Fast numerical methods for solving linear PDEs

P.G. Martinsson, The University of Colorado at Boulder

Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at Yale University.

In this talk, we will discuss numerical methods for solving the equation

$$\begin{cases}
-\Delta u(x) = g(x), & x \in \Omega, \\
u(x) = f(x), & x \in \Gamma,
\end{cases}$$

where Ω is a domain in \mathbb{R}^2 or \mathbb{R}^3 with boundary Γ .

More generally, we will consider stationary linear Boundary Value Problems

(BVP)
$$\begin{cases} A u(x) = g(x), & x \in \Omega, \\ B u(x) = f(x), & x \in \Gamma, \end{cases}$$

such as:

- The equations of linear elasticity.
- Stokes' equation.
- Helmholtz' equation (at least at low and intermediate frequencies).
- The Yukawa equation.

Outline of talk:

1: Background: "Fast" methods and scaling of computational cost.

2: Background: "Iterative" vs. "direct" methods.

3: Background: "Fast" solvers for linear PDEs.

4: New: Solvers for PDEs that are both "fast" and "direct".

5: (New: Randomized sampling for constructing

low-rank approximations to operators.)

Computational science — background

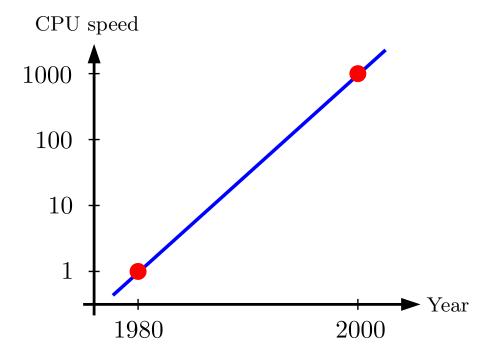
One of the principal developments in science and engineering over the last couple of decades has been the emergence of computational simulations.

We have achieved the ability to computationally model a wide range of phenomena. As a result, complex systems such as cars, micro-chips, new materials, city infra-structures, *etc*, can today be designed more or less entirely in a computer, with little or no need for physical prototyping.

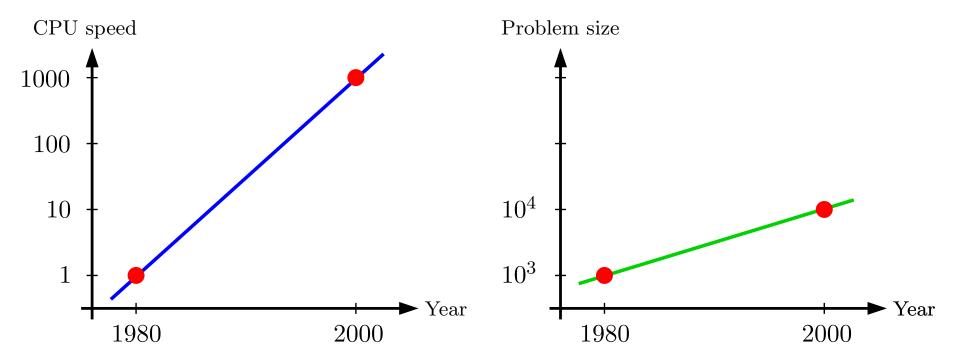
This shift towards computational modelling has in many areas led to dramatic cost savings and improvements in performance.

What enabled all this was the development of faster more powerful computers, and the development of faster algorithms.

Growth of computing power and the importance of algorithms



Growth of computing power and the importance of algorithms

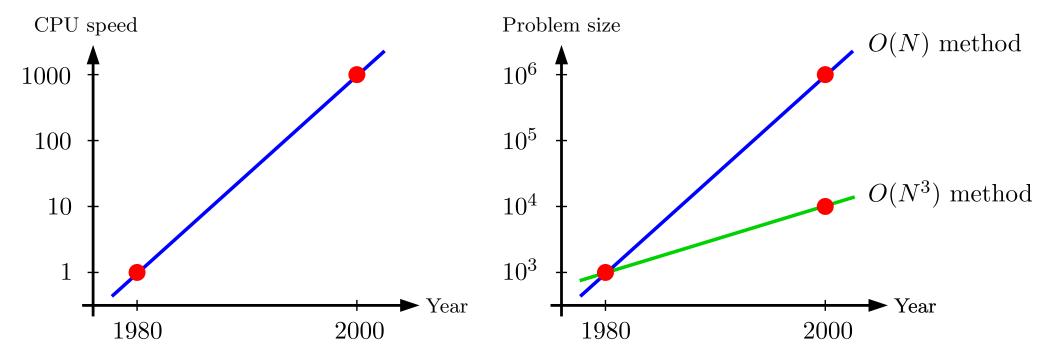


Consider the computational task of solving a linear system of N algebraic equations with N unknowns.

Classical methods such as Gaussian elimination require $O(N^3)$ operations.

Using an $O(N^3)$ method, an increase in computing power by a factor of 1000 enables the solution of problems that are $(1000)^{1/3} = 10$ times larger.

Growth of computing power and the importance of algorithms



Consider the computational task of solving a linear system of N algebraic equations with N unknowns.

Classical methods such as Gaussian elimination require $\mathcal{O}(N^3)$ operations.

Using an $O(N^3)$ method, an increase in computing power by a factor of 1000 enables the solution of problems that are $(1000)^{1/3} = 10$ times larger.

Using a method that scales as O(N), problems that are 1000 times larger can be solved.

Definition of the term "fast":

We say that a numerical method is "fast" if its computational speed scales as O(N) as the problem size N grows.

Methods whose complexity is $O(N \log(N))$ or $O(N(\log N)^2)$ are also called "fast".

Caveat: It appears that Moore's law is no longer operative.

Processor speed is currently increasing quite slowly.

The principal increase in computing power is coming from parallelization.

Successful algorithms must scale well both with problem size and with the number of processors that a computer has.

The methods of this talk all parallelize naturally.

The importance of fast algorithms is very gratifying to mathematicians!

In many environments — numerical methods for PDEs being one — it is necessary to exploit mathematical properties of the operators in order to construct fast methods.

The design of a numerical solver for a PDE depends crucially on questions like:

- Is the PDE elliptic?
- Is the equation positive definite?
- Is the solution operator a smoothing operator?
- Can I reformulate my PDE as a second kind Fredholm equation?

For a computational mathematician, new mathematical questions arise:

- Shift from a binary to continuous classifications:
 How elliptic is my PDE?
 How close to being second kind Fredholm is my integral equation?
- Measures of inherent "information" and "complexity" or problems.

"Iterative" versus "direct" solvers

Suppose that we want to solve an $N \times N$ linear algebraic system

$$Ax = b$$
.

Direct methods: These are methods that construct a solution x via a deterministic sequence of steps.

Direct methods access the elements of A either directly, or via approximations to blocks of A.

Sometimes, direct methods produce approximations to A^{-1} , or a factorization of A (such as the "LU" factorization).

Classical Gaussian elimination is a "direct" method.

"Iterative" versus "direct" solvers

Suppose that we want to solve an $N \times N$ linear algebraic system

$$Ax = b$$
.

Iterative methods: An iterative method constructs vectors x_1, x_2, x_3, \ldots that are (hopefully!) increasingly accurate approximations to x.

Iterative methods typically do not directly access elements or blocks of A. Instead, A is accessed only via its action on vectors.

As an example, the celebrated "GMRES" method determines the "best" solution x_n in the "Krylov subspace"

Span
$$(b, A b, A^2 b, A^3 b, \dots, A^{n-1} b)$$
.

The speed of convergence of an iterative method typically depends on the spectral properties of A. The use of so called "pre-conditioners" can improve the convergence speed by modifying the spectrum.

Advantages/disadvantages of the two approaches:

Iterative methods are appealing because we often have fast algorithms for performing matrix-vector multiplies. If convergence to the exact solution is rapid, the resulting solver will be fast.

The drawback of iterative methods is that it can be hard to control the convergence speed. High performance often require pre-conditioners that must be custom designed for specific environments.

Direct methods are appealing primarily because of their robustness.

Direct methods are very effective when the same equation is to be solved for multiple different right hand sides.

The common argument against direct methods is that they have been considered too expensive for large scale problems and high-performance computing.

Solvers for linear boundary value problem.

Direct discretization of the differential operator via Finite Elements, Finite Differences, . . .

 $N \times N$ discrete linear system. Very large, sparse, ill-conditioned.

Fast solvers: iterative (multigrid), O(N), direct (nested dissection), $O(N^{3/2})$.

Conversion of the BVP to a Boundary Integral Operator (BIE).

