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Low-rank approximation

An N ×N matrix A has rank k if there exist matrices B and C such that

A = B C.

N ×N N × k k ×N

When k ¿ N , computing the factors B and C is advantageous:

• Storing B and C requires 2N k units of storage instead of N2 units.

• A matrix-vector multiply requires 2N k flops instead of N2 flops.

• Certain factorizations reveal properties of the matrix.



Real life is messy — Part I:

In applications, the form of the factors typically matters.

The Singular Value Decomposition (SVD)

A = U Σ V ∗

N ×N N × k k × k k ×N

orthonormal diagonal (orthonormal)∗

is important in many applications. For instance:

• Principal Component Analysis (PCA).

• Extracting information from large graphs.

• “Eigenfaces”.

• etc



Real life is messy — Part I:

In applications, the form of the factors typically matters.

The Interpolatory Decomposition (ID) determines a spanning set of columns:

A = Acol X

N ×N N × k k ×N

subset

of columns

Applications in:

• Sparse representation of data.

• Analysis of genetic and financial data sets.

• Fast numerical algorithms (such as the Fast Multipole Method).

• etc



Real life is messy — Part I:

In applications, the form of the factors typically matters.

The QR decomposition

A = Q R P

N ×N N × k k ×N N ×N

orthonormal upper triangular permutation

Applications in:

• Numerical analysis.

• Solving least squares problems.

• etc



Real life is messy — Part II:

In practice, we very rarely are lucky enough to work with matrices of exact rank k.
Instead, we have to consider approximation problems:

Problem 1: Given a matrix A and a precision ε, find the minimal k such that

min{||A− Ã|| : rank(Ã) = k} ≤ ε.

Problem 2: Given a matrix A and an integer k, determine

Ak = argmin{||A− Ã|| : rank(Ã) = k}.

Add conditions on the form of Ã and things start to get complicated . . .



On a well-known lista of the “Top 10 Algorithms” that have influenced the
practice of science and engineering during the 20th century, we find an entry that
is not really an algorithm: the idea of using matrix factorizations to accomplish
basic tasks in numerical linear algebra:

The underlying principle of the decompositional approach to matrix com-
putation is that it is not the business of the matrix algorithmicists to
solve particular problems but to construct computational platforms from
which a variety of problems can be solved.

The lesson for us is: We need to formulate a primitive problem that forms a
reusable building block in all these applications.

aJ. Dongarra and F.Sullivan, The top 10 algorithms, Comput. Sci. Eng., (2000), pp. 22–23.



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

In other words, the columns of Q form an ON-basis for the range of A.

We want ` to be reasonably close to the theoretically minimal number, but it is
more important for the approximation to be accurate.

We for now assume that we know the approximate rank in advance; and will deal
with the case where we do not later.



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

Claim: If a Q such that A ≈ QQ∗A is provided, then any standard factorization
of A can be computed inexpensively.

How to construct the SVD of A:

1. Form the matrix B = Q∗A.

2. Compute the SVD of B so that B = Û ΣV ∗.

3. Compute the product U = QÛ .

The output U , Σ, V of this process satisfies ||A− U ΣV ∗|| = ||A−QQ∗A||.

The given process requires O(mn`) flops. This can be reduced to O((m + n)`2).



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

Claim: If a Q such that A ≈ QQ∗A is provided, then any standard factorization
of A can be computed inexpensively.

How to construct an Interpolatory Decomposition of A:

1. Find ` spanning rows of Q so that Q = X Q(J, : ).

2. Now A = X A(J, : ) automatically!

This process costs only O(m`2) flops, but leads to some loss of accuracy:

||A−A(J, : )X|| ≤ (
1 +

√
1 + 4 ` (n− `)

) ||A−QQ∗A||.



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

Claim: If a Q such that A ≈ QQ∗A is provided, then any standard factorization
of A can be computed inexpensively.

