
Fast Matrix Computations via Randomized Sampling

Gunnar Martinsson
The University of Colorado at Boulder

Ph.D. Students: Collaborators:

Adrianna Gillman Edo Liberty (Yale)

Nathan Halko Vladimir Rokhlin (Yale)

Patrick Young Yoel Shkolnisky (Yale)

Joel Tropp (Caltech)

Mark Tygert (UCLA)

Franco Woolfe (Goldman Sachs)

Support: IPAM (via “Mathematics of Knowledge and Search Engines” program)

NSF-DMS #0748488 and #0610097

Topic of the talk:
Development of new fast methods for performing the linear algebraic operations
arising in algorithms for extracting information from large data sets.

Applications of interest:

• Clustering of data points.

• Nearest neighbor search.

• Finding “local coordinates” given noisy sample points from a manifold.

• Searches for items in a set that are “similar” in some specified sense.

The common theme is that we are in some sense studying the geometry of clouds
of points in high dimensional space.

Some problems of this type can be cast as matrix computations —
determination of eigenvectors or singular vectors, matrix inversions, etc.
(Some of them, not all!)

Example: “Page Rank” and similar algorithms

The “page rank” algorithm is a well known technique for analyzing the link
structure of the World Wide Web:

• Enumerate “all” web pages, i = 1, 2, . . . , N .

• Let `j denote the number of links from page j.

• Form the “adjacency matrix” L by setting

Lij =

1/`j , if web page j links to web page i,

0 otherwise.

• Fix a damping factor d. (A common choice is d = 0.85.)

• The vector of “page ranks” p is now the solution of the eigenequation

p =
(

1− d

N
E + d L

)
p,

where E is the N ×N matrix whose entries are all ones.

There are many variations and improvements to the basic “Page Rank” algorithm.

Whether this is a good way of analyzing the web is a subject of some contention.
Many people favor methods not based on linear algebra at all — some argue that
many singular vectors must be computed . . .

We do not hitch our wagon to any particular side in this argument, but simply
observe that being able to compute a few approximate eigenvectors for Markov
matrices of various kinds can be useful.

Example: Population genetics
From: P. Paschou, E. Ziv, E. Burchard, M.W. Mahoney, and P. Drineas

Matrix A recording “Single Nucleotide Polymorphisms” (SNPs).
We study a sequence of base pairs that take on the values, say, “R” and “S”.
Matrix entry Aij records the value for person j of an allele pair i:

genotype SS ∼ Aij = −1

genotype RS ∼ Aij = 0

genotype RR ∼ Aij = 1

In other words

Person 1 Person 2 Person 3 · · ·
Allele 1 RS RR RS · · ·
Allele 2 SS SS SS · · ·
Allele 3 RS RS SS · · ·

...
...

...
...

∼ A =

0 1 0 · · ·
−1 −1 −1 · · ·

0 0 −1 · · ·
...

...
...

10-logarithm of singular values of a 400× 62 matrix A (400 alleles, 62 people):

0 10 20 30 40 50 60

0.8

1

1.2

1.4

1.6

1.8

2

Clustering information can be extracted from the first few singular vectors.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−5

−4

−3

−2

−1

0

1

Similar problems arise in statistical analysis of many different types of data, e.g.:

• Genomics.

• Financial data.

• Image analysis.

• . . .

The term “Principal Component Analysis” (PCA) is frequently used in this context.

Example: “Diffusion geometry”

A prototypical problem in data analysis is the following:

• A set of points in high dimensional space is given.

• The points are believed to lie (approximately) on a low-dimensional manifold.
This manifold is typically not a linear subspace.

• The task is to identify the manifold, for instance by finding a set of
“local coordinates”.

In the “diffusion geometry” approach (Coifman, Maggioni, Jones, ...), one solves
this problem by determining eigenvectors of a “graph Laplacian” acting on the
data set.

The linear algebraic problem here is to identify many eigenvectors of a very large
sparse matrix with a lot of “noise”.

What do we learn from these and similar examples?

Matrix computations arise in a range of different environments.

These applications are challenging to the “traditional” techniques of numerical
linear algebra for a number of reasons, including:

• Very large problem sizes.

• Low signal-to-noise ratios.

• Optimal ordering of the points is not known in advance.
This makes a number of “fast” methods developed for solving the large
systems arising from the discretization of PDEs inapplicable without major
modifications.

