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Notation:

A vector x ∈ Rn is measured using the `2 (Euclidean) norm:

||x|| =



n∑

j=1

x2
j




1/2

.

A matrix A ∈ Rm×n is measured using the corresponding operator norm

||A|| = sup
x6=0

||Ax||
||x|| .



Low-rank approximation

An N ×N matrix A has rank k if there exist matrices B and C such that

A = B C.

N ×N N × k k ×N

When k ¿ N , computing the factors B and C is advantageous:

• Storing B and C require O(N k) storage instead of O(N2).

• A matrix-vector multiply requires 2N k flops instead of N2 flops.

• Certain factorizations reveal properties of the matrix.

In actual applications, we are typically faced with approximation problems:

Problem 1: Given a matrix A and a precision ε, find the minimal k such that

min{||A− Ã|| : rank(Ã) = k} ≤ ε.

Problem 2: Given a matrix A and an integer k, determine

Ak = argmin{||A− Ã|| : rank(Ã) = k}.



The singular value decomposition (SVD) provides the exact answer.

Any m× n matrix A admits a factorization (assuming m ≥ n)

A = U D V t = [u1 u2 · · · un]




σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σn







vt
1

vt
2
...

vt
n




=
n∑

j=1

σj uj vt
j .

σj is the j’th “singular value” of A

uj is the j’th “left singular vector” of A

vj is the j’th “right singular vector” of A.

Then:
σj = inf

rank(Ã)=j−1
||A− Ã||.

and

argmin{||A− Ã|| : rank(Ã) = k} =
k∑

j=1

σj uj vt
j .



The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be the 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.
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For instance, to precision ε = 10−10, the matrix A has rank 11.



The decay of the singular values determines how well a matrix can be
approximated by low-rank factorizations.

Example: Let A be a 25× 25 Hilbert matrix, i.e. Aij = 1/(i + j − 1).
Let σj denote the j’th singular value of A.
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ε = 10−10
σ11 = 1.46 · 10−10

For instance, to precision ε = 10−10, the matrix A has rank 11.



Question: Are there interesting examples of matrices whose singular values decay?



Many of the operators of classical mathematical physics are compact with
exponentially decaying spectra.
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“Scattering matrix” for 2D acoustic scattering between two squares.



This is one reason why multiscale analysis (a.k.a. “model reduction”, “coarse
graining”, etc) works. Consider a potential problem on this electric network:

The green nodes are grounded. (Potential is kept at zero.)
At the red nodes, an electric flux f is applied.
Let A denote the linear map such that Af is the resulting flux at the green nodes.



We recall from the previous slide:
The matrix A maps fluxes on the inner boundary to fluxes on outer boundary.
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Singular values of A for a lattice twice the size of the one on the previous slide.

(What we see is a manifestation of a Saint Venant principle for the lattice.)



Example from numerical analysis:
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Spectrum of a submatrix of the inverse of a large sparse matrix resulting upon
discretization of Laplace’s equation using the Finite Element Method:



Example: Population genetics
From: P. Paschou, E. Ziv, E. Burchard, M.W. Mahoney, and P. Drineas

Matrix A recording “Single Nucleotide Polymorphisms” (SNPs).
We study a sequence of base pairs that take on the values, say, “R” and “S”.
Matrix entry Aij records the value for person j of an allele pair i:

genotype SS ∼ Aij = −1

genotype RS ∼ Aij = 0

genotype RR ∼ Aij = 1

In other words

Person 1 Person 2 Person 3 · · ·
Allele 1 RS RR RS · · ·
Allele 2 SS SS SS · · ·
Allele 3 RS RS SS · · ·

...
...

...
...

∼ A =




0 1 0 · · ·
−1 −1 −1 · · ·

0 0 −1 · · ·
...

...
...






Singular values of a 400× 62 matrix A (400 alleles, 62 people):

0 10 20 30 40 50 60

0.8

1

1.2

1.4

1.6

1.8

2

Clustering information can be extracted from the first few singular vectors.



This type of spectrum is typical for matrices arising from statistical samples.

• Genomics.

• Financial data.

• Image analysis.

• Network analysis — clustering, search
(cf. “page rank”-type algorithms used by Google).

• . . .

In this context, the term “Principal Component Analysis” (PCA) is frequently
used.