 \downarrow

Discretization of (BIE) using Nyström, collocation, BEM,

 $N \times N$ discrete linear system. Moderate size, dense, (often) well-conditioned.

 \downarrow

Iterative solver accelerated by fast matrix-vector multiplier, O(N).

Solvers for linear boundary value problem.

Direct discretization of the differential operator via Finite Elements, Finite Differences, . . .

 \downarrow

 $N \times N$ discrete linear system. Very large, sparse, ill-conditioned.

 \downarrow

Fast solvers: iterative (multigrid), O(N), direct (nested dissection), $O(N^{3/2})$. O(N) direct solvers.

Conversion of the BVP to a Boundary Integral Operator (BIE).

 \downarrow

Discretization of (BIE) using Nyström, collocation, BEM,

 \downarrow

 $N \times N$ discrete linear system. Moderate size, dense, (often) well-conditioned.

 \downarrow

Iterative solver accelerated by fast matrix-vector multiplier, O(N). O(N) direct solvers.

Reformulating a BVP as a Boundary Integral Equation.

The idea is to convert a linear partial differential equation

(BVP)
$$\begin{cases} A u(x) = g(x), & x \in \Omega, \\ B u(x) = f(x), & x \in \Gamma, \end{cases}$$

to an "equivalent" integral equation

(BIE)
$$v(x) + \int_{\Gamma} k(x, y) v(y) ds(y) = h(x), \qquad x \in \Gamma.$$

Example:

Let us consider the equation

(BVP)
$$\begin{cases} -\Delta u(x) = 0, & x \in \Omega, \\ u(x) = f(x), & x \in \Gamma. \end{cases}$$

We make the following Ansatz:

$$u(x) = \int_{\Gamma} (n(y) \cdot \nabla_y \log |x - y|) v(y) ds(y), \qquad x \in \Omega,$$

where n(y) is the outward pointing unit normal of Γ at y. Then the boundary charge distribution v satisfies the Boundary Integral Equation

(BIE)
$$v(x) + 2 \int_{\Gamma} (n(y) \cdot \nabla_y \log|x - y|) v(y) \, ds(y) = 2f(x), \qquad x \in \Gamma.$$

- (BIE) and (BVP) are in a strong sense equivalent.
- (BIE) is appealing mathematically (2nd kind Fredholm equation).

The BIE formulation has powerful arguments in its favor (reduced dimension, well-conditioned, etc) that we will return to, but it also has a major drawback:

Discretization of integral operators typically results in dense matrices.

In the 1950's when computers made numerical PDE solvers possible, researchers faced a grim choice:

PDE-based:	Ill-conditioned, N is too large, low accuracy.
Integral Equations:	Dense system.

In most environments, the integral equation approach turned out to be simply too expensive.

(A notable exception concerns methods for dealing with scattering problems.)

The situation changed dramatically in the 1980's. It was discovered that while K_N (the discretized integral operator) is dense, it is possible to evaluate the matrix-vector product

$$v \mapsto K_N v$$

in O(N) operations — to high accuracy and with a small constant.

A very successful such algorithm is the Fast Multipole Method by Rokhlin and Greengard (circa 1985).

Combining such methods with iterative solvers (GMRES / conjugate gradient / ...) leads to very fast solvers for the integral equations, especially when second kind Fredholm formulations are used.

A PRESCRIPTION FOR RAPIDLY SOLVING BVPs:

(BVP)
$$\begin{cases} -\Delta v(x) = 0, & x \in \Omega, \\ v(x) = f(x), & x \in \Gamma. \end{cases}$$

Convert (BVP) to a second kind Fredholm equation:

(BIE)
$$u(x) + \int_{\Gamma} (n(y) \cdot \nabla_y \log|x - y|) u(y) \, ds(y) = f(x), \qquad x \in \Gamma.$$

Discretize (BIE) into the discrete equation

(DISC)
$$(I + K_N) u_N = f_N$$

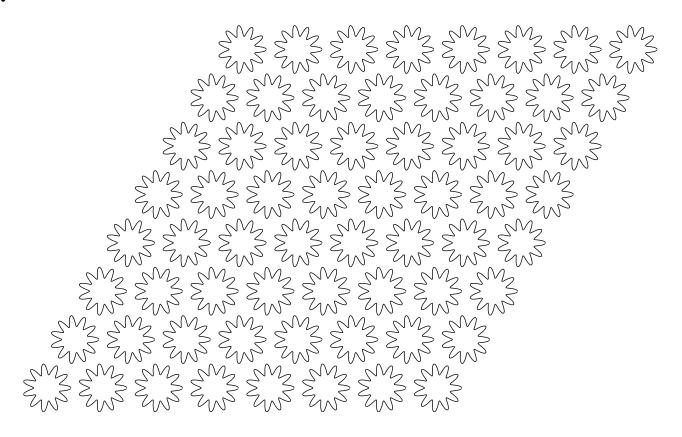
where K_N is a (typically dense) $N \times N$ matrix.

Fast Multipole Method — Can multiply K_N by a vector in O(N) time.

Iterative solver — Solves (DISC) using $\sqrt{\kappa}$ matrix-vector multiplies, where κ is the condition number of $(I + K_N)$.

Total complexity — $O(\sqrt{\kappa} N)$. (Recall that κ is small. Like 14.)

Example:



External Laplace problem with Dirichlet boundary data.

The contour is discretized into 25 600 points.

A single matrix-vector multiply takes 0.2 sec on a 2.8 Ghz desktop PC.

Fifteen iterations required for 10^{-10} accuracy \rightarrow total CPU time is 3 sec.

BIE FORMULATIONS EXIST FOR MANY CLASSICAL BVPs

Laplace
$$-\Delta u = f$$
,

Elasticity
$$\frac{1}{2}E_{ijkl}\left(\frac{\partial^2 u_k}{\partial x_l \partial x_j} + \frac{\partial^2 u_l}{\partial x_k \partial x_j}\right) = f_i,$$

Stokes
$$\Delta \mathbf{u} = \nabla p, \quad \nabla \cdot \mathbf{u} = 0,$$

Heat equation
$$-\Delta u = -u_t$$
 (On the surface of $\Omega \times [0, T]$.)

Helmholtz
$$(-\Delta - k^2)u = f,$$

Schrödinger
$$(-\Delta + V)\Psi = i\Psi_t$$
 (In the frequency domain.)

Maxwell
$$\begin{cases} \nabla \cdot \mathbf{E} = \rho & \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$
 (In the frequency domain.)

We have described two paradigms for numerically solving BVPs:

PDE formulation \Leftrightarrow Integral Equation formulation

Which one should you choose?

When it is applicable, compelling arguments favor the use of the IE formulation:

Dimensionality:

Frequently, an IE can be defined on the boundary of the domain.

Integral operators are benign objects:

It is (relatively) easy to implement high order discretizations of integral operators. Relative accuracy of 10^{-10} or better is often achieved.

Conditioning:

When there exists an IE formulation that is a Fredholm equation of the second kind, the mathematical equation itself is well-conditioned.

However, integral equation based methods are quite often not a choice:

Fundamental limitations: They require the existence of a fundamental solution to the (dominant part of the) partial difference operator. In practise, this means that the (dominant part of the) operator must be linear and constant-coefficient.

Practical limitations: The infra-structure for BIE methods is underdeveloped. Engineering strength code does not exist for many problems that are very well suited for BIE formulations. The following major pieces are missing:

- Generic techniques for reformulating a PDE as an integral equation. We do know how to handle "standard environments", however.
- Machinery for representing surfaces. Quadrature formulas.

 The dearth of tools here has seriously impeded progress on 3D problems.
- Fast solvers need to be made more accessible and more robust.

 Towards this end, we are currently developing *direct solvers* to replace existing iterative ones.

Advantages of direct solvers over iterative solvers:

- 1. Applications that require a very large number of solves:
 - Molecular dynamics.
 - Scattering problems.
 - Optimal design. (Local updates to the system matrix are cheap.)
- 2. Problems that are relatively ill-conditioned:
 - Scattering problems at intermediate or high frequencies.
 - Ill-conditioning due to geometry (elongated domains, percolation, etc).
 - Ill-conditioning due to lazy handling of corners, cusps, etc.
 - Finite element and finite difference discretizations. (Yes, yes, yes,...)
- 3. Direct solvers can be adapted to construct spectral decompositions:
 - Analysis of vibrating structures. Acoustics.
 - Buckling of mechanical structures.
 - Wave guides, bandgap materials, etc.

Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for "black-box" implementations.