Good news: For the class of problems where the task to be solved is the task of
approximating a matrix by a low-rank factorization, techniques whose
performance is close to the theoretically optimal one have recently been developed.

The “low-rank approximation problem” arises in a variety of contexts:

• Computing principal components.

• Finding a close to optimal set of spanning rows / spanning columns.

• Determining approximate QR / LU / CUR / LUV / . . . factorizations.

These techniques are based on randomized sampling, and we will describe them in
some detail.

We will then discuss possible extensions of these techniques to more complex
situations, such as the computation of partial spectral decompositions of graph
Laplacians and similar matrices.

Notation:

A vector x ∈ Rn is measured using the `2 (Euclidean) norm:

||x|| =

n∑

j=1

x2
j

1/2

.

A matrix A ∈ Rm×n is measured using the corresponding operator norm

||A|| = sup
x6=0

||Ax||
||x|| .

Low-rank approximation

An N ×N matrix A has rank k if there exist matrices B and C such that

A = B C.

N ×N N × k k ×N

When k ¿ N , computing the factors B and C is advantageous:

• Storing B and C require O(N k) storage instead of O(N2).

• A matrix-vector multiply requires 2N k flops instead of N2 flops.

• Certain factorizations reveal properties of the matrix.

In actual applications, we are typically faced with approximation problems:

Problem 1: Given a matrix A and a precision ε, find the minimal k such that

min{||A− Ã|| : rank(Ã) = k} ≤ ε.

Problem 2: Given a matrix A and an integer k, determine

Ak = argmin{||A− Ã|| : rank(Ã) = k}.

The singular value decomposition (SVD) provides the exact answer.

Any m× n matrix A admits a factorization (assuming m ≥ n)

A = U D V t = [u1 u2 · · · un]

σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σn

vt
1

vt
2
...

vt
n

=
n∑

j=1

σj uj vt
j .

σj is the j’th “singular value” of A

uj is the j’th “left singular vector” of A

vj is the j’th “right singular vector” of A.

Then:
σj = inf

rank(Ã)=j−1
||A− Ã||.

and

argmin{||A− Ã|| : rank(Ã) = k} =
k∑

j=1

σj uj vt
j .

The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.

0 5 10 15 20 25

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log10(σj)

j

For instance, to precision ε = 10−10, the matrix A has rank 11.

The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be a 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.

0 5 10 15 20 25

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

log10(σj)

j

ε = 10−10
σ11 = 1.46 · 10−10

For instance, to precision ε = 10−10, the matrix A has rank 11.

Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

Notes:

• Once Q has been constructed, it is in many environments possible to construct
standard factorization (such as the SVD/PCA) using O(N k2) operations.
Specifically, this is true if either

– matrix vector products x 7→ x′A can be evaluated rapidly, or,

– individual entries of A can be computed in O(1) operations.

• We seek a k that is as small as possible, but it is not a priority to make it
absolutely optimal.

• If the Q initially constructed has too many columns, but is accurate, then the
true optimal rank is revealed by postprocessing.

Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

We will discuss two environments:

Case 1:

We have a fast technique for evaluating
matrix-vector products. Let Tmult de-
note the cost. We assume Tmult ¿ N2.

Standard methods (e.g. Lanczos)
require O(Tmult k) operations.

The new methods are also O(Tmult k)
but are more robust, more accurate,
and better suited for parallelization.

Case 2:

A is a general N ×N matrix.

Standard methods (e.g. Gram-Schmidt)
require O(N2 k) operations.

The new method requires O(N2 log(k))
operations.

The methods that we propose are based on randomized sampling.

This means that they have a non-zero probability of giving an answer that is not
accurate to within the specified accuracy.

The probability of failure can be balanced against computational cost by the user.

It can very cheaply be rendered entirely negligible; failure probabilities less than
10−15 are standard. (In other words, if you computed 1 000 matrix factorizations a
second, you would expect to see one “failure” every 30 000 years.)

Definition: We say that an m× n matrix Ω is a Gaussian random matrix if

Ω =

ω11 ω12 · · · ω1n

ω21 ω22 · · · ω2n

...
...

...

ωm1 ωm2 · · · ωmn

,

where the numbers ωij are random variables drawn independently from a
normalized Gaussian distribution.

Note: The probability distribution of Ω is isotropic in the sense that if U ∈ O(m)
and V ∈ O(n), then U Ω V has the same distribution as Ω.