There is a snake in the garden, however.
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. . . typical matrices in this context are large.
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In this case, almost all the “mass” of the matrix is noise.
Picking up the “signal” is then a very hard problem in numerical analysis.



Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.



Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

Notes:

• Once Q has been constructed, it is in many environments possible to
construct standard factorization (such as the SVD) using O(N k2) operations.
Specifically, this is true if either

– matrix vector products x 7→ x′A can be evaluated rapidly, or,

– individual entries of A can be computed in O(1) operations.

• We seek a k that is as small as possible, but it is not a priority to make it
absolutely optimal.

• If the Q initially constructed has too many columns, but is accurate, then the
true optimal rank is revealed by postprocessing.



Model problem:
Find an approximate
basis for the column
space of a given matrix.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix.

• Determine an integer k and an N × k ON-matrix
Q such that ||A−QQt A|| ≤ ε.

We will discuss two environments:

Case 1:

We have a fast technique for evaluating
matrix-vector products. Let Tmult de-
note the cost. We assume Tmult ¿ N2.

Standard methods (e.g. Lanczos)
require O(Tmult k) operations.

The new methods are also O(Tmult k)
but are more robust, more accurate,
and better suited for parallelization.

Case 2:

A is a general N ×N matrix.

Standard methods (e.g. Gram-Schmidt)
require O(N2 k) operations.

The new method requires O(N2 log(k))
operations.



The methods that we propose are based on randomized sampling.

This means that they have a non-zero probability of giving an answer that is not
accurate to within the specified accuracy.

The probability of failure can be balanced against computational cost by the user.

It can very cheaply be rendered entirely negligible; failure probabilities less than
10−15 are standard. (In other words, if you computed 1 000 matrix factorizations a
second, you would expect to see one “failure” every 30 000 years.)



Definition: We say that a vector ω ∈ RN is a Gaussian random vector if

ω =




ω1

ω2

...

ωN




,

where the numbers {ωj}N
j=1 are random variables drawn independently from a

normalized Gaussian distribution.

Note that the probability distribution of ω is isotropic in the sense that it is
invariant under rotations in RN .

Note: In practise, the vectors ω will be constructed using “random number
generators”. The quality of the generators will not matter much.
(Shockingly little, in fact.)



We start with Case 1: We know how to compute the product x 7→ A x rapidly.



Algorithm 1:
Rapid computation of
a low-rank approxima-
tion.

• Let ε denote the computational accuracy desired.

• Let A be an N ×N matrix of ε-rank k.

• We seek a basis for Col(A).

• We can perform matrix-vector multiplies fast.

Let ω1, ω2, . . . be a sequence of Gaussian random vectors in RN .

Form the vectors

y1 = Aω1, y2 = A ω2, y3 = Aω3, . . .

Each yj is a “random linear combination” of columns of A.

If ` is an integer such that ` ≥ k, then there is a chance that the vectors

{y1, y2, . . . , y`}
span the column space of A “to within precision ε”. Clearly, the probability that
this happens gets larger, the larger the gap between ` and k.

What is remarkable is how fast this probability approaches one.



How to measure “how well we are doing”:

Let ω1, ω2, . . . , ω` be the sequence of Gaussian random vectors in RN .

Set yj = A ωj .

Orthonormalize the vectors [y1, y2, . . . , y`] and collect the result in the matrix Q`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].



To illustrate the performance, we consider the following particular choice of A:

Let A be an N ×N matrix with entries Aij = log |zi − wj | where zi and wj are
points in two separated clusters in R2.

sources zi targets wj
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True error after j steps
(j+1)−th singular value

ε = 10−10, exact ε-rank = 20, nr. of matrix-vector multiplies required = 21.



How to measure “how well we are doing” — revisited:

Let ω1, ω2, . . . , ω` be the sequence of Gaussian random vectors in RN .

Set yj = A ωj .

Orthonormalize the vectors [y1, y2, . . . , y`] and collect the result in the matrix Q`.

The “error” after ` steps is then

e` = ||A−Q` Qt
` A||= ||(I −Q` Qt

`) A||.

The quantity e` should be compared to the minimal error

σ`+1 = min
rank(B)=`

||A−B||.

In reality, computing e` is not affordable. Instead, we compute something like

f` = max
1≤j≤10

∣∣∣∣(I −Q` Qt
`

)
yl+j

∣∣∣∣.