Commercial software developers appear to avoid implementing iterative solvers whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards getting a LAPACK-type environment for solving the basic linear boundary value problems of mathematical physics.

Sampling of related work:

- 1991 Sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin,
- 1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,
- 1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,
- 1998 \mathcal{H} -matrix methods, W. Hackbusch, et al,
- **2002** $O(N^{3/2})$ inversion of Lippmann-Schwinger equations, Y. Chen,
- **2002** inversion of "Hierarchically semi-separable" matrices, M. Gu, S. Chandrasekharan, $et\ al$.
- 2007 factorization of discrete Laplace operators, S. Chandrasekharan, M. Gu, X.S. Li, J. Xia.

How does the inversion scheme work?

By exploiting rank deficiencies in the off-diagonal blocks.

Note: Problems with highly oscillatory kernels such as high-frequency Helmholtz can currently not be handled. (However, things work great at low and intermediate frequencies.)

The scheme is a multi-level algorithm operating on a hierarchical partitioning of the computational domain.

In progressing from one level to the next coarser one, functions are split into a fine scale part and a coarse scale part and the fine scale part is eliminated.

Example: Consider the double layer potential associated with Laplace's equation.

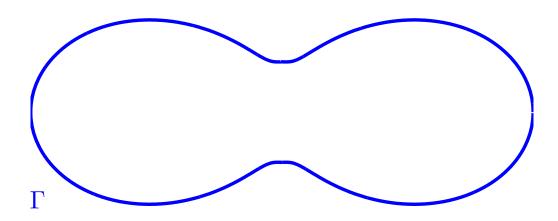
We want to solve the linear system

$$Au = f$$

where A is a discretization of the double layer potential

$$[\mathbf{A} u](x) = u(x) - \int_{\Gamma} \frac{n(y) \cdot (x - y)}{2\pi |x - y|^2} u(y) ds(y), \qquad x \in \Gamma.$$

The operator $\mathbf{A}: L^2(\Gamma) \to L^2(\Gamma)$ is not compact.



Recall from

 $[\mathbf{A} u](x) = u(x) - \int_{\Gamma} \frac{n(y) \cdot (x - y)}{2\pi |x - y|^2} u(y) ds(y), \qquad x \in \Gamma$

previous slide:

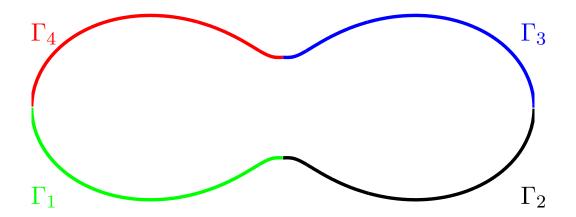
The operator $\mathbf{A}: L^2(\Gamma) \to L^2(\Gamma)$ is not compact.

However, if we partition Γ into four pieces,

 $\Gamma = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4$, and split **A** into "blocks" accordingly,

$$\mathbf{A}_{ij} \colon L^2(\Gamma_j) \to L^2(\Gamma_i),$$

then \mathbf{A}_{ij} is compact whenever $i \neq j$.



One-level compression:

Consider the linear system

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}.$$

We suppose that for $i \neq j$, the blocks A_{ij} allow the factorization

$$\underbrace{A_{ij}}_{n_i \times n_j} = \underbrace{U_i}_{n_i \times k_i} \underbrace{\tilde{A}_{ij}}_{k_i \times k_j} \underbrace{U_j^{t}}_{k_j \times n_j},$$

where the ranks k_i are significantly smaller than the block sizes n_i .

We then let

$$\underbrace{\tilde{q}_j}_{k_j \times 1} = U_j^{\mathrm{t}} \underbrace{q_j}_{n_j \times 1}$$

be the variables of the "reduced" system.

Recall:

$$\bullet \ A_{ij} = U_i \, \tilde{A}_{ij} \, U_j^{\mathrm{t}}$$

• q_j is the variable in the original model — fine scale

•
$$\tilde{q}_j = U_j^{\rm t} q_j$$
 — coarse scale

The system $\sum_{j} A_{ij} q_j = v_i$ then takes the form

A_{11}	0	0	0	0	$U_1 \tilde{A}_{12}$	$U_1\tilde{A}_{13}$	$U_1 ilde{A}_{14}$	q_1		v_1	
0	A_{22}	0	0	$U_2\tilde{A}_{21}$	0	$U_2\tilde{A}_{23}$	$U_2\tilde{A}_{24}$	q_2		v_2	
0	0	A_{33}	0	$U_3 ilde{A}_{31}$	$U_3\tilde{A}_{32}$	0	$U_3\tilde{A}_{34}$	q_3		v_3	
0	0	0	A_{44}	$U_4 ilde{A}_{41}$	$U_4 \tilde{A}_{42}$	$U_4\tilde{A}_{43}$	0	q_4	_	v_4	
$-U_1^{\mathrm{t}}$	0	0	0	I	0	0	0	$ ilde{q}_1$		0	•
0	$-U_2^{\mathrm{t}}$	0	0	0	I	0	0	$ ilde{q}_2$		0	
0	0	$-U_3^{\mathrm{t}}$	0	0	0	I	0	$ ilde{q}_3$		0	
0	0	0	$-U_4^{ m t}$	0	0	0	I	$\leftbgle ilde{q}_4$ $oldsymbol{ ilde{q}}$		0	

Now form the Schur complement to eliminate the q_j 's.

After eliminating the "fine-scale" variables q_i , we obtain

$$\begin{bmatrix} I & U_{1}^{t}\tilde{A}_{11}^{-1}U_{1}\tilde{A}_{12} & U_{1}^{t}\tilde{A}_{11}^{-1}U_{1}\tilde{A}_{13} & U_{1}^{t}\tilde{A}_{11}^{-1}U_{1}\tilde{A}_{14} \\ U_{2}^{t}\tilde{A}_{22}^{-1}U_{2}\tilde{A}_{21} & I & U_{2}^{t}\tilde{A}_{22}^{-1}U_{2}\tilde{A}_{23} & U_{2}^{t}\tilde{A}_{22}^{-1}U_{2}\tilde{A}_{24} \\ U_{3}^{t}\tilde{A}_{33}^{-1}U_{3}\tilde{A}_{31} & U_{3}^{t}\tilde{A}_{33}^{-1}U_{3}\tilde{A}_{32} & I & U_{3}^{t}\tilde{A}_{33}^{-1}U_{3}\tilde{A}_{34} \\ U_{4}^{t}\tilde{A}_{44}^{-1}U_{4}\tilde{A}_{41} & U_{4}^{t}\tilde{A}_{44}^{-1}U_{4}\tilde{A}_{42} & U_{4}^{t}\tilde{A}_{44}^{-1}U_{4}\tilde{A}_{43} & I \end{bmatrix} \begin{bmatrix} \tilde{q}_{1} \\ \tilde{q}_{2} \\ \tilde{q}_{3} \\ \tilde{q}_{4} \end{bmatrix} = \begin{bmatrix} U_{1}^{t}A_{11}^{-1}v_{1} \\ U_{2}^{t}A_{22}^{-1}v_{2} \\ U_{3}^{t}A_{33}^{-1}v_{3} \\ U_{4}^{t}A_{44}^{-1}v_{4} \end{bmatrix}$$

We set

$$\tilde{A}_{ii} = (U_i^{t} A_{ii}^{-1} U_i)^{-1},$$

and multiply line i by \tilde{A}_{ii} to obtain the reduced system

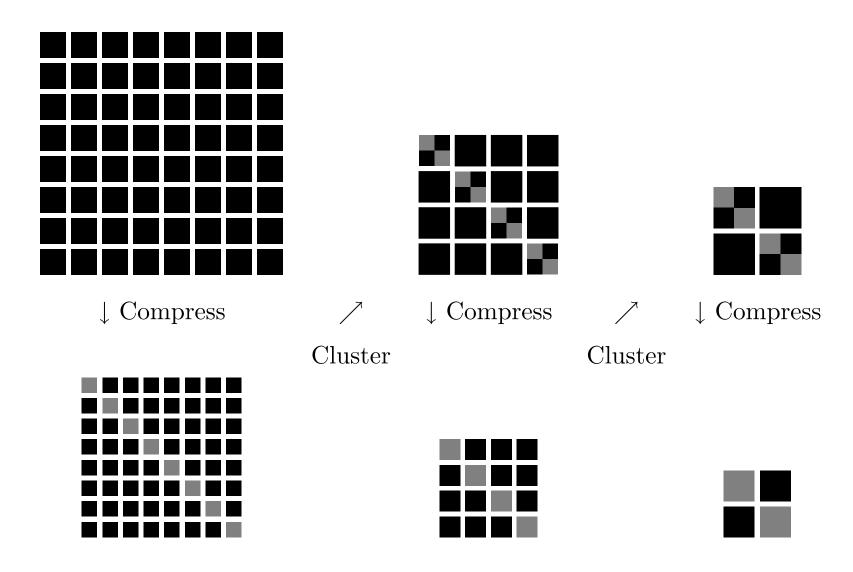
$$\begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} & \tilde{A}_{13} & \tilde{A}_{14} \\ \tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & \tilde{A}_{24} \\ \tilde{A}_{31} & \tilde{A}_{32} & \tilde{A}_{33} & \tilde{A}_{34} \\ \tilde{A}_{41} & \tilde{A}_{42} & \tilde{A}_{43} & \tilde{A}_{44} \end{bmatrix} \begin{bmatrix} \tilde{q}_1 \\ \tilde{q}_2 \\ \tilde{q}_3 \\ \tilde{q}_4 \end{bmatrix} = \begin{bmatrix} \tilde{v}_1 \\ \tilde{v}_2 \\ \tilde{v}_3 \\ \tilde{v}_4 \end{bmatrix}.$$