How to construct the SVD via the Interpolatory Decomposition:

1. Find ` spanning rows of Q so that Q = X Q(J, : ).

2. Compute the QR factorization of X so that X = Û R where Û is orthonormal.

3. Form the product R A(J, : ) and comute its SVD: R A(J : ) = Ũ ΣV ∗.

4. Set U = Û Ũ .

This process costs only O((m + n) `2) flops, but leads to some loss of accuracy:

||A− U Σ V ∗|| ≤ (
1 +

√
1 + 4 ` (n− `)

) ||A−Q Q∗A||.



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

What is the theoretically optimal solution?



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

Recall that any matrix A has a singular value decomposition (SVD):

A = U Σ V ∗ = [u1 u2 · · · un]




σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σn







v∗1
v∗2
...

v∗n




=
n∑

j=1

σj uj v∗j .

σj is the j’th “singular value” of A, uj is the j’th “left singular vector” of A, and
vj is the j’th “right singular vector” of A. Then:

σ`+1 = inf{||A− Ã|| : rank(Ã) = `}
and

argmin{||A− Ã|| : rank(Ã) = `} =
∑̀

j=1

σj uj v∗j .

Optimal solution: Set Q` = [u1, u2, . . . , u`]. Then ||A−Q` Q∗
` A|| = σ`+1.



The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.
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For instance, to precision ε = 10−10, the matrix A has rank 11.



The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.
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ε = 10−10
σ11 = 1.46 · 10−10

For instance, to precision ε = 10−10, the matrix A has rank 11.



Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors ω1, ω2, ω3, · · · ∈ Rn.
(We will discuss the choice of distribution later.)

2. Form “sample” vectors y1 = Aω1, y2 = Aω2, y3 = A ω3, · · · ∈ Rm.

3. Form orthonormal vectors q1, q2, q3, · · · ∈ Rm such that
Span(q1, q2, . . . , q`) = Span(y1, y2, . . . , y`).
(Using, for instance, Gram-Schmidt — no pivoting is required.)

Surprise!
{qj}`

j=1 often does almost as good of a job as the singular vectors {uj}`
j=1!
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Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

Randomized algorithm — formal description:

1. Construct a random matrix Ω` of size n× `.
Suppose for now that Ω` is Gaussian.

2. Form the m× ` sample matrix Y` = A Ω`.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

(In other words, the columns of Q` form an ON basis for Ran(Y`).)

Error measure:

The error incurred by the algorithm is e` = ||A−Q` Q∗
` A||.

The error e` is bounded from below by σ`+1 = inf{||A−B|| : B has rank `}.



Specific example to illustrate the performance:
Let A be a 200× 200 matrix arising from discretization of

[SΓ2←Γ1 u](x) = α

∫

Γ1

log |x− y|u(y) ds(y), x ∈ Γ2,

where Γ1 is shown in red and Γ2 is shown in blue:
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The number α is chosen so that ||A|| = σ1 = 1.
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Primitive problem: Given an m × n matrix A, and an integer `, find an m × `

orthonormal matrix Q` such that A ≈ Q` Q∗
` A.

1. Construct a random matrix Ω` of size n× `.
Suppose for now that Ω` is Gaussian.

2. Form the m× ` sample matrix Y` = A Ω`.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

(In other words, the columns of Q` form an ON basis for Ran(Y`).)

Error measure:

The error incurred by the algorithm is e` = ||A−Q` Q∗
` A||.

The error e` is bounded from below by σ`+1 = inf{||A−B|| : B has rank `}.

Error estimate: f` = max1≤j≤10

∣∣∣∣(I −Q` Q∗
`

)
y`+j

∣∣∣∣.
The computation stops when we come to an ` such that f` < ε× [constant].
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Note: The development of an error estimator resolves the issue of not knowing
the numerical rank in advance!



Was this just a lucky realization?



Each dots represents one realization of the experiment with ` = 50 samples:
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Important:

• What is stochastic in practice is the run time, not the accuracy.

