge to the exact solution.

Many iterative methods access A only
via its action on vectors.

Often require problem specific pre-
conditioners.High performance when they work well.
O(N) solvers.

Direct methods:

Examples: Gaussian elimination,
LU factorizations, matrix inversion,etc.

Always give an answer. Deterministic.Robust. No convergence analysis.Great for multiple right hand sides.

Have often been considered too slow for
high performance computing.

(Directly access elements or blocks of A.)

(Exact except for rounding errors.)

Discretization of linear Boundary Value Problems

We consider stationary linear Boundary Value Problems of the form

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ. For instance:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• The Yukawa equation.

Example: Laplace’s equation with Dirichlet boundary data:{
−∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-
ential operator via Finite Elements,
Finite Differences, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).

↘

Conversion of the BVP to a Bound-
ary Integral Operator (BIE).

↓

Discretization of (BIE) using
Nyström, collocation, BEM,

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).

Discretization of linear Boundary Value Problems

↙

Direct discretization of the differ-
ential operator via Finite Elements,
Finite Differences, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).
O(N) direct solvers.

↘

Conversion of the BVP to a Bound-
ary Integral Operator (BIE).

↓

Discretization of (BIE) using
Nyström, collocation, BEM,

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).
O(N) direct solvers.

Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:

• Molecular dynamics.

• Scattering problems.

• Optimal design. (Local updates to the system matrix are cheap.)

2. Problems that are relatively ill-conditioned:

• Scattering problems at intermediate or high frequencies.

• Ill-conditioning due to geometry (elongated domains, percolation, etc).

• Ill-conditioning due to lazy handling of corners, cusps, etc.

• Finite element and finite difference discretizations.

3. Direct solvers can be adapted to construct spectral decompositions:

• Analysis of vibrating structures. Acoustics.

• Buckling of mechanical structures.

• Wave guides, bandgap materials, etc.

Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers
whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards getting a
LAPACK-type environment for solving the basic linear boundary value problems
of mathematical physics.

Brief review of previous work on fast direct solvers:

1991 Sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin,

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, et al,

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 inversion of “Hierarchically semi-separable” matrices, M. Gu,
S. Chandrasekharan, et al.

2007 factorization of discrete Laplace operators, S. Chandrasekharan, M. Gu,
X.S. Li, J. Xia.

What is “new” in our work:

• True O(N) complexity (no log-factors).

• Algorithms that allow loops to be “un-nested”.

� Small constants — these methods are fast not only in the technical sense.

How does it work?

As you would expect ... very technical ... quite involved notation ...

What follows is a 10 min description of the method from an extreme birds-eye view.

We start by describing some key properties of the matrices under consideration.

For concreteness, consider a 100× 100 matrix A approximating the operator

[SΓ u](x) = u(x) +
∫

Γ
log |x− y|u(y) ds(y).

The matrix A is characterized by:

• Irregular behavior near the diagonal.

• Smooth entries away from the diagonal.

The contour Γ. The matrix A.

Plot of Aij vs i and j The 50th row of A

(without the diagonal entries)

Plot of Aij vs i and j The 50th row of A

(without the diagonal entries)

Key observation: Off-diagonal blocks of A have low rank.

Consider two patches Γ1 and Γ2 and the corresponding block of A:Γ1

Γ 2 Γ1

Γ2

A12

The contour Γ The matrix A

The block A12 is a discretization of the integral operator

[SΓ1←Γ2 u](x) = u(x) +
∫

Γ2

log |x− y|u(y) ds(y), x ∈ Γ1.

Singular values of A12 (now for a 200× 200 matrix A):

log10(σj)

j

What about?

These look quite different — very large, sparse, . . .

However, their inverses have the rank structure of discretized integral operators.

Example: Consider the Laplace BVP{
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Γ.

The finite element method produces a large sparse matrix A whose action mimics
the action of the differential operator −∆.

The inverse of A mimics the action of the inverse operator

u(x) =
∫

Ω
G(x, y) f(y) dA(y),

where G is the Green’s function of the problem.
(Note that Ω is a general domain so G is not known analytically!)

Let A be a matrix consisting of p× p blocks of size n× n:

A =


D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V ∗j

n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n. (Say k ≈ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the i’th row
use the same basis matrices Ui for their column spaces (and analogously all blocks
in the j’th column use the same basis matrices Vj for their row spaces).