where

$$\tilde{v}_i = \tilde{A}_{ii} U_i^{\mathsf{t}} A_{ii}^{-1} v_i.$$

(This derivation was pointed out by Leslie Greengard.)

A globally O(N) algorithm is obtained by hierarchically repeating the process:



The critical step is to find matrices U_j such that when $i \neq j$,

$$A_{ij} = U_i \, \tilde{A}_{ij} \, U_j^{\mathrm{t}},$$

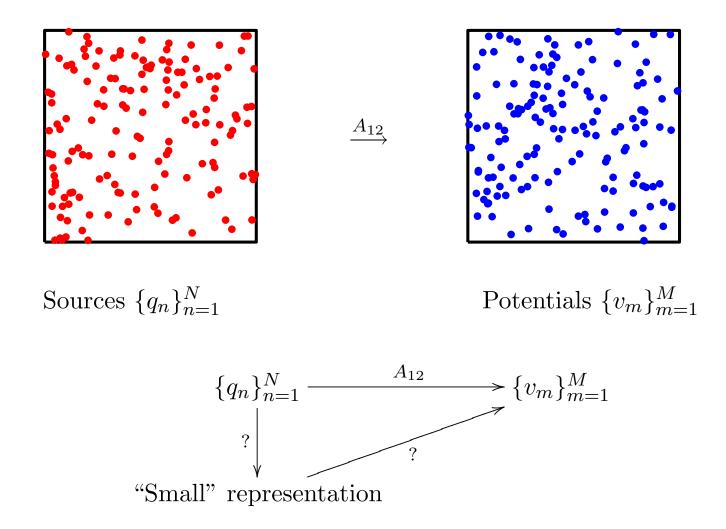
for some matrix \tilde{A}_{ij} that is smaller than A_{ij} .

To attain an O(N) scheme, one cannot afford to even look at every off-diagonal block. Instead, one can use:

- Interpolation of the kernel function [Hackbusch, BCR, etc].
 - Requires estimates of smoothness of the kernel away from the diagonal.
 - Inefficient, does not work for all geometries.
- Green's identities that the kernel must satisfy [Martinsson, Rokhlin].
 - Very robust.
 - Leads to representations that are very close to optimal.
- Randomized sampling. New!

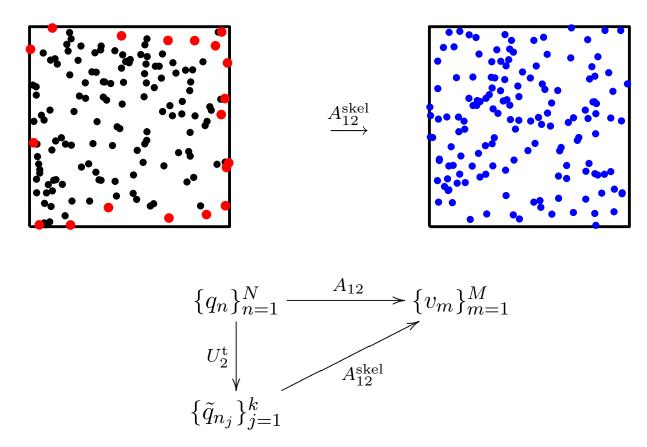
To further improve the operation counts, we use "interpolative decompositions". Then \tilde{A}_{ij} is a submatrix of A_{ij} when $i \neq j$.

The concept of "proxy charges":



The key observation is that $k = \text{rank}(A_{12}) < \min(M, N)$.

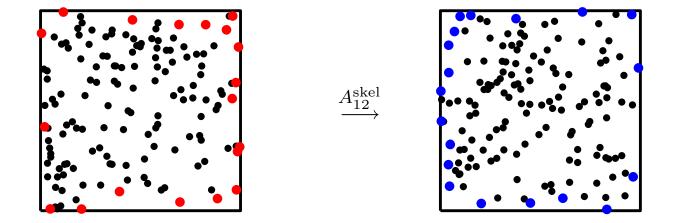
Skeletonization



We can pick k points in $\Omega_{\rm S}$ with the property that any potential in $\Omega_{\rm T}$ can be replicated by placing charges on these k points.

- The choice of points does not depend on $\{q_n\}_{n=1}^N$.
- A_{12}^{skel} is a submatrix of A_{12} .

We can "skeletonize" both Ω_1 and Ω_2 .



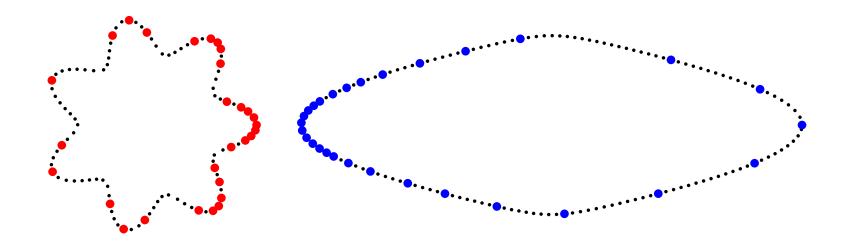
$$\{q_n\}_{n=1}^N \xrightarrow{A_{12}} \{v_m\}_{m=1}^M$$

$$\begin{cases} V_2 \\ V_2 \\ V_3 \\ V_4 \end{cases} \xrightarrow{A_{12}} \{v_m\}_{j=1}^M$$

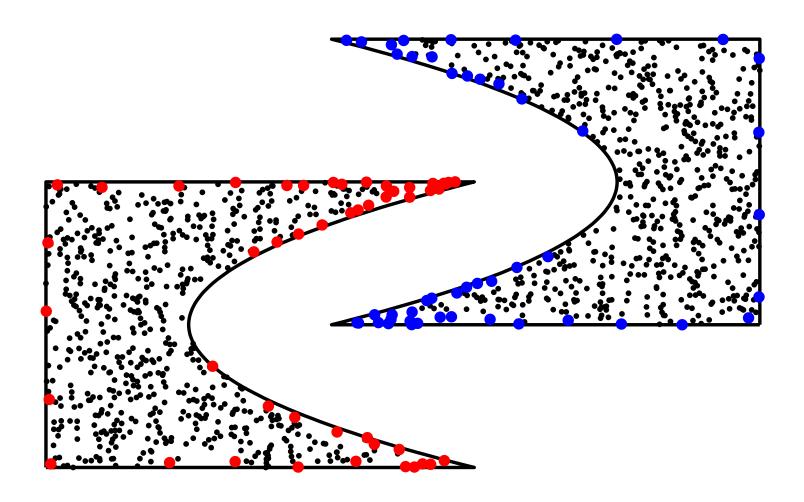
$$\{\tilde{q}_{n_j}\}_{j=1}^k \xrightarrow{A_{12}^{\text{skel}}} \{v_{m_j}\}_{j=1}^k$$

Rank = 19 at $\varepsilon = 10^{-10}$.

Skeletonization can be performed for Ω_S and Ω_T of various shapes.