• The error in the factorization is (practically speaking) always within the
prescribed tolerance.

• Post-processing (practically speaking) always determines the rank correctly.
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What is the asymptotic complexity of the randomized method?

How does it compare to state-of-the-art non-randomized methods?

To answer such questions, we need to specify the computational environment;
in what follows we consider three representative ones.



Sample Environment 1 (out of 3):
The product x 7→ Ax can be evaluated rapidly

Suppose that the cost of evaluating x 7→ Ax is O(m + n).
(Suppose A is sparse, FFT-able (there will be a log-factor), . . . )

1. Construct a Gaussian random matrix Ω` of size n× `.

2. Form the m× ` sample matrix Y` = A Ω`.
Cost is O(` (m + n)).

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

Cost is O(`2 m).

The asymptotic cost is the same as that of Arnoldi/Lanzcos methods, but the
randomized technique is more robust, and much better suited for implementation
on parallel computers.



Sample Environment 2 (out of 3):
No fast multiply, A fits in RAM

First let us try a Gaussian random matrix:

1. Construct a Gaussian random matrix Ω` of size n× `.

2. Form the m× ` sample matrix Y` = A Ω`.
Cost is O(`m n).

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

Cost is O(`2 m).

The asymptotic scaling is the same as rank-revealing QR!



Sample Environment 2 (out of 3):
No fast multiply, A fits in RAM

Let us change the random matrix Ω:

1. Construct an “SRFT” random matrix Ω` of size n× `.
An “SRFT” admits evaluation of x 7→ xΩ in O(n log(`)) operations.

2. Form the m× ` sample matrix Y` = A Ω`.
Cost is O(mn log(`)).

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

Cost is O(m`2).

Now the total cost is O(mn log(`)).

We have ` ∼ k so the cost is in fact O(mn log(k))!



What is an “SRFT”?
A Subsampled Random Fourier Transform. A random matrix with structure.

One possible choice:

Ω = D F S

N × ` N ×N N ×N N × `

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk =
1

N1/2
e−2πi(j−1)(k−1)/N .

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw ` columns at
random from D F .)
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Notes:

• Significant speed-ups are achieved for common problem sizes. For instance,
m = n = 2 000 and k = 200 leads to a speed-up by roughly a factor of 4.

• Many other choices of random matrices have been found.

– Subsampled Hadamard transform.

– Wavelets.

– Random chains of Given’s rotations. (Seems to work the best.)

• Theory is poorly understood. Vastly overstates the risk of inaccurate results.

• This idea was proposed by Liberty, Rokhlin, Tygert, Woolfe (2006).

– The SRFT described above was also suggested by Nir Ailon and Bernard
Chazelle (2006) in a related context.

– Related recent work by Sarlós (on randomized regression).

– Very interesting follow-up paper on overdetermined linear least-squares
regression by Rokhlin and Tygert (2008).



Sample Environment 3 (out of 3):
No fast multiply, A is huge and must be stored on disk.

1. Construct a Gaussian random matrix Ω` of size n× `.

2. Form the m× ` sample matrix Y` = A Ω`.
Cost is O(`m n) flops and one pass over the matrix.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

Cost is O(`2 m) flops.

Asymptotic flop counts are very similar to those of classical methods.



Sample Environment 3 (out of 3):
No fast multiply, A is huge and must be stored on disk.

1. Construct a Gaussian random matrix Ω` of size n× `.

2. Form the m× ` sample matrix Y` = A Ω`.
Cost is O(`m n) flops and one pass over the matrix.

3. Construct an m× ` orthonormal matrix Q` such that Y` = Q` Q∗
` Y`.

Cost is O(`2 m) flops.

Asymptotic flop counts are very similar to those of classical methods.

But flop count is largely irrelevant here — the cost of arithmetic is dwarfed by the
memory access time, which is minimal for the randomized algorithm.

