
A classical problem in numerical analysis is to devise numerical methods
for solving equations of the type

(BVP)

{
Au(x) = 0, x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where A is a linear constant-coefficient partial differential operator, and
B is some local linear boundary operator (e.g. Dirichlet B.C. ⇔ B = I).

We’ll start by collecting some examples of practical interest.



Laplace’s equation

{−∆ u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where (in R2)

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

.

• Equilibrium equation for diffusive processes (heat conduction, etc.).

• Viscous fluid flows.

• Static electric and magnetic fields.

• Gravitational fields.

• Etc. etc. etc. etc.



The equations of linear elasticity

Let u(x) = [u1(x), u2(x)] denote the displacement of a piece of elastic
material in equilibrium. Then u satisfies
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(
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)
= 0, on Ω,
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(
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)
= 0, on Ω,

where µ and κ are material constants. Dirichlet boundary conditions read

(u1, u2) = (f1, f2), on Γ.

Closely related to the bi-harmonic equation,

(−∆)2 u = 0.



The wave equation

−∆u +
∂2u

∂t2
= 0

Describes wave propagation in a range of different applications:

• Waves in fluids.

• (Certain) waves in elastic bodies.

• Electromagnetic waves.

• etc. etc. etc.

Closely related is the Helmholtz equation:

−∆u− ω2u = 0.



The Maxwell Equations




∇ ·E = ρ ∇×E = − ∂B

∂t

∇ ·B = 0 ∇×B = J +
∂E
∂t

Model electro-magnetism.

The Maxwell equations in many environments simplify to either the
Laplace equation, or to Helmholtz-type equations.



The Shrödinger Equation

(−∆ + V )Ψ = i
∂Ψ
∂t

A related stationary problem is modelled by the Yukawa equation

(−∆ + V + ω)Ψ = 0.

These are the fundamental equations of quantum mechanics.

Finding numerical solutions is crucial in chemistry.



The Navier-Stokes Equations





ρ

(
∂

∂t
v + (v · ∇)v

)
− µ∆v +∇p = 0,

∇ · v = 0.

Models fluid flows.

In many time-stepping schemes, the iterated solution of the modified
Stokes’ equation is required. This equation reads

{
αv − µ∆v +∇p = f ,

∇ · v = 0.



Conclusion: In a broad range of applications, one is faced with the task
of numerically solving a Boundary Value Problem of the form

(BVP)

{
Au(x) = 0, x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where A is a linear constant-coefficient partial differential operator, and
B is some local linear boundary operator.



The numerical solution of linear BVP’s is frequently the time-limiting
step in computational models. Challenging environments include:

• Large-scale scattering problems.

• Equations on complicated domains:

– The equations of elasticity in an engine-block.

– Crack propagation in a fibre composite.

– Wave-propagation in heterogeneous media.

• Environments where repeated solves are necessary:

– Monte Carlo simulations in biochemistry,

– Molecular dynamics,

– Geometry optimization.

• etc. etc. etc.



For the equations that we are interested in here, free-space problems have
analytic solutions. As an example, the solution of





−∆ u(x) = f(x), x ∈ R3,

lim
|x|→∞

|u(x)| = 0,

is given by

u(x) = [G ∗ f ](x) =
∫

R3

G(x− y) f(y) dy,

where G is the fundamental solution of the Laplace operator,

G(x) =
1

4π|x| .

The function G satisfies

(3) −∆ G(x) = δ(x),

where “δ” denotes the Dirac delta function.
(Equations such as (3) have to be treated with some care. . . )



Examples of explicit fundamental solutions:

Laplace in 2D: −∆u = f G(x) = − 1
2π

log |x|

Laplace in 3D: −∆u = f G(x) =
1

4π|x|

Helmholtz in 2D: (−∆− k2) u = f G(x) = H
(1)
0 (k|x|)

Helmholtz in 3D: (−∆− k2) u = f G(x) =
eik|x|

4π|x|

Yukawa in 3D:
(−∆ + m2

)
u = f G(x) =

e−m|x|

4π|x|

Elasticity in 3D:
∑3

j,k,l=1 Cijkl(uk,jl + ul,jk) = fi G(x) = messy stuff



Remark: While it is in principle simple to write down the solution of a
free-space equation,

(INT) u(x) = [G ∗ f ](x) =
∫

R3

G(x− y) f(y) dy,

it is not a trivial matter to rapidly compute a numerical approximation of
the integral.