The computation stops when we come to an ` such that f` < ε× [constant].
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`
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∣∣∣∣.
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Estimated remainder after j steps
True error after j steps
(j+1)−th singular value

ε = 10−10, exact ε-rank = 20, nr. of matrix-vector multiplies required = 21+10.



Was this just a lucky realization?

We collected statistics from 1 000 000 realizations:
(For a slightly different experiment — here the exact ε-rank is 34.)

Number of matrix-vector multiplies required: Frequency:

34 (+10) 15063

35 (+10) 376163

36 (+10) 485124

37 (+10) 113928

38 (+10) 9420

39 (+10) 299

40 (+10) 3

Note: The post-processing correctly determined the rank to be 34 every time,
and the error in the factorization was always less than 10−10.



Results from a high-frequency Helmholtz problem (complex arithmetic):
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ε = 10−10, exact ε-rank = 101, nr. of matrix-vector multiplies required = 106.



So far, we have assumed that we have a fast matrix-vector multiplier at our disposal.

What happens if we do not?

In this case, Tmult = N2 so the computational cost of Algorithm I is

O(Tmult k + N k2) = O(N2 k + N k2).

When k ¿ N , Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: N2 (k + 10) +O(k2 N)

Multiplications required for Gram-Schmidt: N2 2 k

Other benefits (sometimes more important ones than CPU count):

• Data-movement.

• Parallelization.

• More accurate. (This requires some additional twists not yet described.)

However, many environments remain in which there is little or no gain.
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Algorithm 2: An O(N2 log(k)) algorithm for general matrices:

Proposed by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A Ω.

N × ` N ×N N × `

Key points:

• The entries of Ω are i.i.d. random numbers.

• The product x 7→ Ax can be evaluated rapidly.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct Ω with “some randomness” and “some structure”.
Then for each 1×N row a of A, the matrix-vector product

a 7→ aΩ

can be evaluated using N log(`) operations.



What is this “random but structured” matrix Ω?

Ω = D F S

N × ` N ×N N ×N N × `

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk = e−2πi(j−1)(k−1)/N .

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw l columns at
random from D F .)

Note: Other successful choices of the matrix Ω have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).



Speed gain on square matrices of various sizes
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Empirical accuracy on 2,048-long convolution
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The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

The accuracy of the randomized method has recently been improved.



Theory / context

In the remainder of the talk we will focus on Algorithm 1 (for the case when fast
matrix-vector multiplies are available). For this case, we have fairly sharp
estimates of the “failure probabilities”.



The theoretical results to be presented are related to (and in some cases inspired
by) earlier work on randomized methods in linear algebra. This work includes:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)
A. Frieze, R. Kannan, and S. Vempala (1999, 2004)
D. Achlioptas and F. McSherry (2001)
P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006a, 2006b,
2006c, 2006d)
S. Har-Peled (2006)
A. Deshpande and S. Vempala (2006)
S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)
T. Sarlós (2006a, 2006b, 2006c)



Theorem (Martinsson, Rokhlin, Tygert 2006):

Let A be an N ×N matrix.

Let k be an integer, and let ` be an integer such that ` ≥ k.

Let Ω be an N × ` matrix with i.i.d. Gaussian elements.

Let Q be an N × ` matrix whose columns form an ON-basis for the columns of A Ω.

Set σk+1 = min
rank(B)=k

||A−B||.

Then
||A−QQt A||2 ≤ 10

√
` (N − k) σk+1,

with probability at least
1− ϕ(`− k),

where ϕ is a decreasing function satisfying, e.g.,

ϕ(5) < 3 · 10−6, ϕ(10) < 3 · 10−13, ϕ(15) < 8 · 10−21, ϕ(20) < 6 · 10−27.



The key bound in the proof is the line:

||A−Q Qt A||2 ≤ 10
√

` (N − k) σk+1.

The factor in red represents the degree of suboptimality.

In applications where the singular values decay rapidly, this factor does not
represent a problem. (A slight increase in k kills off the factor.)

In applications where the singular values do not decay rapidly (as is typical for
statistical data analysis, analysis of networks, etc), better estimates are needed.

Reducing the factor is a topic of active research — but it appears that in most
environments, the factor can more or less entirely be eliminated.

• “A posteriori” analysis — Halko/Martinsson/Tropp — Sep. 2008.

• Use of power iterations — Rokhlin/Szlam/Tygert — Oct. 2008.