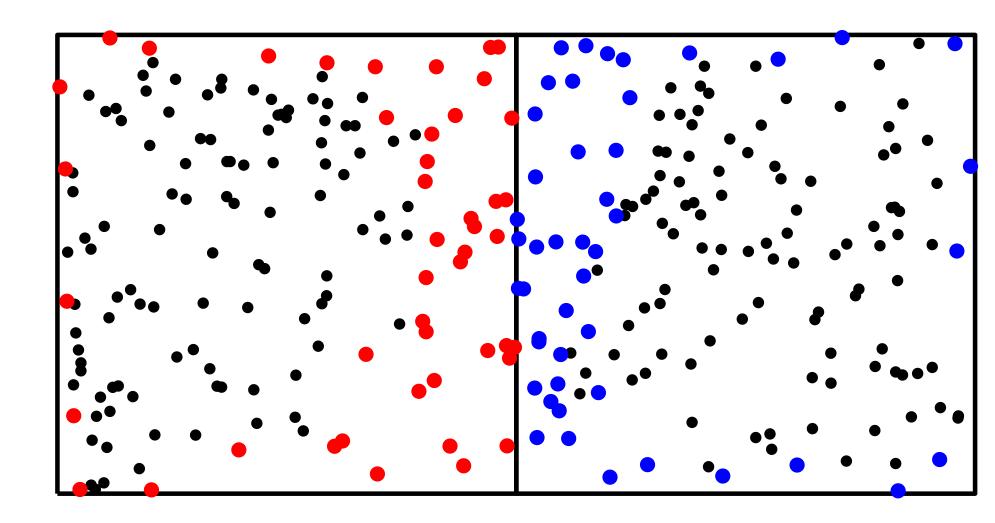


Rank = 29 at $\varepsilon = 10^{-10}$.

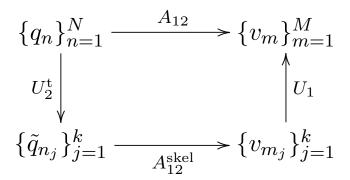


Rank = 48 at $\varepsilon = 10^{-10}$.

Adjacent boxes can be skeletonized.



Rank = 46 at $\varepsilon = 10^{-10}$.



Benefits:

- The rank is optimal.
- The projection and interpolation are cheap. U_1 and U_2 contain $k \times k$ identity matrices.
- The projection and interpolation are well-conditioned.
- \bullet Finding the k points is inexpensive.
- The matrix \tilde{A}_{12} is a submatrix of the original matrix A_{12} . (We loosely say that "the physics of the problem is preserved".)
- Interaction between **adjacent** boxes can be compressed (no buffering is required).

Similar schemes have been proposed by many researchers:

1993 - C.R. Anderson

1995 - C.L. Berman

1996 - E. Michielssen, A. Boag

1999 - J. Makino

2004 - L. Ying, G. Biros, D. Zorin

A mathematical foundation:

1996 - M. Gu, S. Eisenstat

Recall: We convert the system

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$
 Fine resolution. Large blocks.

to the reduced system

$$\begin{bmatrix} \tilde{A}_{11} & A_{12}^{\text{skel}} & A_{13}^{\text{skel}} & A_{14}^{\text{skel}} \\ A_{21}^{\text{skel}} & \tilde{A}_{22} & A_{23}^{\text{skel}} & A_{24}^{\text{skel}} \\ A_{31}^{\text{skel}} & A_{32}^{\text{skel}} & \tilde{A}_{33} & A_{34}^{\text{skel}} \\ A_{41}^{\text{skel}} & A_{42}^{\text{skel}} & A_{43}^{\text{skel}} & \tilde{A}_{44} \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \tilde{x}_3 \end{bmatrix} = \begin{bmatrix} \tilde{f}_1 \\ \tilde{f}_2 \\ \tilde{f}_3 \end{bmatrix}$$
Coarse resolution.
Small blocks.

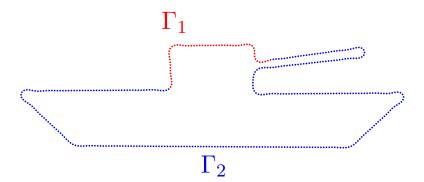
where A_{ij}^{skel} is a submatrix of A_{ij} when $i \neq j$.

Note that in the one-level compression, the only objects actually computed are the index vectors that identify the sub-matrices, and the new diagonal blocks A_{ii} .

What are the blocks \tilde{A}_{ii} ?

$$\underbrace{\tilde{A}_{ii}}_{k \times k} = \left(\underbrace{U_i^{\rm t}}_{k \times n} \underbrace{A_{ii}^{-1}}_{n \times n} \underbrace{U_i}_{n \times k}\right)^{-1}.$$

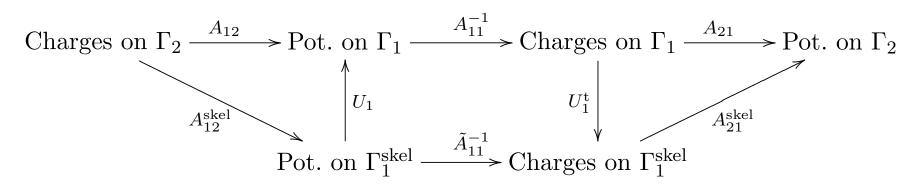
We call these blocks "proxy matrices".



What are they?

Let Γ_1 denote the block marked in red.

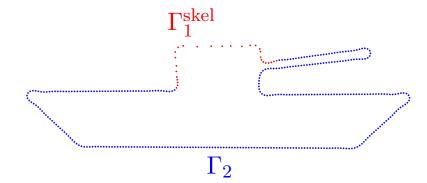
Let Γ_2 denote the rest of the domain.



 \tilde{A}_{11} contains all the information the outside world needs to know about Γ_1 .

$$\underbrace{\tilde{A}_{ii}}_{k \times k} = \underbrace{\left(\underbrace{U_i^{\rm t}}_{k \times n} \underbrace{A_{ii}^{-1}}_{n \times n} \underbrace{U_i}_{n \times k}\right)^{-1}}_{1 \times k}.$$

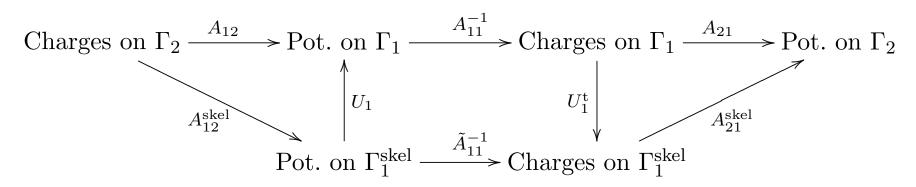
We call these blocks "proxy matrices".



What are they?

Let Γ_1 denote the block marked in red.

Let Γ_2 denote the rest of the domain.



 \tilde{A}_{11} contains all the information the outside world needs to know about Γ_1 .

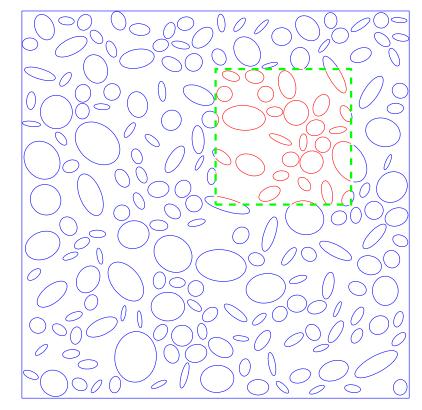
$$\underbrace{\tilde{A}_{ii}}_{k \times k} = \underbrace{\left(\underbrace{U_i^{\rm t}}_{k \times n} \underbrace{A_{ii}^{-1}}_{n \times n} \underbrace{U_i}_{n \times k}\right)^{-1}}_{1 \times k}.$$

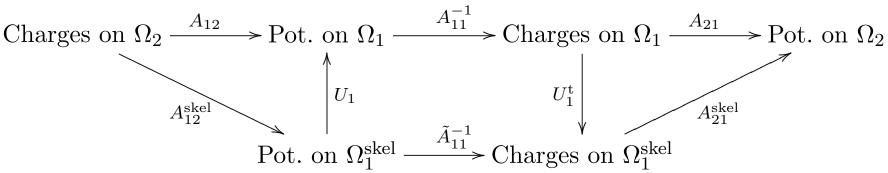
We call these blocks "proxy matrices".

What are they?

Let Ω_1 denote the block marked in red.

Let Ω_2 denote the rest of the domain.





 \tilde{A}_{11} contains all the information the outside world needs to know about Ω_1 .