We get A =


D11 U1 Ã12 V

∗
2 U1 Ã13 V

∗
3 U1 Ã14 V

∗
4

U2 Ã21 V
∗

1 D22 U2 Ã23 V
∗

3 U2 Ã24 V
∗

4

U3 Ã31 V
∗

1 U3 Ã32 V
∗

2 D33 U3 Ã34 V
∗

4

U4 Ã41 V
∗

1 U4 Ã42 V
∗

2 U4 Ã43 V
∗

3 D44

 .

Then A admits the factorization:

A =


U1

U2

U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã


V ∗

1

V ∗
2

V ∗
3

V ∗
4


︸ ︷︷ ︸

=V ∗

+


D1

D2

D3

D4


︸ ︷︷ ︸

=D

or

A = U Ã ∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

Lemma: [Variation of Woodbury] If an N ×N matrix A admits the factorization

A = U Ã ∗ + D;

N ×N N ×K K ×K K ×N N ×N

then
A−1 = E (Ã+

D̂)−1 F ∗ + G;

N ×N N ×K K ×K K ×N N ×N
where

D̂ =
(
V ∗D−1 U

)−1
, E = D−1 U D̂, F = (D̂ V ∗D−1)∗, G = D−1−D−1 U D̂ V ∗D−1

(provided all intermediate matrices are invertible).

Lemma: [Variation of Woodbury] If an N ×N matrix A admits the factorization

A = U Ã ∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

then

A−1 = E (Ã +̂D)−1 F ∗ + G,

p n× p n pn× p k p k × p k p k × p n pn× p n

whereD̂ =
(
V ∗D−1 U

)−1
, = D−1 U D̂, = (D̂ V ∗D−1)∗, = D−1 −D−1 U D̂ V ∗D−1.

Note: All matrices set in blue are block diagonal.

The Woodbury formula replaces the task of inverting a p n× p n matrix by the
task of inverting a p k × p k matrix.

The cost is reduced from p n)3 to (p k)3.

We do not yet have a “fast” scheme . . .

(Recall: A has p× p blocks, each of size n× n and of rank k.)

We must recurse!

We must recurse!

Using a telescoping factorization of A:

A = U (3)
(
U (2)

(
U (1)B(0) V (1))∗ +B(1)

)
(V (2))∗ +B(2)

)
(V (3))∗ +D(3),

we have a formula

A−1 = E(3)
(
E(2)

(
E(1) D̂(0) F (1))∗ + D̂(1)

)
(F (2))∗ + D̂(2)

)
(V (3))∗ + D̂(3).

Block structure of factorization:
U (3) U (2) U (1) B(0) (V (1))∗ B(1) (V (2))∗ B(2) (V (3))∗ D(3)

All matrices are now block diagonal except D̂(0), which is small.

Many important details are left out.

Among the more important ones:

• How do you represent potentials?
Multipole expansions, proxy charges, interpolation, . . .

• How do you compute the telescoping factorization in the first place?

• Generalization to

– Volume integral equations in R2.

– Boundary integral equations in R3.

(Volume integral equations in R3 are currently not practical.)

Numerical examples

In developing direct solvers, the “proof is in the pudding” — recall that from a
theoretical point of view, the problem was already solved (by Hackbusch and others).

All computations were performed on standard laptops and desktop computers in
the 2.0GHz - 2.8Ghz speed range, and with 512Mb of RAM.

Example: An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2.

k Nstart Nfinal ttot tsolve Eres Epot σmin M

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 8.0e-01 1.7e-08 1.4e-08 3.3e-01 350984

Computational results for an exterior Helmholtz Dirichlet problem
discretized with 10th order accurate quadrature. The Helmholtz
parameter was chosen to keep the number of discretization points
per wavelength constant at roughly 45 points per wavelength (re-
sulting in a quadrature error about 10−12).

Eventually . . . the complexity is O(n+ k3).

(Corresponding Laplace problems are much faster,
inversion of a 105 × 105 matrix takes less than 20 seconds.)

Example: An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with
Dirichlet boundary data was solved using N = 6 400 discretization points, with a
prescribed accuracy of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary integral
operator was σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.

Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.

Example: Inversion of a “Finite Element Matrix”

A grid conduction problem (the “five-point stencil”).

The conductivity of each bar is a random number drawn from a uniform
distribution on [1, 2].