• Improved proofs — Halko/Martinsson/Tropp — Dec. 2008.

• That the “fixes” work has been demonstrated by examples with
N ∼ 107 and σk+1 ∼ 10−2 — Martinsson/Tygert/Shkolnisky — Dec. 2008.



Notes on the proof:

We assume without loss of generality that A is diagonal and square since:

• The probability distribution of a Gaussian matrix is invariant under rotations.

• All steps of the algorithm are also invariant under rotations.

Then

AΩ =




σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σN







ω11 ω12 · · · ω1`

ω21 ω22 · · · ω2`

...
...

...

ωN1 ωN2 · · · ωN`




.

The question becomes: How large must ` be before we can say with high
probability that the columns of an N × ` matrix populated with i.i.d. Gaussian
random variables with high probability sample the first k coordinates?

At this point, there is a rich literature in probability theory to draw on. The
arguments are based on “concentration of mass” and the key insight is that “thin”
random matrix tend to be well-conditioned (or at least have well-conditioned
sub-matrices) and sample high-dimensional space with almost optimal efficiency.



The observation that a “thin” Gaussian random matrix to high probability is
well-conditioned is at the heart of the celebrated Johnson-Lindenstrauss lemma:

Lemma: Let ε be a real number such that ε ∈ (0, 1), let n be a positive integer,
and let k be an integer such that

(1) k ≥ 4
(

ε2

2
− ε3

3

)−1

log(n).

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that

(2) (1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

Further, such a map can be found in randomized polynomial time.

It has been shown that an excellent choice of the map f is the linear map whose
coefficient matrix is a k × d matrix whose entries are i.i.d. Gaussian random
variables (see, e.g. Dasgupta & Gupta (1999)).
When k satisfies, (1), this map satisfies (2) with probability close to one.



The related Bourgain embedding theorem shows that such statements are not
restricted to Euclidean space:

Theorem:. Every finite metric space (X, d) can be embedded into l2 with
distortion O(log n) where n is the number of points in the space.

Again, random projections can be used as the maps.



The Johnson-Lindenstrauss lemma (and to some extent the Bourgain embedding
theorem) expresses a theme that is recurring across a number of research areas
that have received much attention recently. These include:

• Compressed sensing (Candès, Tau, Romberg, Donoho).

• Geometry of point clouds in high dimensions (Coifman, Maggioni, Jones, etc).

• Construction of multi-resolution SVDs.

• Clustering algorithms.

• Search algorithms / knowledge extraction.

• Approximate nearest neighbor search.

Note: Omissions! No ordering. Missing references. Etc etc.

Many of these algorithms work “unreasonably well”.



The randomized algorithm presented here is close in spirit to randomized
algorithms such as:

• Randomized quick-sort.
(With variations: computing the median / order statistics / etc.)

• Routing of data in distributed computing with unknown network topology.

• Rabin-Karp string matching / verifying equality of strings.

• Verifying polynomial identities.

Many of these algorithms are of the type that it is the running time that is
stochastic. The quality of the final output is excellent.

The randomized algorithm that is perhaps the best known among numerical
analysis is Monte Carlo. This is somewhat lamentable given that MC is often a
“last resort” type algorithm used when the curse of dimensionality hits —
inaccurate results are tolerated simply because there are no alternatives.
(These comments apply to the traditional “unreformed” version of MC — for
many applications, more accurate versions have been developed.)



Observation: Mathematicians working on these problems tend to be very
focussed on minimizing the distortion factor

1 + ε

1− ε

arising in the Johnson-Lindenstrauss bound:

(1− ε) ||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε) ||u− v||2, ∀ u, v ∈ V.

In our environments, we do not need this constant to be particularly close to 1.
It should just not be “large” — say less that 10 or some such.

This greatly reduces the number of random projections needed! Recall that

number of samples required ∼ 1
ε2

log(N).



Observation: Multiplication by a random unitary matrix reduces any matrix to
its “general” form. All information about the singular vectors vanish. (The
singular values remain the same.)

This opens up the possibility for general pre-conditioners —
counterexamples to various algorithms can be disregarded.

The feasibility has been demonstrated for the case of least squares solvers for very
large, very over determined systems. (Work by Rokhlin & Tygert, Sarlós, . . . .)