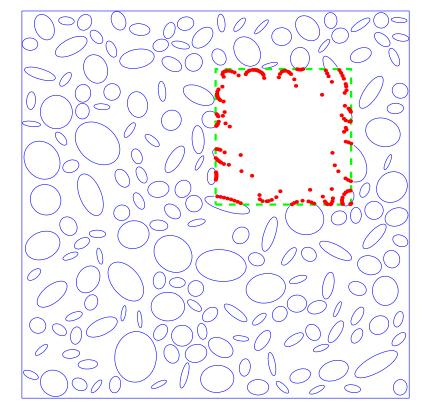
$$\underbrace{\tilde{A}_{ii}}_{k \times k} = \underbrace{\left(\underbrace{U_i^{\rm t}}_{k \times n} \underbrace{A_{ii}^{-1}}_{n \times n} \underbrace{U_i}_{n \times k}\right)^{-1}}_{1 \times k}.$$

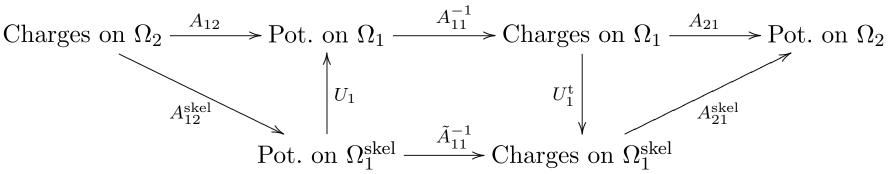
We call these blocks "proxy matrices".

What are they?

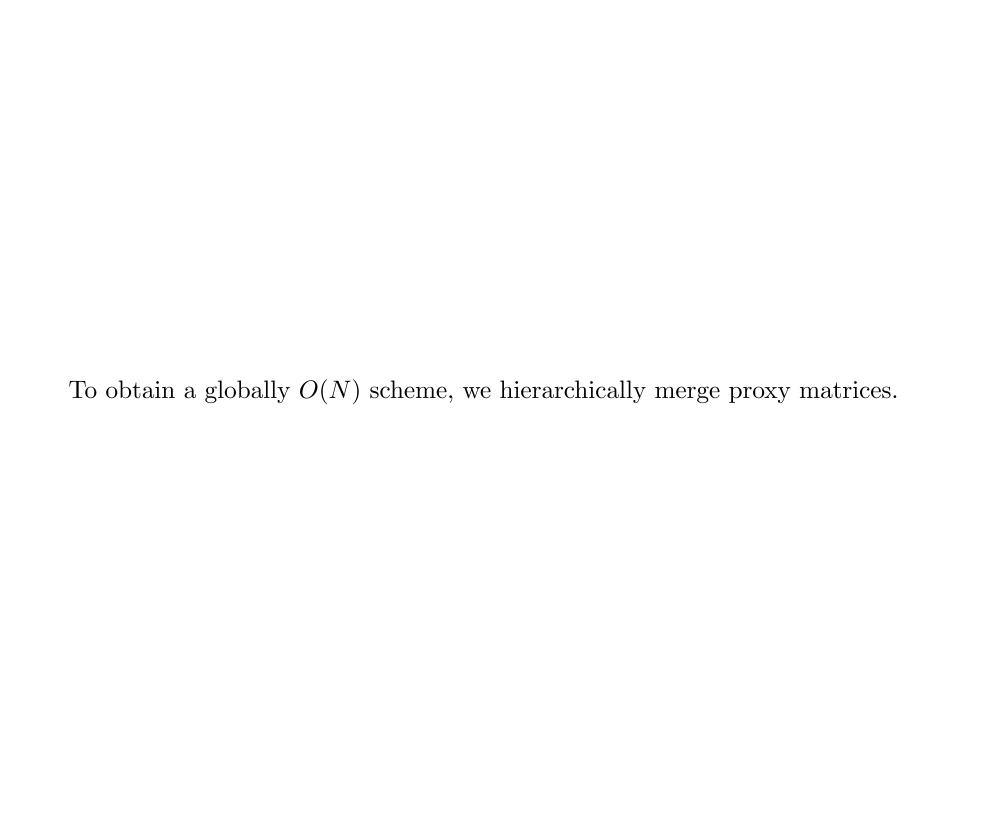
Let Ω_1 denote the block marked in red.

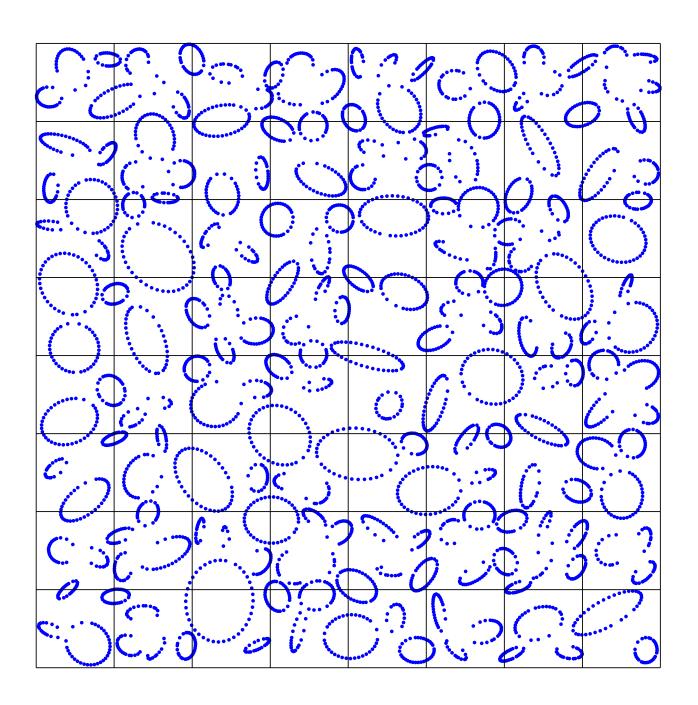
Let Ω_2 denote the rest of the domain.

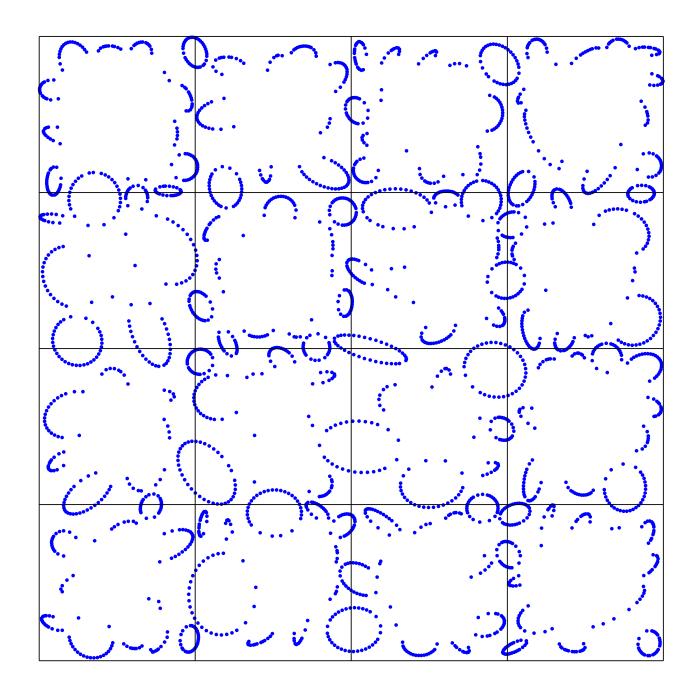


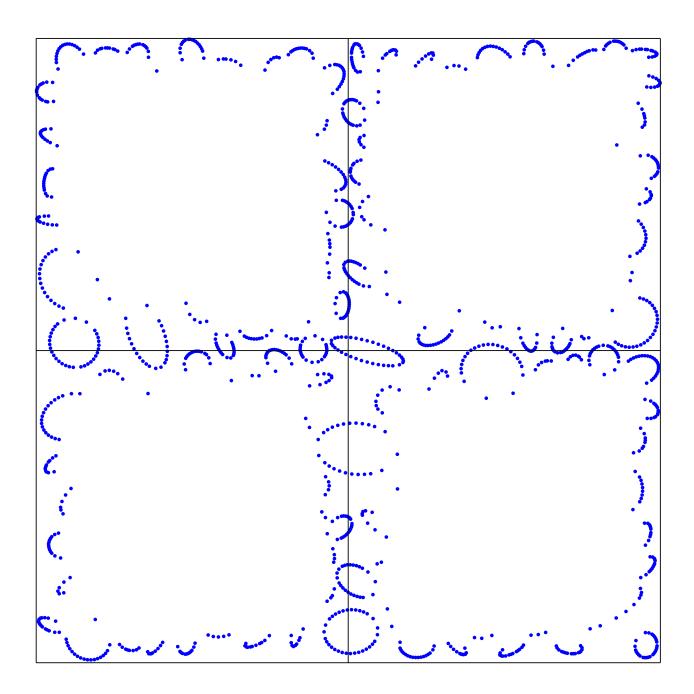


 \tilde{A}_{11} contains all the information the outside world needs to know about Ω_1 .