If you need N degrees of freedom to represent the function f , then in a
wide range of environments, there exist O(N) methods for evaluating
(INT) to high accuracy. The emergence of practical such methods with
small constants is a somewhat recent development.



On bounded domains, the fundamental solution can (at least in principle)
be used to eliminate a body load. Consider the inhomogeneous equation:

{−∆ u(x) = h(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

Now set
u = uhom + upart,

where

(5) upart(x) =
∫

Ω
G(x− y) h(y) dy.

Then uhom satisfies
{−∆uhom(x) = 0, x ∈ Ω,

uhom(x) = f(x)− upart(x), x ∈ Γ,

and we obtain a problem with no body load.

In practice, it is not so easy to evaluate (5) to high accuracy. Still, we will
henceforth assume that there are no body-loads.



Core problem: How do you numerically solve the equation

(BVP)

{
Au(x) = 0, x ∈ Ω,

B u(x) = f(x), x ∈ Γ.

where A is a linear constant-coefficient partial differential operator, and
B is some local linear boundary operator.



Option 1: Discretize the differential operator directly: Instead of

(BVP)

{
Au(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

solve

(BVP-DISC) AN uN = gN ,

where uN is a function in an N -dimensional function space, AN is an
N ×N matrix discretizing the operator A (obtained via a Finite Element
/ Finite Difference / . . . discretization), and gN is a vector of data derived
from f .



Example: Let Ω be a square, and let A = −∆. Discretize Ω into a grid,
and let AN denote the five-point stencil,

[ANϕ](i, j) =
1
h2

[
4ϕ(i, j)−ϕ(i−1, j)−ϕ(i+1, j)−ϕ(i, j−1)−ϕ(i, j +1)

]
.

Then AN is a sparse matrix.
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We next need to solve a linear system:

AN uN = gN .

Since N is typically large, using Guassian elimination would be very
expensive. However, since AN is sparse, we can use an iterative solver
(conjugate gradients/GMRES/. . . ).

Problem:

A is an unbounded operator ⇒

The matrix AN is ill-conditioned ⇒

Iterative solvers may converge slowly,
and large errors may be introduced.
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The spectrum of the discrete Laplacian (the “five-point stencil”)
approximates the spectrum of the Laplacian:
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Pre-conditioners can help solving ill-conditioned linear systems.

A pre-conditioner is an operator PN such that:

• It is cheap to apply PN to a vector.

• The product PN AN is well-conditioned.

Loosely speaking, PN ≈ A−1
N .

The idea is to use an iterative solver to solve

PN AN uN = PN gN .

The popular multigrid algorithm is a form of a pre-conditioner.

However, many problems related to ill-conditioning remain.



Option 2 (for numerically solving a BVP):
Reformulate the BVP as a Boundary Integral Equation.

Example:

(BVP)

{−∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We make the Ansatz

u(x) =
∫

Γ

(
n(y) · ∇y log |x− y|)v(y) ds(y), x ∈ Ω,

where n(y) is the outward pointing unit normal of Γ at y. Then the
boundary charge distribution v satisfies the Boundary Integral Equation

(BIE) v(x) + 2
∫

Γ

(
n(y) · ∇y log |x− y|)v(y) ds(y) = 2f(x), x ∈ Γ.

• (BIE) and (BVP) are in a strong sense equivalent.

• (BIE) is appealing mathematically (2nd kind Fredholm equation).



Second kind Fredholm Eqn.

(I + K) u = f

K is a compact (“almost finite-
dimensional”) operator.

Typical spectrum of I + K:
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The condition numbers of the discretized operators.

h Cond. nr. of discretized BIE Cond. nr. of discrete Laplacian

0.2 8.546837835256035 (N = 25) 2.1E1 (N = 50)

0.1 7.053618952378199 (N = 50) 7.0E1 (N = 200)

0.05 6.993154106860152 (N = 100) 2.6E2 (N = 800)

0.025 6.993012937976997 (N = 200) 9.9E2 (N = 1 600)

0.0125 6.993012936936591 (N = 400) 3.9E3 (N = 6 400)

0.00625 6.993012936936595 (N = 800) 1.5E4 (N = 25 600)

Rewriting the BVP as a BIE can be viewed as analytic pre-conditioning.



We frequently have a choice between:

PDE formulation ⇔ Integral Equation formulation

In many environments, there are compelling arguments in favor of the IE
formulation:

Conditioning:
When there exists an IE formulation that is a Fredholm equation of the
second kind, the mathematical equation itself is well-conditioned.