Work on O(N2 (log N)2) solvers of general linear systems is under way.
(Random pre-conditioning + iterative solver.)

May O(N2 (log N)2) matrix inversion schemes for general matrices be possible?



Observation: Robustness with respect to the quality of the random numbers.

The assumption that the entries of the random matrix are i.i.d. normalized
Gaussians simplifies the analysis since this distribution is invariant under unitary
maps.

In practice, however, one can use a low quality random number generator. The
entries can be uniformly distributed on [−1, 1], they be drawn from certain
Bernouilli-type distributions, etc.

Remarkably, they can even have enough internal structure to allow fast methods
for matrix-vector multiplications. For instance:

• Subsampled discrete Fourier transform.

• Subsampled Walsh-Hadamard transform.

• Givens rotations by random angles acting on random indices.

This was exploited in “Algorithm 2” (and related work by Ailon and Chazelle).
Our theoretical understanding of such problems is unsatisfactory.
Numerical experiments perform far better than existing theory indicates.



Even though it is thorny to prove some of these results (they draw on techniques
from numerical analysis, probability theory, functional analysis, theory of
randomized algorithms, etc), work on randomized methods in linear algebra is
progressing fast.

Important: Computational prototyping of these methods is extremely simple.

• Simple to code an algorithm.

• They work so well that you immediately know when you get it right.



We are currently working on a number of applications:

• Acceleration of classical linear algebra routines.

• Construction of reduced models for physical phenomena (“model reduction”).

– Modeling of percolating micro-structures.

– Wave propagation through media with periodic micro-structures.

– Crack propagation through composite materials.

– Scattering problems involving multiple scatterers.

• Statistical data analysis / “principal component analysis”:

– Genomics.

– Image processing.

• Analysis of network matrices (such as ones representing the link structure of
the World Wide Web) — knowledge extraction

• Matrices whose off-diagonal blocks are rank deficient.



We say that a matrix A is “block rank-deficient” if its off-diagonal blocks have
limited numerical rank.

The following figure shows one of the most common tessellations:

Block rank-deficient matrices are extremely common in scientific computing.



Example — Particle simulations:

Let {xi}N
i=1 be a number of points in space, xi ∈ R3.

Let {qi}N
i=1 be the strength of “electric charges” placed at the points xi.

Letting ui denote the electric potential at point xi, we have

ui =
∑

j 6=i

1
4π |xi − xj | qj = [Aq]i,

where the matrix A is defined via

Aij =





1
4 π |xi−xj | , i 6= j,

0 i = j.

This matrix A is “block rank-deficient”.

This observation underlies the so called “Fast Multipole Method”.

Applications in astrophysical simulation, biochemistry, modeling of
semi-conductors, etc.



... Shiv’s picture ...



Example — Integral equation methods for elliptic PDEs:

Integral operators (single layers, double layers, etc) associated with PDEs such as

• Laplace’s equation,

• Helmholtz equation (at low and intermediate frequencies),

• the equations of elasticity,

• the Yukawa equation,

• etc

turn into “block rank-deficient” matrices upon discretization.

Discretizations of Green’s functions on bounded domains . . .

Approximations of Dirichlet-to-Neumann operators . . .

Etc, etc, . . .

Block rank-deficient matrices abound in this environment.



A fast direct solver for boundary integral operators
(Martinsson & Rokhlin, 2004)

Computational results for the double layer potential associated with an exterior
Laplace problem on a smooth contour:

Relative accuracy: 10−10

Problem size: 102 400× 102 400.

Time for initial inversion: 19 seconds.

Time for applying the inverse: 0.17 seconds.



Computational results for the combined field equation associated with an exterior
Helmholtz problem on a smooth contour 200 wave-lengths in size:

Relative accuracy: 10−8

Problem size: 25 600× 25 600.

Time for initial inversion: 7 minutes.

Time for applying the inverse: 0.79 seconds.

Note: This method is not “fast” at very large wave numbers.



Example — Matrices approximating elliptic differential operators:

Let L be the standard five-point stencil (discrete Laplacian) on a 50× 50 grid:

L =




C −I 0 0 · · ·
−I C −I 0 · · ·
0 −I C −I · · ·
...

...
...

...




C =




4 −1 0 0 · · ·
−1 4 −1 0 · · ·
0 −1 4 −1 · · ·
...

...
...

...




.

Let A be the inverse of L, and partition it:

A = L−1 =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




.