Note: In practise, the random numbers used will be constructed using “random
number generators.” The quality of the generators will not matter much.
(Shockingly little, in fact.)

We start with Case 1: We know how to compute the product x 7→ A x rapidly.

Algorithm 1:
Rapid computation of
a low-rank approxima-
tion.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix of ε-rank k.

• We seek a basis for Col(A).

• We can perform matrix-vector multiplies fast.

1. Fix a small positive integer p (representing how much “oversampling” we do).
Construct a Gaussian random matrix Ω of size n× (k + p).

2. Form the matrix Y = AΩ.

3. Construct an ON matrix Q such that Y = QQ t Y .

Each column of Y is a sample from the column space of A.
The more samples we have, the more likely it is that

(1) ||A−QQt A|| ≤ ε.

If we were very lucky, then (1) would hold with p = 0.

Question: How large does p need to be in practice?

How to measure “how well we are doing”:

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = A Ω`.

Let Q` be an m× ` matrix such that Y` = Q` Qt
` Y`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].

To illustrate the performance, we consider the following particular choice of A:

Let A be an N ×N matrix with entries Aij = α log |zi − wj | where zi and wj are
points in two separated clusters in R2.

The number α is set so that ||A|| = 1.

sources zi targets wj

0 5 10 15 20 25 30 35 40 45 50
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
(j+1)−st singular value
True error after j steps

ε = 10−10, exact ε-rank = 15, nr. of samples actually required = 17.

How to measure “how well we are doing” — revisited:

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = A Ω`.

Let Q` be an m× ` matrix such that Y` = Q` Qt
` Y`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].

How to measure “how well we are doing” — revisited:

Let Ω` be a Gaussian random matrix of size n× `.

Set Y` = [y1, y2, . . . , y`] = A Ω`.

Let Q` be an m× ` matrix such that Y` = Q` Qt
` Y`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].

0 5 10 15 20 25 30 35 40 45 50
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
(j+1)−st singular value
True error after j steps
Estimated error after j steps

ε = 10−10, exact ε-rank = 15, estimated nr. of samples required = 17+10.

Note: The development of an error estimator resolves the issue of not knowing
the numerical rank in advance!

Was this just a lucky realization?

We collected statistics from 1 000 000 realizations:
(Recall that the theoretical minimal number is 15.)

Number of matrix-vector multiplies required: Frequency:

16 (+10) 2248

17 (+10) 638173

18 (+10) 313600

19 (+10) 45028

20 (+10) 948

21 (+10) 3

Important: What is stochastic is the run time, not the accuracy;

the error in the factorization was always less than 10−10, and

post-processing correctly determined the rank to be 15 every time.

Results from a high-frequency Helmholtz problem (complex arithmetic):

0 20 40 60 80 100 120 140
−16

−14

−12

−10

−8

−6

−4

−2

0

2
Estimated remainder after j steps
True error after j steps
(j+1)−th singular value

ε = 10−10, exact ε-rank = 101, nr. of matrix-vector multiplies required = 106.

So far, we have assumed that we have a fast matrix-vector multiplier at our disposal.

What happens if we do not?

In this case, Tmult = N2 so the computational cost of Algorithm I is

O(Tmult k + N k2) = O(N2 k + N k2).

When k ¿ N , Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: N2 (k + 10) +O(k2 N)

Multiplications required for Gram-Schmidt: N2 2 k

Other benefits (sometimes more important ones than CPU count):

• Data-movement.

• Parallelization.

• More accurate. (This requires some additional twists not yet described.)

However, many environments remain in which there is little or no gain.

So far, we have assumed that we have a fast matrix-vector multiplier at our disposal.

What happens if we do not?

In this case, Tmult = N2 so the computational cost of Algorithm I is

O(Tmult k + N k2) = O(N2 k + N k2).

When k ¿ N , Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: N2 (k + 10) +O(k2 N)

Multiplications required for Gram-Schmidt: N2 2 k

Other benefits (sometimes more important ones than CPU count):

• Data-movement.

• Parallelization.

• More accurate. (This requires some additional twists not yet described.)

However, many environments remain in which there is little or no gain.

Algorithm 2: An O(N2 log(k)) algorithm for general matrices:

Proposed by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A Ω.

N × ` N ×N N × `

Key points:

• The entries of Ω are i.i.d. random numbers.