If all conductivities were one, then we would get the standard five-point stencil:

A =


C −I 0 0 · · ·

−I C −I 0 · · ·

0 −I C −I · · ·
...

...
...

...

 C =


4 −1 0 0 · · ·

−1 4 −1 0 · · ·

0 −1 4 −1 · · ·
...

...
...

...

 .

N Tinvert Tapply M e1 e2 e3 e4

(seconds) (seconds) (kB)

10 000 5.93e-1 2.82e-3 3.82e+2 1.29e-8 1.37e-7 2.61e-8 3.31e-8

40 000 4.69e+0 6.25e-3 9.19e+2 9.35e-9 8.74e-8 4.71e-8 6.47e-8

90 000 1.28e+1 1.27e-2 1.51e+3 — — 7.98e-8 1.25e-7

160 000 2.87e+1 1.38e-2 2.15e+3 — — 9.02e-8 1.84e-7

250 000 4.67e+1 1.52e-2 2.80e+3 — — 1.02e-7 1.14e-7

360 000 7.50e+1 2.62e-2 3.55e+3 — — 1.37e-7 1.57e-7

490 000 1.13e+2 2.78e-2 4.22e+3 — — — —

640 000 1.54e+2 2.92e-2 5.45e+3 — — — —

810 000 1.98e+2 3.09e-2 5.86e+3 — — — —

1 000 000 2.45e+2 3.25e-2 6.66e+3 — — — —

e1 The largest error in any entry of Ã−1
n

e2 The error in l2-operator norm of Ã−1
n

e3 The l2-error in the vector Ã−1
nn r where r is a unit vector of random direction.

e4 The l2-error in the first column of Ã−1
nn .

Tinvert

N
versus N

Tapply√
N

versus N

M√
N

versus N .

3D problems from Denis.

Computation carried out by Denis Gueyffier at Courant.

Taken from Greengard, Gueyffier, Martinsson, Rokhlin, “Fast direct solvers for
integral equations in complex three-dimensional domains”, Acta Numerica 2009.

Key points — fast direct solvers

• 2D boundary integral equations. O(N). Very fast.
Has proven capable of solving previously intractable problems.

• 2D volume problems (finite element matrices and Lippmann-Schwinger).Theory finished. Some code exists. O(N) or O(N log(N)). Work in progress.

• 3D surface integral equations. O(N log(N)).

Future directions:

• Extensions of fast direct solvers:

– Spectral decompositions.

– High-frequency problems. (High risk / high reward project.)

• Efforts to make PDE solvers based on more accessible:

– Improve machinery for dealing with.

– Assemble software packages.

• Applications of newly developed PDE solvers.

• Extension of methodology to do:

– Composite media, crack propagation, percolating micro-structures.

– Scattering problems.

Part 2 — Approximation of matrices via randomized sampling

Notation:

A vector x ∈ Rn is measured using the `2 (Euclidean) norm:

||x|| =

 n∑
j=1

x2
j

1/2

.

A matrix A ∈ Rm×n is measured using the corresponding operator norm

||A|| = sup
x 6=0

||Ax||
||x||

.

Low-rank approximation

An N ×N matrix A has k if there exist matrices B and C such that

A = B C.

N ×N N × k k ×N

When k � N , computing the factors B and C is advantageous:

• Storing B and C require O(N k) storage instead of O(N2).

• A matrix-vector multiply requires 2N k flops instead of N2 flops.

• Certain factorizations reveal properties of the matrix.

In actual applications, we are typically faced with approximation problems:

Problem 1: Given a matrix A and a precision ε, find the minimal k such that

min{||A− Ã|| : rank(Ã) = k} ≤ ε.

Problem 2. Given a matrix A and an integer k, determine

Ak = argmin{||A− Ã|| : rank(Ã) = k}.

The provides the exact answer.

Any m× n matrix A admits a factorization (assuming m ≥ n)

A = U DV t = [u1 u2 · · · un]


σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σn




vt

1

vt
2
...

vt
n

 =
n∑
j=1

σj uj v
t
j .

σj is the j’th “singular value” of A
uj is the j’th “left singular vector” of A
vj is the j’th “right singular vector” of A.

Then:
σj = inf

rank(Ã)=j−1
||A− Ã||.

and

argmin{||A− Ã|| : rank(Ã) = k} =
k∑
j=1

σj uj v
t
j .

The determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i+ j − 1).
Let σj denote the j’th singular value of A.log10(σj)

j

For instance, to precision ε = 10−10, the matrix A has rank 11.

The determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i+ j − 1).
Let σj denote the j’th singular value of A.log10(σj)

j” = 10−10
�11 = 1.46 · 10−10

For instance, to precision ε = 10−10, the matrix A has rank 11.

Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQtA|| ≤ ε.

Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQtA|| ≤ ε.

Notes:

� Once Q has been constructed, it is in many environments possible to construct
standard factorization (such as the SVD/PCA) using O(N k2) operations.
Specifically, this is true if either

{ matrix vector products x 7→ x′A can be evaluated rapidly, or,

{ individual entries of A can be computed in O(1) operations.

• We seek a k that is as small as possible, but it is not a priority to make it
absolutely optimal.

• If the Q initially constructed has too many columns, but is accurate, then the
true optimal rank is revealed by postprocessing.

Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQtA|| ≤ ε.

We will discuss two environments:

Case 1:

We have a fast technique for evaluating
matrix-vector products. Let Tmult de-
note the cost. We assume Tmult � N2.

Standard methods (e.g. Lanczos)
require O(Tmult k) operations.

The new methods are also O(Tmult k)
but are more robust, more accurate,
and better suited for parallelization.

Case 2:

A is a general N ×N matrix.

Standard methods (e.g. Gram-Schmidt)
require O(N2 k) operations.

The new method requires O(N2 log(k))
operations.

The methods that we propose are based on randomized sampling.

This means that they have a non-zero probability of giving an answer that is not
accurate to within the requested accuracy.

The probability of failure can be balanced against computational cost by the user.

It can very cheaply be rendered entirely negligible; failure probabilities less than10−15 are standard. (In other words, if you computed 1 000 matrix factorizations a
second, you would expect to see one “failure” every 30 000 years.)

Definition: We say that an m× n matrix Ω is a if

Ω =


ω11 ω12 · · · ω1n

ω21 ω22 · · · ω2n

...
...

...

ωm1 ωm2 · · · ωmn

 ,

where the numbers ωij are random variables drawn independently from a
normalized Gaussian distribution.

Note: The probability distribution of Ω is isotropic in the sense that if U ∈ O(m)
and V ∈ O(n), then U ΩV has the same distribution as Ω.

Note: In practise, the random numbers used will be constructed using “random
number generators.” The quality of the generators will not matter much.
(Shockingly little, in fact.)

We start with Case 1: We know how to compute the product x 7→ Ax rapidly.

Algorithm 1:
Rapid computation of
a low-rank approxima-
tion.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix of ε-rank k.

• We seek a basis for Col(A).

� We can perform matrix-vector multiplies fast.

1. Fix a small positive integer p (representing how much “oversampling” we do).
Construct a Gaussian random matrix Ω of size n× (k + p).

2. Form the m× (k + p) matrix Y = AΩ.

3. Construct an m× (k + p) orthogonal matrix Q such that Y = QQ t Y .

Each column of Y is a sample from the column space of A.
The more samples we have, the more likely it is that

(2) ||A−QQtA|| ≤ ε.

If we were very lucky, then (2) would hold with p = 0.

Question: How large does p need to be in practice?

How to measure “how well we are doing”:

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = AΩ`.

Let Q` be an m× ` matrix such that Y` = Q`Q
t
` Y`.

The “error” after ` steps is then

e` = ||A−Q`Qt
`A||= ||(I −Q`Qt

`)A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computinge` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q`Qt
`

)
yl+j

∣∣∣∣.
The computation stops when we come to an ` such that f` < ε× [constant].

Specific example to illustrate the performance:
Let A be a 200× 200 matrix arising from discretization of

[SΓ1←Γ2 u](x) = α

∫
Γ2

log |x− y|u(y) ds(y), x ∈ Γ1,

where Γ1 is shown in red and Γ2 is shown in blue:

The number α is chosen so that ||A|| = σ1 = 1.

`

log10(e`)(actual error)log10(σ`+1)(theoreticallyminimal error)

Results from one realization of the randomized algorithm

How to measure “how well we are doing”

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = AΩ`.

Let Q` be an m× ` matrix such that Y` = Q`Q
t
` Y`.

The “error” after ` steps is then

e` = ||A−Q`Qt
`A||= ||(I −Q`Qt

`)A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computinge` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q`Qt
`

)
yl+j

∣∣∣∣.
The computation stops when we come to an ` such that f` < ε× [constant].