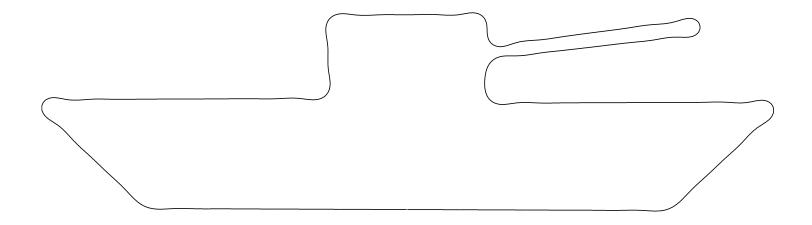


Numerical examples

In developing direct solvers, the "proof is in the pudding" — recall that from a theoretical point of view, the problem is already solved (by Hackbusch and others).

All computations were performed on standard laptops and desktop computers in the 2.0GHz - 2.8Ghz speed range, and with 512Mb of RAM.

An exterior Helmholtz Dirichlet problem



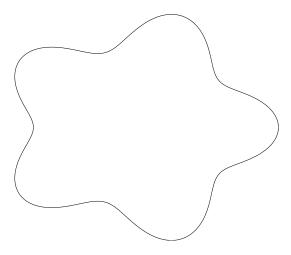
A smooth contour. Its length is roughly 15 and its horizontal width is 2.

$\underline{}$ k	$N_{ m start}$	$N_{ m final}$	$t_{ m tot}$	$t_{ m solve}$	E_{res}	$E_{ m pot}$	$\sigma_{ m min}$	M
21	800	435	1.5e + 01	3.3e-02	9.7e-08	7.1e-07	6.5 e-01	12758
40	1600	550	3.0e + 01	6.7e-02	6.2e-08	4.0e-08	8.0e-01	25372
79	3200	683	5.3e + 01	1.2e-01	5.3e-08	3.8e-08	3.4e-01	44993
158	6400	870	9.2e + 01	2.0e-01	3.9e-08	2.9e-08	3.4e-01	81679
316	12800	1179	1.8e + 02	3.9e-01	2.3e-08	2.0e-08	3.4e-01	160493
632	25600	1753	4.3e + 02	8.0e-01	1.7e-08	1.4e-08	3.3e-01	350984

Computational results for an exterior Helmholtz Dirichlet problem discretized with 10^{th} order accurate quadrature. The Helmholtz parameter was chosen to keep the number of discretization points per wavelength constant at roughly 45 points per wavelength (resulting in a quadrature error about 10^{-12}).

Eventually ... the complexity is $O(n + k^3)$.

Example 2 - An interior Helmholtz Dirichlet problem

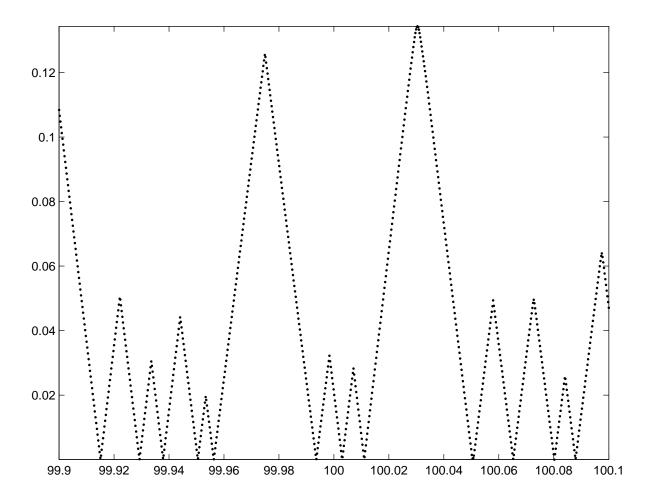


The diameter of the contour is about 2.5. An interior Helmholtz problem with Dirichlet boundary data was solved using $N = 6\,400$ discretization points, with a prescribed accuracy of 10^{-10} .

For $k = 100.011027569 \cdots$, the smallest singular value of the boundary integral operator was $\sigma_{\min} = 0.00001366 \cdots$.

Time for constructing the inverse: 0.7 seconds.

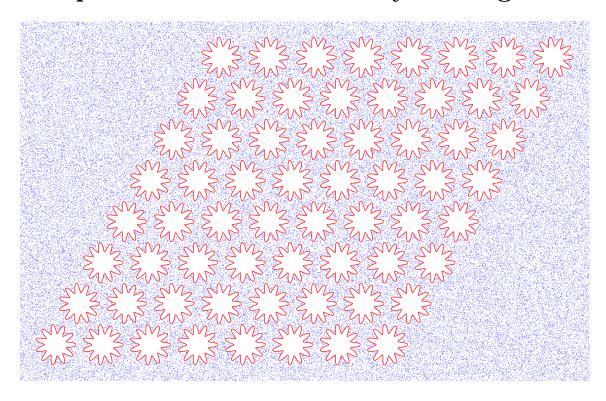
Error in the inverse: 10^{-5} .



Plot of σ_{\min} versus k for an interior Helmholtz problem on the smooth pentagram. The values shown were computed using a matrix of size N=6400. Each point in the graph required about 60s of CPU time.

Example 3:

An electrostatics problem in a dielectrically heterogeneous medium

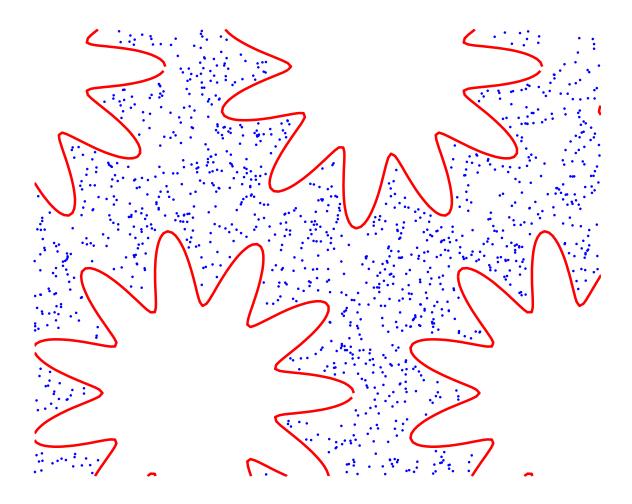


$$\varepsilon = 10^{-5}$$
 $N_{\text{contour}} = 25\,600$ $N_{\text{particles}} = 100\,000$

Time to invert the boundary integral equation = 46 sec.

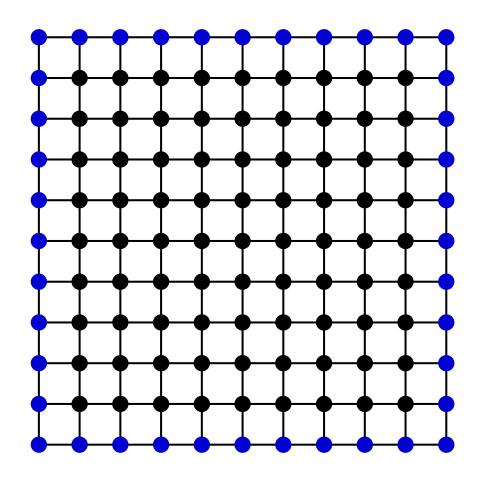
Time to compute the induced charges = 0.42sec.(2.5sec for the FMM)

Total time for the electro-statics problem = 3.8sec.



A close-up of the particle distribution.

Example 4: Inversion of a "Finite Element Matrix"



A grid conduction problem (the "five-point stencil").

The conductivity of each bar is a random number drawn from a uniform distribution on [1, 2].