• The product x 7→ Ax can be evaluated rapidly.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct Ω with “some randomness” and “some structure”.
Then for each 1×N row a of A, the matrix-vector product

a 7→ aΩ

can be evaluated using N log(`) operations.

What is this “random but structured” matrix Ω?

Ω = D F S

N × ` N ×N N ×N N × `

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk = e−2πi(j−1)(k−1)/N .

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw ` columns at
random from D F .)

Note: Other successful choices of the matrix Ω have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).

Speed gain on square matrices of various sizes

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512

nu
m

be
r

of
 ti

m
es

 fa
st

er
 th

an
 Q

R

rank

1,024

2,048

4,096

classical QR algorithm

The time required to verify the approximation is included in the fast, but not in
the classical timings.

Empirical accuracy on 2,048-long convolution

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

8 16 32 64 128 256 512

ac
cu

ra
cy

 o
f t

he
 a

pp
ro

xi
m

at
io

n

rank

fast

best possible

The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

The accuracy of the randomized method has recently been improved.

Theory / context

In the remainder of the talk we will focus on Algorithm 1 (for the case when fast
matrix-vector multiplies are available). For this case, we have fairly sharp
estimates of the “failure probabilities.”

The theoretical results to be presented are related to (and in some cases inspired
by) earlier work on randomized methods in linear algebra. This work includes:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)

A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

D. Achlioptas and F. McSherry (2001)

P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b,
2006c, 2006d)

S. Har-Peled (2006)

A. Deshpande and S. Vempala (2006)

S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

T. Sarlós (2006a, 2006b, 2006c)

Theorem (Martinsson, Rokhlin, Tygert 2006):

Let A be an M ×N matrix.

Let k and p be positive integers. (k is “rank” and p is the degree of “oversampling”)

Let Ω be an N × (k + p) Gaussian random matrix.

Let Q be an M × (k + p) matrix whose columns form an ON-basis for the columns of A Ω.

Set σk+1 = min
rank(B)=k

||A−B||.

Then
||A−QQt A||2 ≤ 10

√
(k + p) (N − k) σk+1,

with probability at least
1− ϕ(p),

where ϕ is a decreasing function satisfying, e.g.,

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.

The key bound in the proof is the line:

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

The key bound in the proof is the line:

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

However, the applications described at the beginning of the talk are very noisy,
and it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

The key bound in the proof is the line:

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

However, the applications described at the beginning of the talk are very noisy,
and it may be that

σk+1 ≈ σk+2 ≈ · · · ≈ σN ≈ 10−2 × σ1.

Moreover, N may be very large. N ∼ 105 would be common.

The key bound in the proof is the line:

||A−QQt A||2 ≤ 10
√

(k + p) (N − k) σk+1.

The factor in blue represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

In applications where the singular values do not decay rapidly (as is typical for
statistical data analysis, analysis of networks, etc), better estimates are needed.

Reducing the factor is a topic of active research — but it appears that in most
environments, the factor can more or less entirely be eliminated.

• “A posteriori” analysis — Halko/Martinsson/Tropp — Sep. 2008.

• Use of power iterations — Rokhlin/Szlam/Tygert — Oct. 2008.

• Improved proofs — Halko/Martinsson/Tropp — Dec. 2008.

• That the “fixes” work has been demonstrated by examples with
N ∼ 107 and σk+1 ∼ 10−2 — Martinsson/Tygert/Shkolnisky — Dec. 2008.

Notes on the proof (of the simplest version):

We assume without loss of generality that A is diagonal and square since:

• The probability distribution of a Gaussian matrix is invariant under rotations.

• All steps of the algorithm are also invariant under rotations.

Then

AΩ =

σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σN

ω11 ω12 · · · ω1`

ω21 ω22 · · · ω2`

...
...

...

ωN1 ωN2 · · · ωN`

.

The question becomes: How large must ` be before we can say with high
probability that the columns of an N × ` matrix populated with i.i.d. Gaussian
random variables with high probability sample the first k coordinates?

At this point, there is a rich literature in probability theory to draw on. The
arguments are based on “concentration of mass” and the key insight is that “thin”
random matrix tend to be well-conditioned (or at least have well-conditioned
sub-matrices) and sample high-dimensional space with almost optimal efficiency.

The observation that a “thin” Gaussian random matrix to high probability is
well-conditioned is at the heart of the celebrated Johnson-Lindenstrauss lemma:

Lemma: Let ε be a real number such that ε ∈ (0, 1), let n be a positive integer,
and let k be an integer such that

(2) k ≥ 4
(

ε2

2
− ε3

3

)−1

log(n).

