
(A randomized method for the approximation of matrices)

Two randomized methods for the approximation of matrices

P.G. Martinsson, The University of Colorado at Boulder

Acknowledgements:

Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert.

Some of the work presented is work by Franco Woolfe, Edo Liberty, Vladimir
Rokhlin, and Mark Tygert

Let A be an m× n matrix that can be approximated by a matrix of rank k:

A ≈ Q
R

A ≈ U

D V t

A ≈ S

Arow

“QR-decomposition” “SVD” “Interpolative decomposition”

Question: How do you efficiently find such approximations?

A classical answer: Compute the QR-factorization via, e.g. Gram-Schmidt.
Cost is O(mnk).

Algorithm 1: When matrix-vector products x 7→ Ax can be computed cheaply,
say at a cost Tmult, the cost can be reduced to O(Tmult k + mk2).

Algorithm 2: When A is a general matrix (not necessarily cheap to apply), the
cost can be reduced to O(mn log(k) + (m + n) k2).

Algorithms 1 and 2 are based on randomized methods, meaning that they have a
probability of failure. This probability is typically negligible (like 10−17).

Related work on randomized algorithms:

• Dixon (1983)

• Wozniakowski and Kuczynsky (1993)

• A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

• D. Achlioptas and F. McSherry (2001)

• P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan
(2006a, 2006b, 2006c, 2006d)

• S. Har-Peled (2006)

• A. Deshpande and S. Vempala (2006)

• S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

• T. Sarlós (2006a, 2006b, 2006c)

We will “declare victory” once we have a basis for the column space.

To justify this, suppose that we have found an orthonormal matrix Q such that

A ≈ Q Qt A.

Then at a cost of O(mk2) we determine k rows of Q that form a well-conditioned
basis for the row-space of Q. Collecting these into Qrow, we have

Q = P


 Ik

T


 Qrow,

where P is a permutation matrix. Then

A ≈ QQt A = P


 Ik

T


 Qrow Qt A = P


 Ik

T


 Arow,

where Arow consists of k rows of A.

So, once Q is determined, only an O(k2 m), or possibly O(k2 (m+n)), cost remains.

Algorithm 1

For when the matrix-vector multiplication x 7→ Ax is cheap.

Example:

ΩS ΩT

Points {wj}n
j=1 in ΩS (“sources”).

Points {zi}m
i=1 in ΩT (“targets”).

Let A be an m× n matrix with entries Aij = log |zi − wj |.

“A maps a charge distribution to a set of potentials.”

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

The 10-logarithm of the singular values of A.

ΓS ΓT

The same type of spectrum is obtained for the “off-diagonal blocks” of many
integral operators:

[Au](x) =
∫

Γs

G(x, y) u(y) ds(y), x ∈ ΓT.

For instance, G could be the single or double layer kernel for the Laplace equation.

Example:

ΩS ΩT

Points {wj}n
j=1 in ΩS (“sources”).

Points {zi}m
i=1 in ΩT (“targets”).

Let A be an m× n matrix with entries Aij = H
(1)
0 (k |zi − wj |).

“A maps a charge distribution to a set of potentials.”

0 50 100 150
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A for k = 35.

Example:

Let B be the standard five-point stencil on a 20× 20 grid:

B =




D −I 0 0 · · ·
−I D −I 0 · · ·
0 −I D −I · · ·
...

...
...

...




D =




4 −1 0 0 · · ·
−1 4 −1 0 · · ·
0 −1 4 −1 · · ·
...

...
...

...




.

Let A be the inverse of B, and partition it:

B−1 = A =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




.

We consider the 100× 100 submatrix A14 of the 400× 400 matrix A.

0 10 20 30 40 50 60 70 80 90 100
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

The 10-logarithm of the singular values of A14.

Algorithm 1 — for when we can compute x 7→ Ax rapidly

Recall: A is m× n with ε-rank k.

Let x1, x2, . . . be a sequence of vectors in Rn whose entries are i.i.d. random
variables drawn from a standardized Gaussian distribution. (Alternatively, draw
them uniformly from the surface of the unit ball.)

Form the length-m vectors

y1 = Ax1, y2 = Ax2, y3 = Ax3, . . .

Each yj is a “random linear combination” of columns of A.

If l is an integer such that l ≥ k, then there is a chance that the vectors

{y1, y2, . . . , yl}
span the column space of A “to within precision ε”. Clearly, the probability that
this happens gets larger, the larger the gap between l and k.

What is remarkable is how fast this probability approaches one.

Algorithm 1 — for when we can compute x 7→ Ax rapidly

Recall: A is m× n with ε-rank k.

Let x1, x2, . . . be a sequence of vectors in Rn whose entries are i.i.d. random
variables drawn from a standardized Gaussian distribution. (Alternatively, draw
them uniformly from the surface of the unit ball.)

Form the length-m vectors

y1 = Ax1, y2 = Ax2, y3 = Ax3, . . .

Each yj is a “random linear combination” of columns of A.

If l is an integer such that l ≥ k, then there is a chance that the vectors

{y1, y2, . . . , yl}
span the column space of A “to within precision ε”. Clearly, the probability that
this happens gets larger, the larger the gap between l and k.

What is remarkable is how fast this probability approaches one.

We illustrate with a numerical example.

Let A be an m× n matrix with entries Aij = log |zi − wj | where zi and wj are
points in two separated clusters in R2.

Generate a sequence x1, x2, . . . of random vectors in Rn.

Compute Yl = [y1, y2, . . . , yl] = [Ax1, A x2, . . . , A xl].

Compute the (column pivoted) QR-factorization Yl = Ql Rl Pl.