Dimensionality:
Frequently, an IE can be defined on the boundary of the domain.
(For linear problems with constant coefficients, and no body loads.)

Integral operators are benign objects:
It is (fairly) easy to implement high order discretizations of integral
operators. Relative accuracy of 10−10 or better is often achieved.



Unfortunately, there is a fundamental drawback to basing numerical
methods on integral operators:

Discretization of integral operators
typically results in dense matrices.

In the 1950’s when computers made numerical PDE solvers possible,
researchers faced a grim choice:

PDE-based: Ill-conditioned, N is too large, low accuracy.

Integral Equations: Dense system.

The integral equations lost and were largely forgotten
— they were simply too expensive.

(Except in some scattering problems where there was no choice.)



The situation changed dramatically in the 1980’s. It was discovered that
while KN is dense, it is possible to evaluate the matrix-vector product

v 7→ KN v

in O(N) operators – to high accuracy and with a small constant.

The most successful such algorithm is the Fast Multipole Method by
Rokhlin and Greengard.



A prescription for rapidly solving BVPs:

(BVP)

{−∆v(x) = 0, x ∈ Ω,

v(x) = f(x), x ∈ Γ.

Convert (BVP) to a second kind Fredholm equation:

(BIE) u(x) +
∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y) = f(x), x ∈ Γ.

Discretize (BIE) into the discrete equation

(DISC) (I + KN ) uN = fN

where KN is a (typically dense) N ×N matrix.

Fast Multipole Method — Can multiply KN by a vector in O(N) time.

Iterative solver — Solves (DISC) using
√

κ matrix-vector multiplies,
where κ is the condition number of (I + KN ).

Total complexity — O(
√

κN). (Recall that κ is small. Like 14.)



Example:

External Laplace problem with Dirichlet boundary data.

The contour is discretized into 25 600 points.

A single matrix-vector multiply takes 0.2 sec on a 2.8 Ghz desktop PC.

Fifteen iterations required for 10−10 accuracy → total CPU time is 3 sec.



For the boundary value problems where the “boundary equation +
iterative solver + FMM” methodology works, it is in a strong sense an
optimal solver:

1. The condition number of the numerical equation is similar to the
condition number κ of the original problem. As a consequence, very
high accuracy can be obtained,

achievable accuracy ∼ κ εmachine.

2. Computational complexity is asymptotically optimal:

number of flops ∼ N,

where N is the number of discretization points on the boundary.

3. Ease of discretization of a curve – as opposed to an area.
Ease of discretization of an integral operator – as opposed to a PDO.
High order schemes are easily implemented.



Limitations:

These schemes are fundamentally linear.

While almost all PDEs can be reformulated as integral equations, one
must sometimes work with integral equations defined on the domain itself
(as opposed to its boundary). In such cases, there is no gain in
dimensionality.



More research is needed:

1. Lack of systematic techniques for rewriting PDE’s to second kind
Fredholm equations on the boundary. In particular: The presence of
corners, cracks, cusps, ridges, etc, make it harder to construct second
kind Fredholm equations (the compactness of the integral operators is
compromised).

2. Lack of discretization schemes for “difficult geometries”, even in 2D.

3. Lack of systematic schemes for discretizing surfaces in 3D.



Dependence on iterative solvers is a problem:

As long as a numerical method is based on iterative solvers, its
performance is held hostage to the number of iterations required.

This is a particular problem when it comes to problems that are
inherently poorly conditioned, such as high-frequency scattering problems.

Another drawback of relying on iterative solvers is that they have a bad
reputation among developers of general-purpose software. In commercial
software development, robustness is a higher priority than performance.

New development:

• Derivation of direct solvers to complement, and hopefully replace, the
iterative ones. (V. Rokhlin, M. Tygert, PGM.)



Direct solvers

Recall that many BVPs can be recast as Boundary Integral Equations:

(BIE) u(x) +
∫

Γ
g(x, y)u(y) ds(y) = f(x), x ∈ Γ.

Upon discretization, equation (BIE) turns into a discrete equation

(DISC) (I + KN ) uN = f

where KN is a (typically dense) N ×N matrix.

A direct method computes a compressed representation for (I + KN )−1.

• Cost for pre-computing the inverse.

• Cost for applying the inverse to a vector.

In many environments, both of these costs can be made O(N).

Direct methods are good for (1) ill-conditioned problems, (2) problems with
multiple right-hand sides, (3) spectral decompositions, (4) updating, . . .