We consider the 625× 625 submatrix A14 of the 2 500× 2 500 matrix A.
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The 10-logarithm of the singular values of A14.



0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A14 — now with random coefficients.



A fast direct solver for finite element matrices
(Martinsson, 2007)

We have constructed an O(N (log N)2) scheme for directly inverting the matrix L.

For N = 1000 000, the scheme requires 4 minutes for the initial inversion (on an
2.8GHz Pentium IV desktop with 512Mb of RAM) performed at single precision
(seven correct digits).

Subsequent problems that are loaded on the boundary only can be solved in 0.03
seconds (provided that only the solution on the boundary is sought).

The scheme is very primitive. Work that will improve the asymptotic time
requirement to O(N log N) (or possibly O(N)) is under way. The constants will
be much smaller.

Works for a wide range of elliptic equations.

Similar results have recently been obtained by Gu, Chandrasekaran, Xia, Li.



Example — Toeplitz matrices:

Let . . . , a−2, a−1, a0, a1, a2, . . . be complex numbers.

For a positive integer N , let A denote the N ×N matrix with entries

Aij = aj−i.

For instance, for N = 4, we get

A =




a0 a1 a2 a3

a−1 a0 a1 a2

a−2 a−1 a0 a1

a−3 a−2 a−1 a0




.

Then the Fourier transform of A,

Â = FN A F ∗
N

is a “block rank-deficient” matrix. (This is not necessarily true for A itself.)

Again, such matrices can be inverted rapidly. (Martinsson, Rokhlin, Tygert, 2005)



Example — Sampling of “sinc” matrix:

Let {xj}N
j=1 denote real numbers such that −∞ < x1 < x2 < · · · < xN−1 < xN < ∞.

Define for a real positive number c the N ×N matrix A by

Aij =





c i = j,

sin
(
c (xi − xj)

)
xi − xj

, i 6= j.

Then A is a structured matrix.

Prolate spheroidals are eigenfunctions of the sinc operator — connection to
band-filtering signals / image processing / customized Fourier transforms / etc.
(Work in progress.)



To summarize:

“Block rank-deficient” matrices are ubiquitous in scientific computing:

• Numerical methods for elliptic and parabolic PDEs.

• Models of N particles with linear interactions (e.g. astrophysical simulations).

• Signal processing (with matrices representing transforms and filters).

• Matrices that model networks are typically sparse — factorizing them often
leads to dense but “block rank-deficient” matrices.

The structure of “block rank-deficient” can be exploited to construct accelerated
— O(N) or O(N (log N)p) — algorithms for standard operations:

• Matrix-vector multiply. (“Fast Multipole Method”, “Barnes-Hut”, etc.)

• [New!] Matrix inversion.

• [New!] Matrix-matrix multiplication.

• [New!] Matrix factorization (QR, LU, Cholesky, etc).

• [Hopefully upcoming. . . ] Partial eigenvalue decompositions, SVDs.



Existing fast algorithms for performing matrix-vector multiplies for block rank
deficient matrices typically exploit known analytic properties of the off-diagonal
blocks (they are oftentimes samples of a known kernel function).

A key difficulty in constructing matrix inversion schemes is that such precise
knowledge about the kernel of the inverse functions is typically not available.

This is where the randomized schemes come in!

Observation [Martinsson 2008]: The randomized sampling techniques can be
used to invert certain “block rank-deficient” matrices given only:

• A “black box” fast matrix-vector multiplier (such as a legacy code).

• A subroutine that computes individual entries of the matrix.



Summary

Randomized methods for approximating rank-deficient matrices.

Randomized methods work for “block rank-deficient” matrices, and thus enable
the development of O(N) methods for a wide range of matrix computations.

The methods presented are closely related to recent developments in functional
analysis and random matrix theory. The methods described are in fact much
simpler than other recent work. However, they appear to have been overlooked.

The randomized methods have resolved a number of long-standing problems in
numerical analysis, for instance:

• Definitively overcome issues relating to stability and parallelization of Lanzcos.

• Fast compression and inversion of “block rank-deficient” matrices.

• Reduction of CPU time requirement of partial spectral decompositions, QR
factorizations, etc, from O(N2 k) to O(N2 log(k)).

• Computing SVDs / PCAs of huge matrices with low signal-to-noise ratios.

There should be much much more to come.