The “error” after l steps is (using the l2-operator norm)

el = ||(I −Ql Q
t
l) A||.

Notice that in reality, we can rarely afford to compute el.
Instead, we compute something like

fl =
∣∣∣∣(I −Ql Q

t
l

)
[yl+1, yl+2, . . . , yl+10]

1
10

∣∣∣∣
Frobenius

.

Our estimate for the rank is the lowest integer l such that fl < ε.

(Notice that plenty of operations here can be optimized. A lot.)

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

2
Estimated remainder after j steps
True error after j steps
(j+1)−th singular value

ε = 10−10 True ε-rank = 19 Estimated ε-rank = 21 / 19.

Was this just a lucky realization?

We ran the algorithm a million times and got these estimated ranks:

k = 17: 0 times

k = 18: 0 times

k = 19: 4178 times

k = 20: 246905 times

k = 21: 664486 times

k = 22: 81789 times

k = 23: 2634 times

k = 24: 8 times

k = 25: 0 times

k = 26: 0 times

The numbers above relate to the initial estimate of the rank. The second estimate
was always 19, and the error was always less than 10−10.

Results from a high-frequency Helmholtz problem (complex arithmetic):

0 20 40 60 80 100 120 140
−16

−14

−12

−10

−8

−6

−4

−2

0

2
Estimated remainder after j steps
True error after j steps
(j+1)−th singular value

ε = 10−10 True ε-rank = 101 Estimated ε-rank = 106 / 101.

Theorem: Let A be an m× n matrix and let k be an integer.

Let l be an integer such that l ≥ k.

Let G be an n× l matrix with i.i.d. Gaussian elements.

Let Q be an m× l matrix whose columns form an ON-basis for the columns of AG.

Let σk+1 denote the (k + 1)’th singular value of A.

Then
||A−QQt A||2 ≤ 10

√
l m σk+1,

with probability at least
1− f(l − k),

where f is a decreasing function satisfying

f(8) < 10−5

f(20) < 10−17.

Recall the error bound:

||A−QQt A||2 ≤ 10
√

l m σk+1,

The high-lighted factor is somewhat undesirable for a couple of reasons:

• The algorithm cannot determine the ε-rank if ε is too close to the
computational precision.

• There could be problems in cases where the singular values decay slowly.

Important: In the applications that we have in mind, the singular values decay
exponentially. In such cases, the only effect of the

√
lm factor is that a couple too

many random vectors may be generated. The computed decomposition is still
accurate to precision ε.

How does Algorithm I perform when we do not have a fast method for applying A

to a vector?

When k ¿ min(m,n), Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: mn (k + 10) +O(k2(m + n)).

Multiplications required for Gram-Schmidt: mn 2 k +O(k2(m + n)).

Other potential benefits:

• Data-movement.

• Parallelization.

However, many environments remain in which there is little or no gain.

Algorithm 2: An O(mn log(k)) algorithm for general matrices:

Work by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.
(The speaker was — much to his regret — not involved with this development.)

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A G.

m× l m× n n× l

Key points:

• The product x 7→ Ax can be evaluated rapidly.

• The entries of G are i.i.d. random numbers.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct G with “some randomness” and “some structure”.
Then for each 1× n row a of A, the matrix-vector product

a 7→ aG

can be evaluated using n log(l) operations.

What is this “random but structured” matrix G?

G = D F S

n× l n× n n× n n× l

where

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk = e−2πi(j−1)(k−1)/n.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw l columns at
random from D F .)

Note: Other successful choices of the matrix G have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).

What is the probability of failure?

The proofs obtained so far do not assure quite as high likelihood of success as the
proofs for Algorithm 1 did. (Say 1− 10−7 instead of 1− 10−17.)

The proofs may not be sharp however. An indication that this may be the case is
that the algorithm has never failed during testing.

Should it prove to be the case that Algorithm 2 occasionally fails, a cheap
verification can be put in place. (Simply note that the difference between A and
the computed approximation to A can rapidly be applied to a vector.)

Speed gain on square matrices of various sizes

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512

nu
m

be
r

of
 ti

m
es

 fa
st

er
 th

an
 Q

R

rank

1,024

2,048

4,096

classical QR algorithm

The time required to verify the approximation is included in the fast, but not in
the classical timings.

This slide comes from a talk by Mark Tygert.

Empirical accuracy on 2,048-long convolution

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

8 16 32 64 128 256 512

ac
cu

ra
cy

 o
f t

he
 a

pp
ro

xi
m

at
io

n

rank

fast

best possible

The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

This slide comes from a talk by Mark Tygert.

Key points — Algorithm 2:
(Franco Woolfe, Edo Liberty, Vladimir Rokhlin, Mark Tygert)

There exists an algorithm for rank-k matrix approximation (or for computing the
top k singular values and vectors) with advantages over the classical pivoted QR

algorithms such as Gram-Schmidt:

1. Substantially faster (for most ranks k of the approximation), costing
O(n2 ln(k) + nk2) — not O(n2k) — for an n× n matrix.

2. Uses less storage when the input matrix is to be preserved, especially for
matrices evaluated on-the-fly.

3. Operates reliably and accurately on any matrix.

4. Parallelizes naturally.

Future work:

• Develop efficient strategies for determining the rank adaptively,
and for updating the ON-basis for the column space.

• Develop ways to decrease the probability of failure in Algorithm 2.

• Tighten the proofs for Algorithm 2.

• Check if the algorithms can be modified to improve the factors “
√

ml” in the
error bounds.

Applications:

• Fast algorithms for matrix algebra (matrix-vector multiplies, matrix-
inversions, spectral decompositions) involving differential and integral
operators.

• Multiscale modelling.

• Analysis of network matrices (data mining).