How to measure “how well we are doing”

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = AΩ`.

Let Q` be an m× ` matrix such that Y` = Q`Q
t
` Y`.

The “error” after ` steps is then

e` = ||A−Q`Qt
`A||= ||(I −Q`Qt

`)A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computinge` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q`Qt
`

)
yl+j

∣∣∣∣.
The computation stops when we come to an ` such that f` < ε× [constant].

`

log10(10 f`)(error bound)log10(e`)(actual error)log10(σ`+1)(theoreticallyminimal error)

Results from one realization of the randomized algorithm

Note: The development of an error estimator resolves the issue of not knowing
the numerical rank in advance!

Was this just a lucky realization?

Was this just a lucky realization?

Results from 2000 realizations:

Important: What is stochastic is the run time, not the accuracy;

the error in the factorization was always less than 10−10,

and post-processing correctly determined the rank every time.

`

log10(10 f`)(error bound)log10(e`)(actual error)log10(σ`+1)(theoreticallyminimal error)

Results from a high-frequency Helmholtz problem (complex arithmetic)

So far, we have assumed that we have a fast matrix-vector multiplier at our disposal.

What happens if we do not?

In this case, Tmult = N2 so the computational cost of Algorithm I is

O(Tmult k +N k2) = O(N2 k +N k2).

When k � N, Algorithm 1 might be slightly faster than Gram-Schmidt.

Multiplications required for Algorithm 1. N2 (k + 10) O(k2N)

Multiplications required for Gram-Schmidt: N 2 2 k

Other beneβts (sometimes more important ones than CPU count).

� Data-movement.

� Parallelization.

� More accurate. (This requires some additional twists not yet described.)

However, many environments remain in which there is little or no gain.

So far, we have assumed that we have a fast matrix-vector multiplier at our disposal.

What happens if we do not?

In this case, Tmult = N2 so the computational cost of Algorithm I is

O(Tmult k +N k2) = O(N2 k +N k2).

When k � N , Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: N 2 (k + 10) +O(k2N)

Multiplications required for Gram-Schmidt: N 2 2 k

Other benefits (sometimes more important ones than CPU count):

• Data-movement.

• Parallelization.

• More accurate. (This requires some additional twists not yet described.)

However, many environments remain in which there is little or no gain.

Algorithm 2: An O(N2 log(k)) algorithm for general matrices:

Proposed by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A Ω.

N × ` N ×N N × `

Key points:

• The entries of Ω are i.i.d. random numbers.

• The product x 7→ Ax can be evaluated rapidly.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct Ω with “some randomness” and “some structure”.
Then for each 1×N row a of A, the matrix-vector product

a 7→ aΩ

can be evaluated using N log(`) operations.

What is this “random but structured” matrix Ω?

Ω = D F S

N × ` N ×N N ×N N × `
where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk = e−2πi(j−1)(k−1)/N .

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw ` columns at
random from DF .)

Note: Other successful choices of the matrix Ω have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).

Speed gain on square matrices of various sizes

The time required to verify the approximation is included in the fast, but not in
the classical timings.

Empirical accuracy on 2,048-long convolution

The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

The accuracy of the randomized method has recently been improved.

Theory / context

In the remainder of the talk we will focus on Algorithm 1 (for the case when fast
matrix-vector multiplies are available). For this case, we have fairly sharp
estimates of the “failure probabilities.”

The theoretical results to be presented are related to (and in some cases inspired
by) earlier work on randomized methods in linear algebra. This work includes:C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)

A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

D. Achlioptas and F. McSherry (2001)

P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b,
2006c, 2006d)

S. Har-Peled (2006)

A. Deshpande and S. Vempala (2006)

S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

T. Sarlós (2006a, 2006b, 2006c)

Theorem (Martinsson, Rokhlin, Tygert 2006):

Let A be an M ×N matrix.

Let k and p be positive integers. k is “rank” and p is the degree of “oversampling”)

Let Ω be an N × (k + p) Gaussian random matrix.

Let Q be an M × (k+ p) matrix whose columns form an ON-basis for the columns of AΩ.

Set σk+1 = min
rank(B)=k

||A−B||.

Then

||A−QQtA||2 ≤ 10
√

(k + p) (N − k) σk+1, Not good!

with probability at least
1− ϕ(p),

where ϕ is a decreasing function satisfying, e.g.,

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.