Sampling of related work:

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, et al,

2000 Inversion of hierarchically semi-separable matrices, M. Gu, et al.

2002 inversion of Lippmann-Schwinger equations, Y. Chen.



Current state of the research

The fast direct solvers that we are developing exploit the fact that
off-diagonal blocks of the matrix to be inverted have low rank.

This restricts the range of application to non-oscillatory, or moderately
oscillatory problems. In other words, we can do:

• Laplace’s equation, equations of elasticity, Yukawa’s equation,. . .

• Helmholtz’ and Maxwell’s equations for low- and intermediate freqs.

(In special cases, high frequency problem can also be solved.)

Boundary integral equations in 2D are completely understood.

Lippmann-Schwinger equations in 2D are well understood,
implementation is under way.

In 3D, we “know” how to solve the problem, but much work remains.



Technical aspects:

Once you have a compressed inverse, applying it is very similar to
applying the original operator using an FMM:

• Hierarchical (adaptive) subdivision of the computational domain.

• Outgoing fields are aggregated through an upwards pass.

• Incoming fields are aggregated through a downwards pass.

Pre-computation of the inverse operator is slightly different:

• There is only an upwards pass.

• For each subdomain, we compute operators, rather than fields.
(Inverses, and “Schur complements”).

Important differences between the current methods and classical FMM:

• Incoming and outgoing potentials are represented via tabulation.

• Randomized algorithms are used to compress low-rank matrices.



Γ1 Γ2

100 charges on Γ1 induce a potential v on Γ2.

The same potential v can be reproduced by placing only 30 charges on the
bold points in the figure below. (To within precision 10−10.)

Γskel
1

(fat points)
Γ2

One can pick the 30 charge locations so that they work for any

distribution of charges.

(In the classical FMM, a multipole expansion was used to reproduce v.)



Let A21 denote the matrix that maps charges on Γ1 to potentials on Γ2.
(In other words, A21 is an off-diagonal block of the system matrix.)

Suppose that A21 is an m× n matrix and has ε-rank k.

Then A21 allows the factorization

A21 = Acol P +O(ε)

m× n m× k k × n

where

• Acol consists of k columns of A21.

• The k × k identity matrix is a submatrix of P .

• No element of P has magnitude larger than one.

Question: How do you compute the factorization above when m and n

are much larger than k, but you can apply A21 rapidly to a vector?
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Generalization — an interpolation result:

Theorem: Let Ω be a compact set, and let V be a k-dimensional space of
complex-valued continuous functions on Ω.

Then there exist k points {xj}k
j=1 ⊆ Ω, and k continuous functions {ϕj}k

j=1

on Ω such that for all f ∈ V ,

f(x) =
k∑

j=1

f(xj)ϕj(x).

Moreover, for j = 1, . . . , k,

|ϕj(x)| ≤ 1, ∀ x ∈ Ω.

In many environments, the points (xn)N
n=1 and the functions (ϕn)N

n=1 can
be computed rapidly and accurately.

For the result regarding an m× n matrix A of rank k, simply set:

Ω = {1, 2, . . . , n}, V = Row(A).



Randomized algorithms:
(Mark Tygert, Vladimir Rokhlin, PGM)

A rank-k approximation to a matrix A can be obtained via the
application of A to k + 20 random vectors.

Theorem: Let A be an m×n matrix and let k be an integer. Set l = k+20,
and let G be an n × l matrix with i.i.d. Gaussian elements. Let (qj)k

j=1

denote the first k left singular vectors of A G and set Q = [q1, . . . , qk]. Then
with probability at most 10−17,

||A−QQt A||2 ≤ 10
√

(k + 20)m σk+1,

where σj denotes the j’th singular value of A.

Such algorithms could potentially solve many problems where
Lanczos-type methods have disappointed.

A particularly interesting application concerns network matrices (“Google” matrices).



The Rokhlin-paradigm for solving PDEs:

1. Rewrite as a second kind Fredholm equation.

2. Use iterative solvers + FMM to solve the integral equation.

Work in progress:

• Replace [Iterative solver + FMM] by direct solvers. 2D is done.

• Interpolative representation of functions.

• Randomized algorithms.

Applications:

• Fast methods for anisotropic elasticity.

• Heterogeneous materials: percolation and wave-propagation.

• Computational strategies for modeling biochemical phenomena, in
particular, ion channels and macro-molecules in ionic solutions.