Similar considerations apply to implementation on multi-core architectures,
streaming data, etc.

Problem: Poor error control!
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The matrix A being analyzed is a 9025× 9025 matrix arising in image processing.
(It is a graph Laplacian on the manifold of 9× 9 patches.)
The red crosses mark the singular values of A.



Theory



The theoretical results to be presented are related to (and in some cases inspired
by) earlier work on randomized methods in linear algebra. This work includes:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)

A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

D. Achlioptas and F. McSherry (2001)

P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b,
2006c, 2006d)

S. Har-Peled (2006)

A. Deshpande and S. Vempala (2006)

S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

T. Sarlós (2006a, 2006b, 2006c)



There have been significant progress in understanding and minimizing the error
over the last few years.

The framework in the following theorems is:

We are given an m× n matrix A and seek a rank-k approximation

A ≈ B C

m× n m× k k × n

Fix a small integer p representing how much we “over-sample”. Set ` = k + p.

1. Construct a Gaussian random matrix Ω` of size n× `.

2. Form the m× ` matrix Y` = A Ω`.

3. Construct an m× ` orthogonal matrix Q` such that Y` = Q` Q∗
` Y`.

Question: How does the error ||A−Q` Q∗
` A|| compare to σk+1?



Theorem (Martinsson, Rokhlin, Tygert 2006):

Let A be an m× n matrix.

Let k and p be positive integers. (k is “rank” and p is the degree of “oversampling”)

Let Ω be an n× (k + p) Gaussian random matrix.

Let Q be an m× (k + p) matrix whose columns form an ON-basis for the columns of A Ω.

Set σk+1 = inf{||A−B|| : rank(B) = k}.

Then

||A−QQ∗A||2 ≤ 10
√

(k + p) (n− k) σk+1, ← Not good!

with probability at least
1− ϕ(p),

where ϕ is a decreasing function satisfying, e.g.,

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.
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The key bound in the proof is the line:

||A−QQ∗A||2 ≤ 10
√

(k + p) (n− k) σk+1.

The factor in red represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

However, in many applications of interest, the entries of A may be very noisy, and
it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σn ≈ 10−2 × σ1.

Moreover, n may be very large — n ∼ 105 — n ∼ 108 · · ·

The suboptimality is damning in data mining and signal processing applications.
Here we have HUGE matrices, and lots of noise.



Theorem: [Halko, Martinsson, Tropp 2009] Fix a real m×n matrix A with singular
values σ1, σ2, σ3, . . . . Choose integers k ≥ 1 and p ≥ 2, and draw an n × (k + p)
standard Gaussian random matrix Ω. Construct the sample matrix Y = AΩ, and
let Q denote an orthonormal matrix such that Ran(Q) = Ran(Y ). Then

E||A−QQ∗A||F ≤
(

1 +
k

p− 1

)1/2



∞∑

j=k+1

σ2
j




1/2

.

Moreover,

E||A−QQ∗A|| ≤
(

1 +

√
k

p− 1

)
σk+1 +

e
√

k + p

p




∞∑

j=k+1

σ2
j




1/2

.

• Numerical experiments indicate that these estimates are close to sharp.

• When σj ∼ βj , we have




∞∑

j=k+1

σ2
j




1/2

∼ σk+1
1√

1− β2
.



Due to overwhelmingly strong concentration of mass effects, tail probabilities are
often in a practical sense irrelevant.



Due to overwhelmingly strong concentration of mass effects, tail probabilities are
often in a practical sense irrelevant. However:

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real m×n matrix A with singular
values σ1, σ2, σ3, . . . . Choose integers k ≥ 1 and p ≥ 4, and draw an n × (k + p)
standard Gaussian random matrix Ω. Construct the sample matrix Y = AΩ, and
let Q denote an orthonormal matrix such that Ran(Q) = Ran(Y ). For all u, t ≥ 1,

||A−QQ∗A|| ≤
(

1 + t
√

12 k/p + u t
e
√

k + p

p + 1

)
σk+1 +

t e
√

k + p

p + 1


∑

j>k

σ2
j




1/2

except with probability at most 5 t−p + 2 e−u2/2.