If all conductivities were one, then we would get the standard five-point stencil:

$$A = \begin{bmatrix} C & -I & 0 & 0 & \cdots \\ -I & C & -I & 0 & \cdots \\ 0 & -I & C & -I & \cdots \\ \vdots & \vdots & \vdots & \vdots & \end{bmatrix} \qquad C = \begin{bmatrix} 4 & -1 & 0 & 0 & \cdots \\ -1 & 4 & -1 & 0 & \cdots \\ 0 & -1 & 4 & -1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \end{bmatrix}.$$

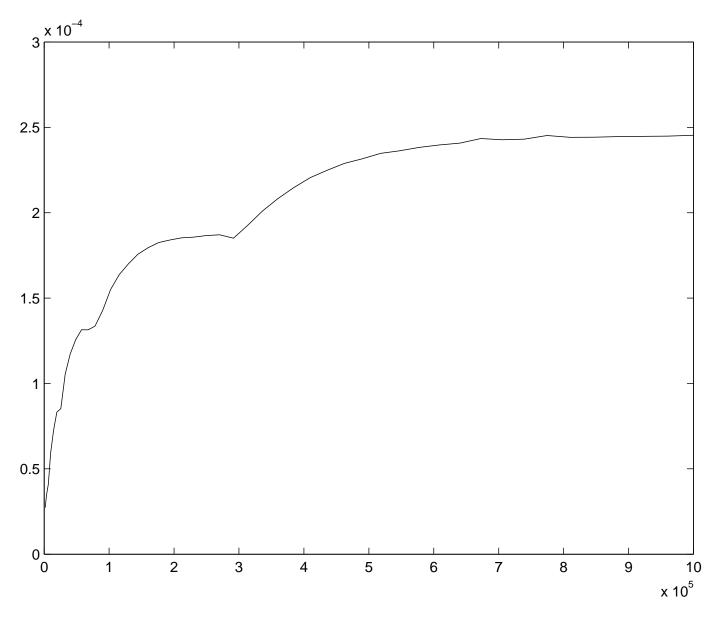
N	$T_{ m invert}$	$T_{ m apply}$	M	e_1	e_2	e_3	e_4
	(seconds)	(seconds)	(kB)				
10 000	5.93e-1	2.82e-3	3.82e + 2	1.29e-8	1.37e-7	2.61e-8	3.31e-8
40000	4.69e+0	6.25e-3	9.19e + 2	9.35e-9	8.74e-8	4.71e-8	6.47e-8
90 000	1.28e+1	1.27e-2	1.51e + 3			7.98e-8	1.25e-7
160000	2.87e+1	1.38e-2	2.15e + 3			9.02e-8	1.84e-7
250000	4.67e + 1	1.52e-2	2.80e + 3			1.02e-7	1.14e-7
360 000	7.50e+1	2.62e-2	3.55e + 3			1.37e-7	1.57e-7
490000	1.13e + 2	2.78e-2	4.22e + 3				
640000	1.54e + 2	2.92e-2	5.45e + 3				
810 000	1.98e + 2	3.09e-2	5.86e + 3				
1 000 000	2.45e + 2	3.25e-2	6.66e + 3				

 e_1 The largest error in any entry of \tilde{A}_n^{-1}

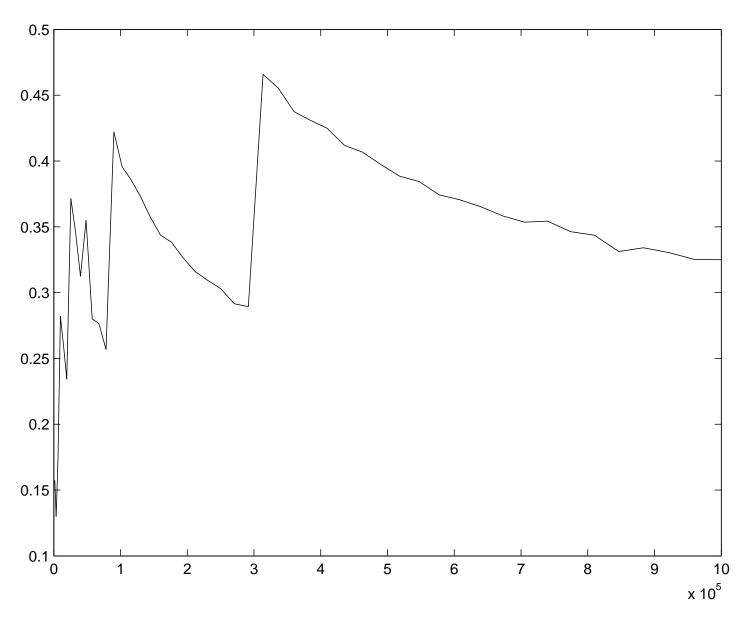
 e_2 The error in l^2 -operator norm of \tilde{A}_n^{-1}

The l^2 -error in the vector $\tilde{A}_{nn}^{-1} r$ where r is a unit vector of random direction.

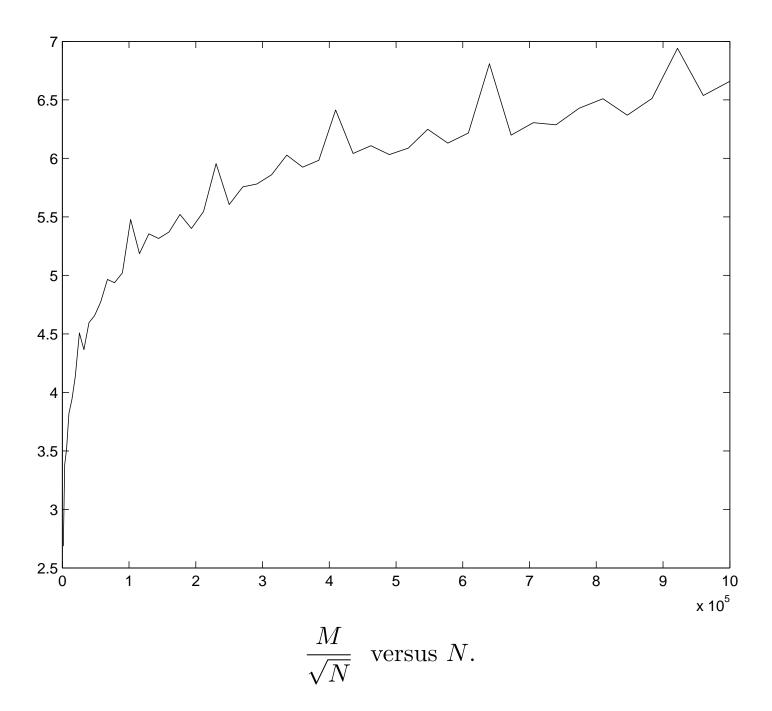
 e_4 The l^2 -error in the first column of \tilde{A}_{nn}^{-1} .



 $\frac{T_{\mathrm{invert}}}{N}$ versus N



 $\frac{T_{\text{apply}}}{\sqrt{N}}$ versus N



Note: There is a strong connection between the work described today, and the randomized sampling techniques described yesterday.

In fact, these techniques were originally developed specifically for approximating the off-diagonal blocks of integral operators.

Algorithm 1:

Rapid computation of a low-rank appoximation.

- Let ε denote the computational accuracy desired.
- Let A be an $m \times n$ matrix of ε -rank k.
- We seek a rank-k approximation of A.
- We can perform matrix-vector multiplies fast.

Let $\omega_1, \omega_2, \ldots$ be a sequence of vectors in \mathbb{R}^n whose entries are i.i.d. random variables drawn from a normalized Gaussian distribution.

Form the length-m vectors

$$y_1 = A \omega_1, \qquad y_2 = A \omega_2, \qquad y_3 = A \omega_3, \qquad \dots$$

Each y_i is a "random linear combination" of columns of A.

If l is an integer such that $l \geq k$, then there is a chance that the vectors

$$\{y_1,\,y_2,\,\ldots\,,y_l\}$$

span the column space of A "to within precision ε ". Clearly, the probability that this happens gets larger, the larger the gap between l and k.

Key observation: The probability approaches one extremely fast.

Theorem: Let A be an $m \times n$ matrix and let k be an integer.

Let l be an integer such that $l \geq k$.

Let Ω be an $n \times l$ matrix with i.i.d. Gaussian elements.

Let V be an $m \times l$ matrix whose columns form an ON-basis for the columns of $A\Omega$.

Let σ_{k+1} denote the (k+1)'th singular value of A.

Then

$$||A - V V^{t} A||_{2} \le 10 \sqrt{l m} \sigma_{k+1},$$

with probability at least

$$1 - \varphi(l - k),$$

where φ is a decreasing function satisfying

$$\varphi(8) < 10^{-5}$$

$$\varphi(8) < 10^{-5}$$

$$\varphi(20) < 10^{-17}.$$

It is time to definitively deal with linear boundary value problems:

- We need to develop machinery for dealing with surfaces.
- We need faster and more robust solvers.

Fast direct solvers:

- 2D boundary integral equations. Finished. O(N). Very fast. Has proven capable of solving previously intractable problems.
- 2D volume problems (finite element matrices and Lippmann-Schwinger). Theory finished. Some code exists. O(N) or $O(N \log(N))$. Work in progress.
- 3D surface integral equations. Theory mostly finished. (Or is it?)

Randomized sampling (yesterday's talk!):

- Potential to transform segments of numerical analysis.
- Tool in network analysis ("Google matrices"). Coarse-graining.
- Interesting theory relating to ways of measuring "degree of randomness".