Theorem (Martinsson, Rokhlin, Tygert 2006):

Let A be an M ×N matrix.

Let k and p be positive integers. k is “rank” and p is the degree of “oversampling”)

Let Ω be an N × (k + p) Gaussian random matrix.

Let Q be an M × (k+ p) matrix whose columns form an ON-basis for the columns of AΩ.

Set σk+1 = min
rank(B)=k

||A−B||.

Then

||A−QQtA||2 ≤ 10
√

(k + p) (N − k) σk+1, Not good!

with probability at least
1− ϕ(p),

where ϕ is a decreasing function satisfying, e.g.,

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.

The key bound in the proof is the line:

||A−QQtA||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

The key bound in the proof is the line:

||A−QQtA||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)However, the applications described at the beginning of the talk are very noisy,

and it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

The key bound in the proof is the line:

||A−QQtA||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

However, the applications described at the beginning of the talk are very noisy,
and it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

Moreover, N may be very large. N ∼ 105 would be common.

The key bound in the proof is the line:

||A−QQtA||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

However, the applications described at the beginning of the talk are very noisy,
and it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

Moreover, N may be very large. N ∼ 105 would be common.The suboptimality is damning in data mining and signal processing applications.
Here we have HUGE matrices, and lots of noise.

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real m×n matrix A with singular
values σ1, σ2, σ3, Choose integers k ≥ 1 and p ≥ 2, and draw an n × (k + p)
standard Gaussian test matrix Ω. Construct the data matrix Y = AΩ, and let PA
denote the orthogonal projection onto the range of Y . Then

E||(I − PY)A||F ≤
(

1 +
k

p− 1

)1/2
 ∞∑
j=k+1

σ2
j

1/2

.

Moreover,

E||(I − PY)A|| ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

 ∞∑
j=k+1

σ2
j

1/2

.

• Numerical experiments indicate that these estimates are close to sharp.

• When σj ∼ βj , we have

 ∞∑
j=k+1

σ2
j

1/2

∼ σk+1
1

1− β
.

� Tail probabilities are often in a practical sense irrelevant.

Power method for improving accuracy:

Note that the error depends on how quickly the singular values decay.

The faster the singular values decay — the higher the relative weight of the
dominant modes are weighted in the samples.

Idea: The matrix B = (AA∗)q A has the same left singular vectors as A, and its
singular values are

σj(B) = (σj(A))2 q+1.

Much faster decay — so use the sample matrix

Z = B Ω = (AA∗)q AΩ

instead of

Y = AΩ.

Power method for improving accuracy:

The following theorem is inspired by results by Rokhlin, Szlam, and Tygert (2008):

Theorem: [Halko, Martinsson, Tropp 2009] Let m, n, and ` be positive integers
such that ` < n ≤ m. Let A be an m × n matrix and let Ω be an n × ` matrix.
Let q be a non-negative integer, set B = (A∗A)qA, and construct the sample matrix
Z = B Ω. Then

|||(I − PZ)A||| ≤ |||(I − PZ)B|||1/(2q+1)

where ||| · ||| denotes either the spectral norm or the Frobenius norm.

Since the `’th singular value of B = (A∗A)qA is σ2 q+1
l , any result of the type

||(I − PY)A|| ≤ C σk+1,

where Y = AΩ and C = C(m,n, k), gets improved to a result

||(I − PZ)A|| ≤ C(m,n, k)1/(2 q+1) σk+1

when Z = (A∗A)qAΩ.

10-log of errors

incurred when using

the power method with:

q = 0 in pink

q = 1 in blue

q = 2 in green

q = 3 in black

`

The matrix A being analyzed is a 9025× 9025 matrix arising in image processing.
(It is a graph Laplacian on the manifold of 9× 9 patches.)
The red crosses mark the singular values of A.

Some observations . . .

The observation that a “thin” Gaussian random matrix to high probability is
well-conditioned is at the heart of the celebrated:

Lemma: Let ε be a real number such that ε ∈ (0, 1), let n be a positive integer,
and let k be an integer such that

(3) k ≥ 4
(
ε2

2
− ε3

3

)−1

log(n).

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that

(4) (1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

Further, such a map can be found in randomized polynomial time.