The theorem can be simplified by by choosing t and u appropriately. For instance,

||A−QQ∗A|| ≤
(
1 + 8

√
(k + p) · p log p

)
σk+1 + 3

√
k + p

(∑
j>k

σ2
j

)1/2
,

except with probability at most 6 p−p.



Power method for improving accuracy:
[Rokhlin, Tygert, Szlam 2008]

Note that the error depends on how quickly the singular values decay.

The faster the singular values decay — the stronger the relative weight of the
dominant modes in the samples.

Idea: The matrix B = (AA∗)q A has the same left singular vectors as A, and its
singular values are

σj(B) = (σj(A))2 q+1.

Much faster decay — so use the sample matrix

Z = B Ω = (AA∗)q A Ω

instead of

Y = A Ω.



Power method for improving accuracy:

Theorem: [Halko, Martinsson, Tropp 2009] Let m, n, and ` be positive integers
such that ` < n ≤ m. Let A be an m × n matrix and let Ω be an n × ` matrix.
Let q be a non-negative integer, set B = (A∗A)qA, and construct the sample matrix
Z = B Ω. Let PZ denote the orthogonal projector onto the range of Z. Then

||(I − PZ) A|| ≤ ||(I − PZ) B||1/(2q+1).

Since the `’th singular value of B = (A∗A)qA is σ2 q+1
` , any result of the type

||(I − PY ) A|| ≤ C σk+1,

where Y = AΩ and C = C(m,n, k), gets improved to a result

||(I − PZ)A|| ≤ C1/(2 q+1) σk+1

when Z = (A∗A)qA Ω.



10-log of errors

incurred when using

the power method with:
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The matrix A being analyzed is a 9025× 9025 matrix arising in image processing.
(It is a graph Laplacian on the manifold of 9× 9 patches.)
The red crosses mark the singular values of A.



Example: Eigenfaces

We next process process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a
column of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

We compute these using the randomized method. This method requires only
2q + 1 passes over the data, where q is the parameter in the power scheme
(we evaluate the singular vectors of (AA∗)q A).
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In more recent work, we demonstrated the capabilities of the “low pass count”
method by processing a 200 000× 200 000 matrix stored on disk.

The matrix has about 200 significant singular modes; the remaining singular
values level out at about 5% of the magnitude of the dominant singular value.

The randomized method accurately constructs the first 200 singular values in a
couple of hours on a standard desktop PC.

[Forthcoming paper with Mark Tygert and Yoel Shkolnisky.]



Some observations . . .



The observation that a “thin” Gaussian random matrix to high probability is
well-conditioned is at the heart of the celebrated Johnson-Lindenstrauss lemma:

Lemma: Let ε be a real number such that ε ∈ (0, 1), let n be a positive integer,
and let k be an integer such that

(1) k ≥ 4
(

ε2

2
− ε3

3

)−1

log(n).

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that

(2) (1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

Further, such a map can be found in randomized polynomial time.

It has been shown that an excellent choice of the map f is the linear map whose
coefficient matrix is a k × d matrix whose entries are i.i.d. Gaussian random
variables (see, e.g. Dasgupta & Gupta (1999)).
When k satisfies, (1), this map satisfies (2) with probability close to one.



The related Bourgain embedding theorem shows that such statements are not
restricted to Euclidean space:

Theorem:. Every finite metric space (X, d) can be embedded into `2 with
distortion O(log n) where n is the number of points in the space.

Again, random projections can be used as the maps.



The Johnson-Lindenstrauss lemma (and to some extent the Bourgain embedding
theorem) expresses a theme that is recurring across a number of research areas
that have received much attention recently. These include:

• Compressed sensing (Candès, Tao, Romberg, Donoho).