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that

(3) (1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

Further, such a map can be found in randomized polynomial time.

It has been shown that an excellent choice of the map f is the linear map whose
coefficient matrix is a k × d matrix whose entries are i.i.d. Gaussian random
variables (see, e.g. Dasgupta & Gupta (1999)).
When k satisfies, (2), this map satisfies (3) with probability close to one.

The related Bourgain embedding theorem shows that such statements are not
restricted to Euclidean space:

Theorem:. Every finite metric space (X, d) can be embedded into `2 with
distortion O(log n) where n is the number of points in the space.

Again, random projections can be used as the maps.

The Johnson-Lindenstrauss lemma (and to some extent the Bourgain embedding
theorem) expresses a theme that is recurring across a number of research areas
that have received much attention recently. These include:

• Compressed sensing (Candès, Tau, Romberg, Donoho).

• Approximate nearest neighbor search (Jones, Rokhlin).

• Geometry of point clouds in high dimensions (Coifman, Jones, Lafon, Lee,
Maggioni, Nadler, Singer, Warner, Zucker, etc).

• Construction of multi-resolution SVDs.

• Clustering algorithms.

• Search algorithms / knowledge extraction.

Note: Omissions! No ordering. Missing references. Etc etc.

Many of these algorithms work “unreasonably well.”

The randomized algorithm presented here is close in spirit to randomized
algorithms such as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)

• Routing of data in distributed computing with unknown network topology.

• Rabin-Karp string matching / verifying equality of strings.

• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is
stochastic. The quality of the final output is excellent.

The randomized algorithm that is perhaps the best known within numerical
analysis is Monte Carlo. This is somewhat lamentable given that MC is often a
“last resort” type algorithm used when the curse of dimensionality hits —
inaccurate results are tolerated simply because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for
many applications, more accurate versions have been developed.)

Observation: Mathematicians working on these problems often focus on
minimizing the distortion factor

1 + ε

1− ε

arising in the Johnson-Lindenstrauss bound:

(1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

In our environments, we do not need this constant to be particularly close to 1.
It should just not be “large” — say less that 10 or some such.

This greatly reduces the number of random projections needed! Recall that

number of samples required ∼ 1
ε2

log(N).

Observation: Multiplication by a random unitary matrix reduces any matrix to
its “general” form. All information about the singular vectors vanish. (The
singular values remain the same.)

This opens up the possibility for general pre-conditioners —
counterexamples to various algorithms can be disregarded.

The feasibility has been demonstrated for the case of least squares solvers for very
large, very over determined systems. (Work by Rokhlin & Tygert, Sarlós,)

Work on O(N2 (log N)2) solvers of general linear systems is under way.
(Random pre-conditioning + iterative solver.)

May O(N2 (log N)2) matrix inversion schemes for general matrices be possible?

Observation: Robustness with respect to the quality of the random numbers.

The assumption that the entries of the random matrix are i.i.d. normalized
Gaussians simplifies the analysis since this distribution is invariant under unitary
maps.

In practice, however, one can use a low quality random number generator. The
entries can be uniformly distributed on [−1, 1], they be drawn from certain
Bernouilli-type distributions, etc.

Remarkably, they can even have enough internal structure to allow fast methods
for matrix-vector multiplications. For instance:

• Subsampled discrete Fourier transform.

• Subsampled Walsh-Hadamard transform.

• Givens rotations by random angles acting on random indices.

This was exploited in “Algorithm 2” (and related work by Ailon and Chazelle).
Our theoretical understanding of such problems is unsatisfactory.
Numerical experiments perform far better than existing theory indicates.

Even though it is thorny to prove some of these results (they draw on techniques
from numerical analysis, probability theory, functional analysis, theory of
randomized algorithms, etc), work on randomized methods in linear algebra is
progressing fast.

Important: Computational prototyping of these methods is extremely simple.

• Simple to code an algorithm.

• They work so well that you immediately know when you get it right.

The randomized algorithms provide what is in many ways theoretically optimal
methods for computing PCAs (and other approximate low-rank factorizations) to
very large, very noisy matrices.

Work is under way to demonstrate the effectiveness of the techniques by applying
them to problems arising in, e.g.:

• Genomics.

• Image processing.