It has been shown that an excellent choice of the map f is the linear map whose
coefficient matrix is a k × d matrix whose entries are i.i.d. Gaussian random
variables (see, e.g. Dasgupta & Gupta (1999)).
When k satisfies, (3), this map satisfies (4) with probability close to one.

The related shows that such statements are not
restricted to Euclidean space:

Theorem:. Every finite metric space (X, d) can be embedded into `2 with
distortion O(log n) where n is the number of points in the space.

Again, random projections can be used as the maps.

The Johnson-Lindenstrauss lemma (and to some extent the Bourgain embedding
theorem) expresses a theme that is recurring across a number of research areas
that have received much attention recently. These include:

• Compressed sensing (Candès, Tau, Romberg, Donoho).

• Approximate nearest neighbor search (Jones, Rokhlin).

• Geometry of point clouds in high dimensions (Coifman, Jones, Lafon, Lee,
Maggioni, Nadler, Singer, Warner, Zucker, etc).

• Construction of multi-resolution SVDs.

• Clustering algorithms.

• Search algorithms / knowledge extraction.

Note: Omissions! No ordering. Missing references. Etc etc.

Many of these algorithms work “unreasonably well.”

The randomized algorithm presented here is close in spirit to randomized
algorithms such as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)

• Routing of data in distributed computing with unknown network topology.

• Rabin-Karp string matching / verifying equality of strings.

• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is
stochastic. The quality of the final output is excellent.

The randomized algorithm that is perhaps the best known within numerical
analysis is. This is somewhat lamentable given that MC is often a
“last resort” type algorithm used when the curse of dimensionality hits —
inaccurate results are tolerated simply because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for
many applications, more accurate versions have been developed.)

Observation: Mathematicians working on these problems often focus on
minimizing the

1 + ε

1− ε
arising in the Johnson-Lindenstrauss bound:

(1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

In our environments, we do not need this constant to be particularly close to 1.
It should just not be “large” — say less that 10 or some such.

This greatly reduces the number of random projections needed! Recall that

number of samples required ∼ 1
ε2

log(N).

Observation: Multiplication by a random unitary matrix reduces any matrix to
its “general” form. All information about the singular vectors vanish. (The
singular values remain the same.)

This opens up the possibility for general pre-conditioners —
counterexamples to various algorithms can be disregarded.

The feasibility has been demonstrated for the case of least squares solvers for very
large, very over determined systems. (Work by Rokhlin & Tygert, Sarlós,)

Work on O(N2 (logN)2) solvers of general linear systems is under way.
(Random pre-conditioning + iterative solver.)

May O(N2 (logN)2) matrix inversion schemes for general matrices be possible?

Observation: Robustness with respect to the quality of the random numbers.

The assumption that the entries of the random matrix are i.i.d. normalized
Gaussians simplifies the analysis since this distribution is invariant under unitary
maps.

In practice, however, one can use a low quality random number generator. The
entries can be uniformly distributed on [−1, 1], they be drawn from certain
Bernouilli-type distributions, etc.

Remarkably, they can even have enough internal structure to allow fast methods
for matrix-vector multiplications. For instance:

• Subsampled discrete Fourier transform.

• Subsampled Walsh-Hadamard transform.

• Givens rotations by random angles acting on random indices.

This was exploited in “Algorithm 2” (and related work by Ailon and Chazelle).
Our theoretical understanding of such problems is unsatisfactory.
Numerical experiments perform far better than existing theory indicates.

Even though it is thorny to prove some of these results (they draw on techniques
from numerical analysis, probability theory, functional analysis, theory of
randomized algorithms, etc), work on randomized methods in linear algebra is
progressing fast.

Important: Computational prototyping of these methods is extremely simple.

• Simple to code an algorithm.

• They work so well that you immediately know when you get it right.

Current research directions:

• Acceleration of BLAS / LINPACK functions.

– May actually soon be integrated in Matlab and Mathematica.

• Construction of reduced models for physical phenomena (“model reduction”).

– Wave propagation through media with periodic micro-structures.

– Scattering problems involving multiple scatterers.

• New estimates on spectral properties of random matrices.

Potential “killer” application:

Approximation of very large very noisy data sets stored on disk or streamed.

The randomized algorithms solve two fundamental limitations of existing methods:

• Propagation of rounding errors.

• Data flow — we can only see the data once!

Important applications that cannot be solved with existing technology:
Image and video processing / network analysis / statistical data processing / . . .