• Approximate nearest neighbor search (Jones, Rokhlin).

• Geometry of point clouds in high dimensions (Coifman, Jones, Lafon, Lee,
Maggioni, Nadler, Singer, Warner, Zucker, etc).

• Construction of multi-resolution SVDs.

• Clustering algorithms.

• Search algorithms / knowledge extraction.

Note: Omissions! No ordering. Missing references. Etc etc.

Many of these algorithms work “unreasonably well.”



The randomized algorithm presented here is close in spirit to randomized
algorithms such as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)

• Routing of data in distributed computing with unknown network topology.

• Rabin-Karp string matching / verifying equality of strings.

• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is
stochastic. The quality of the final output is excellent.

The randomized algorithm that is perhaps the best known within numerical
analysis is Monte Carlo. This is somewhat lamentable given that MC is often a
“last resort” type algorithm used when the curse of dimensionality hits —
inaccurate results are tolerated simply because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for
many applications, more accurate versions have been developed.)



Observation: Mathematicians working on these problems often focus on
minimizing the distortion factor

1 + ε

1− ε

arising in the Johnson-Lindenstrauss bound:

(1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

In our environments, we do not need this constant to be particularly close to 1.
It should just not be “large” — say less that 10 or some such.

This greatly reduces the number of random projections needed! Recall that in the
Johnson-Lindenstrauss theorem:

number of samples required ∼ 1
ε2

log(N).



Observation: Multiplication by a random unitary matrix reduces any matrix to
its “general” form. All information about the singular vectors vanish. (The
singular values remain the same.)

This opens up the possibility for general pre-conditioners —
counterexamples to various algorithms can be disregarded.

The feasibility has been demonstrated for the case of least squares solvers for very
large, very over determined systems. (Work by Rokhlin & Tygert, Sarlós, . . . .)

Work on O(N2 (log N)2) solvers of general linear systems is under way.
(Random pre-conditioning + iterative solver.)

May stable fast matrix inversion schemes for general matrices be possible?



Observation: Robustness with respect to the quality of the random numbers.

The assumption that the entries of the random matrix are i.i.d. normalized
Gaussians simplifies the analysis since this distribution is invariant under unitary
maps.

In practice, however, one can use a low quality random number generator. The
entries can be uniformly distributed on [−1, 1], they be drawn from certain
Bernouilli-type distributions, etc.

Remarkably, they can even have enough internal structure to allow fast methods
for matrix-vector multiplications. For instance:

• Subsampled discrete Fourier transform.

• Subsampled Walsh-Hadamard transform.

• Givens rotations by random angles acting on random indices.

This was exploited in “Algorithm 2” (and related work by Ailon and Chazelle).
Our theoretical understanding of such problems is unsatisfactory.
Numerical experiments perform far better than existing theory indicates.



Even though it is thorny to prove some of these results (they draw on techniques
from numerical analysis, probability theory, functional analysis, theory of
randomized algorithms, etc), work on randomized methods in linear algebra is
progressing fast.

Important: Computational prototyping of these methods is extremely simple.

• Simple to code an algorithm.

• They work so well that you immediately know when you get it right.



Current research directions:

• Acceleration of LAPACK. Acceleration of the Fast Multipole Method.

• Application to physical operators: model reduction / coarse graining / . . .

• New estimates on spectral properties of random matrices.

• Approximation of very large very noisy data sets stored on disk or streamed.

The randomized algorithms solve two fundamental limitations of existing methods:

– Propagation of rounding errors.

– Very few passes over data. (Sometimes only one!)

Important applications that cannot be solved with existing technology:
Image and video processing / network analysis / statistical data processing / . . .

Reference: Finding structure with randomness: Stochastic algorithms for constructing

approximate matrix decompositions N. Halko, P.G. Martinsson, J. Tropp. Sep. 2009.
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