• Network matrices (“page rank” type problems).

These techniques are also applicable to many “classical” applications:

• Acceleration of BLAS / LINPACK functions.

• Construction of reduced models for physical phenomena (“model reduction”).

– Wave propagation through media with periodic micro-structures.

– Crack propagation through composite materials.

– Scattering problems involving multiple scatterers.

• Acceleration of fast matrix algorithms such as the “Fast Multipole Method”.

The randomized algorithms provide what is in many ways theoretically optimal
methods for computing PCAs (and other approximate low-rank factorizations) to
very large, very noisy matrices.

Work is under way to demonstrate the effectiveness of the techniques by applying
them to problems arising in, e.g.:

• Genomics.

• Image processing.

• Network matrices (“page rank” type problems).

These techniques are also applicable to many “classical” applications:

• Acceleration of BLAS / LINPACK functions.

• Construction of reduced models for physical phenomena (“model reduction”).

– Wave propagation through media with periodic micro-structures.

– Crack propagation through composite materials.

– Scattering problems involving multiple scatterers.

• Acceleration of fast matrix algorithms such as the “Fast Multipole Method”.

How can the randomized algorithms improve the Fast Multipole Method (FMM)?

First, we recall that the FMM is a fast method for evaluating sums such as

ui =
N∑

j=1

G(xi, xj) qj ,

where G is a given kernel function defined on Rd × Rd,
{xi}N

i=1 is a given set of points in Rd,
{qi}N

i=1 is a given set of numbers (“charges”), and
{ui}N

i=1 is the set of numbers to be computed (“potentials”).

In effect, we are computing the matrix-vector product

u = Aq,

where A is the (typically dense) N ×N matrix with entries

Aij = G(xi, xj).

The idea behind the FMM is that many such matrices can be tesselated into
submatrices that have low rank. By organizing the computation appropriately, it
is then often possible to evaluate the product

q 7→ Aq,

in O(N) operations rather than the O(N2) operations required by direct summation.

“Classical” fast methods depend in a strong sense on a known kernel.
The approximate factorizations are derived from analytic formulas.

What can classical Fast Multipole Methods do?
Suppose that we use randomized sampling to factor the off-diagonal blocks.

• Compute matrix-vector products?
Yes!

• Solve linear systems?
Yes — provided that iterative methods converge reasonably fast.

• Compute matrix inverses?
No, the kernel of the inverse is not known.

• Compute matrix-matrix products?
No, the kernel of the product is not known.

• Compute partial spectral decompositions?
Sometimes — only when Lanczos/Arnoldi type methods work.

(The storytelling is simplified (and tendentious!) — there do exist “direct”
methods that do not rely on randomized sampling.)

What can classical Fast Multipole Methods do?
Suppose that we use randomized sampling to factor the off-diagonal blocks.

• Compute matrix-vector products?
Yes!

• Solve linear systems?
Yes, directly!

• Compute matrix inverses?
Yes.

• Compute matrix-matrix products?
Yes.

• Compute partial spectral decompositions?
Yes. Via inverse iteration any part of the spectrum can be retrieved.

(The storytelling is simplified (and tendentious!) — there do exist “direct”
methods that do not rely on randomized sampling.)

So randomized sampling helps overcome the problem of an unknown kernel.

Unfortunately, existing methods for performing “fast” matrix algebra
are efficient only in low-dimensional geometry (d = 1, 2, 3).

The reason is that the tessellation of the matrix is derived from a hierarchical
binning of the computational points. It gets complicated in R2, bad in R3, terrible
beyond that . . .

Outstanding challenge: How can we design fast methods for performing matrix
algebra rapidly on operators defined on point clouds in high dimensional spaces
that have some type of “structure”?

Summary

We have demonstrated a technique for approximately factoring matrices that have
numerically low rank. The procedure is based on random sampling.

Its performance is very close to what is theoretically possible.

The methods presented are closely related to recent developments in functional
analysis and random matrix theory. The methods described are in fact much
simpler than other recent work. However, they appear to have been overlooked.

The randomized methods have resolved a number of long-standing problems in
numerical analysis, for instance:

• Optimal tool for computing PCAs of large noisy data matrices.

• Definitively overcome issues relating to stability and parallelization of Lanzcos.

• Reduction of CPU time requirement of partial spectral decompositions, QR
factorizations, etc, from O(N2 k) to O(N2 log(k)).

There should be much much more to come.

