In this talk, we will discuss numerical methods for solving the equation

(BVP)
$$\begin{cases} A u(x) = 0, & x \in \Omega, \\ B u(x) = f(x), & x \in \Gamma, \end{cases}$$

where A is a linear constant-coefficient partial differential operator, and B is some local linear boundary operator (e.g. Dirichlet B.C. $\Leftrightarrow B = I$).

We'll start by collecting some examples of practical interest.

LAPLACE'S EQUATION

$$\begin{cases}
-\Delta u(x) = 0, & x \in \Omega, \\
u(x) = f(x), & x \in \Gamma,
\end{cases}$$

where

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2},$$

and where Ω is a domain with boundary Γ , f is a given function on the boundary, v is the unknown function.

- Equilibrium equation for diffusive processes (heat conduction, etc.).
- Viscous fluid flows.
- Static electric and magnetic fields.
- Gravitational fields.
- Etc. etc. etc. etc.

The equations of linear elasticity

Let $u(x) = [u_1(x), u_2(x)]$ denote the displacement of a piece of elastic material in equilibrium. Then u satisfies

$$-\mu \Delta u_1 - \kappa \left(\frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_1 x_2} \right) = 0, \quad \text{on } \Omega,$$
$$-\mu \Delta u_2 - \kappa \left(\frac{\partial^2 u_1}{\partial x_1 x_2} + \frac{\partial^2 u_2}{\partial x_2^2} \right) = 0, \quad \text{on } \Omega,$$

where μ and κ are material constants. Dirichlet boundary conditions read

$$(u_1, u_2) = (f_1, f_2),$$
 on Γ .

Closely related to the bi-harmonic equation,

$$(-\Delta)^2 u = 0.$$

THE WAVE EQUATION

$$-\Delta u + \frac{\partial^2 u}{\partial t^2} = 0$$

Describes wave propagation in a range of different applications:

- Waves in fluids.
- (Certain) waves in elastic bodies.
- Electromagnetic waves.
- etc. etc. etc.

Closely related is the Helmholtz equation:

$$-\Delta u - \omega^2 u = 0.$$

THE MAXWELL EQUATIONS

$$\begin{cases} \nabla \cdot \mathbf{E} = \rho & \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 & \nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \end{cases}$$

Models electro-magnetism.

The Maxwell equations in many environments simplify to either the Laplace equation, or to the wave equation (and thence to the Helmholtz equation).

THE SHRÖDINGER EQUATION

$$(-\Delta + V)\Psi = i\frac{\partial\Psi}{\partial t}$$

A related stationary problem is modelled by the Yukawa equation

$$(-\Delta + V + \omega)\Psi = 0.$$

These are the fundamental equations of quantum mechanics.

Finding numerical solutions is crucial in chemistry.

THE NAVIER-STOKES EQUATIONS

$$\begin{cases} \rho \left(\frac{\partial}{\partial t} \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) - \mu \Delta \mathbf{v} + \nabla p = 0, \\ \nabla \cdot \mathbf{v} = 0. \end{cases}$$

Models fluid flows.

In common time-stepping schemes, the iterated solution of the modified Stokes' equation is required. This equation reads

$$\begin{cases} \alpha \mathbf{v} - \mu \Delta \mathbf{v} + \nabla p = \mathbf{f}, \\ \nabla \cdot \mathbf{v} = 0. \end{cases}$$

Conclusion: In a broad range of applications, one is faced with the task of numerically solving a Boundary Value Problem of the form

(BVP)
$$\begin{cases} A u(x) = 0, & x \in \Omega, \\ B u(x) = f(x), & x \in \Gamma, \end{cases}$$

where A is a linear constant-coefficient partial differential operator, and B is some local linear boundary operator (e.g. Dirichlet B.C. $\Leftrightarrow B = I$).

The numerical solution of linear BVP's is frequently the time-limiting step in computational models. Challenging environments include:

- Large-scale scattering problems.
- Equations on complicated domains:
 - The equations of elasticity in an engine-block.
 - Crack propagation in a fibre composite.
 - Wave-propagation in heterogeneous media.
- Environments where repeated solves are necessary:
 - Monte Carlo simulations in biochemistry,
 - Molecular dynamics,
 - Geometry optimization.
- etc. etc. etc.

For the equations we are interested in here, free-space equations have analytic solutions. As an example, the solution of

$$\begin{cases}
-\Delta u(x) = f(x), & x \in \mathbb{R}^3, \\
\lim_{|x| \to \infty} |u(x)| = 0,
\end{cases}$$

is given by

$$u(x) = [G * f](x) = \int_{\mathbb{R}^3} G(x - y) f(y) dy,$$

where G is the fundamental solution of the Laplace operator,

$$G(x) = \frac{1}{4\pi|x|}.$$

Loosely speaking, the function G satisfies

$$-\Delta G(x) = \delta(x).$$

Examples of explicit fundamental solutions:

Laplace in 2D:

$$-\Delta u = f$$

$$-\Delta u = f$$
 $G(x) = -\frac{1}{2\pi} \log|x|$

Laplace in 3D:

$$-\Delta u = f$$

$$-\Delta u = f \qquad G(x) = \frac{1}{4\pi|x|}$$

Helmholtz in 2D:

$$(-\Delta - k^2) u = f$$

$$(-\Delta - k^2) u = f$$
 $G(x) = H_0^{(1)}(k|x|)$

Helmholtz in 3D:

$$(-\Delta - k^2) u = f$$

$$(-\Delta - k^2) u = f$$
 $G(x) = \frac{e^{ik|x|}}{4\pi |x|}$

Yukawa in 3D:

$$(-\Delta + m^2) \ u = f$$

$$(-\Delta + m^2) u = f \qquad G(x) = \frac{e^{-m|x|}}{4\pi|x|}$$

Elasticity in 3D:

$$\sum_{j,k,l=1}^{3} C_{ijkl}(u_{k,jl} + u_{l,jk}) = f_i \qquad G(x) = \text{messy stuff}$$

$$G(x) = \text{messy stuff}$$

Remark: While it is in principle a trivial matter to write down the solution of a free-space equation,

(INT)
$$u(x) = [G * f](x) = \int_{\mathbb{R}^3} G(x - y) f(y) dy,$$

it is not a trivial matter to rapidly compute a numerical approximation of the integral.

If you need N degrees of freedom to represent the function f, then in a wide range of environments, there exist O(N) methods for evaluating (INT) to high accuracy. However, these are somewhat recent results.

The real difficulties arise when boundaries are present.

$$\begin{cases}
-\Delta u(x) = h(x), & x \in \Omega, \\
u(x) = f(x), & x \in \Gamma,
\end{cases}$$

It is in principle simple to eliminate the body load. Set

$$u = u_{\text{hom}} + u_{\text{part}},$$

where

(4)
$$u_{\text{part}}(x) = \int_{\Omega} G(x - y) h(y) dy.$$

Then u_{hom} satisfies

$$\begin{cases}
-\Delta u_{\text{hom}}(x) = 0, & x \in \Omega, \\
u_{\text{hom}}(x) = f(x) - u_{\text{part}}(x), & x \in \Gamma,
\end{cases}$$

and we obtain a problem with no body load.

In practice, it is not so easy to evaluate (4) to high accuracy.

Still, we will henceforth assume there are no body-loads.

For simple geometries, separation of variables does the trick.

Example: Set $\Omega = \{x \in \mathbb{R}^2 : |x| \leq 1\}$, and consider

(5)
$$\begin{cases} -\Delta u(x) = 0, & x \in \Omega, \\ u(x) = f(x), & x \in \Gamma, \end{cases}$$

Use polar coordinates, $(x_1, x_2) = (r \cos \theta, r \sin \theta)$, and Fourier expand f,

$$f(\theta) = \alpha_0 + \sum_{n=1}^{\infty} (\alpha_n \cos(n\theta) + \beta_n \sin(n\theta)).$$

The solution u is given by

$$u(x) = \alpha_0 + \sum_{n=1}^{\infty} (\alpha_n r^n \cos(n\theta) + \beta_n r^n \sin(n\theta)).$$

Similar solutions exist for rectangles, half-planes, strips, pie-slices, spheres, cones, cylinders, etc.

In such environments, FFT-type methods produce extremely fast solvers.

(Recent result by M. Tygert: very fast algorithms for rapidly expanding functions in spherical harmonics, or other orthogonal systems.)

Core problem: How do you numerically solve the equation

(BVP)
$$\begin{cases} A u(x) = 0, & x \in \Omega, \\ B u(x) = f(x), & x \in \Gamma. \end{cases}$$

where A is a linear constant-coefficient partial differential operator, and B is some local linear boundary operator.

Option 1: Discretize the differential operator directly: Instead of

(BVP)
$$\begin{cases} A u(x) = 0, & x \in \Omega, \\ u(x) = f(x), & x \in \Gamma, \end{cases}$$

solve

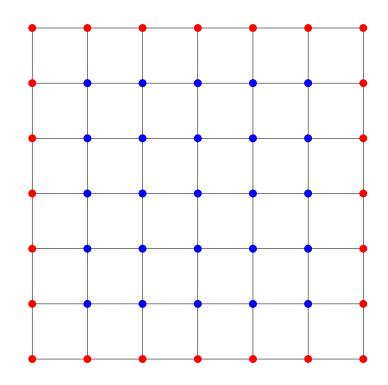
(BVP-DISC)
$$A_N u_N = g_N,$$

where u_N is a function in an N-dimensional function space, A_N is an $N \times N$ matrix discretizing the operator A (obtained via a Finite Element / Finite Differencees / ... discretization), and g_N is a vector of data derived from f.

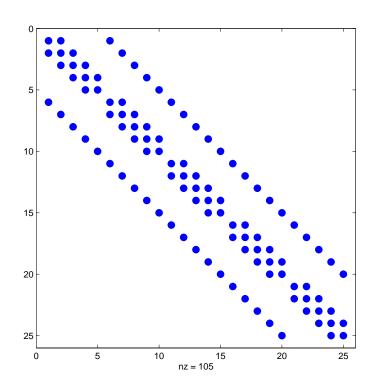
Example: Let Ω be a square, and let $A = -\Delta$. Discretize Ω into a grid, and let A_N denote the five-point stencil,

$$[A_N\varphi](i,j) = \frac{1}{h^2} \left(4\varphi(i,j) - \varphi(i-1,j) - \varphi(i+1,j) - \varphi(i,j-1) - \varphi(i,j+1) \right).$$

Then A_N is a sparse matrix.



The grid.



Sparsity pattern of A_N .

We next need to solve a linear system:

$$A_N u_N = g_N.$$

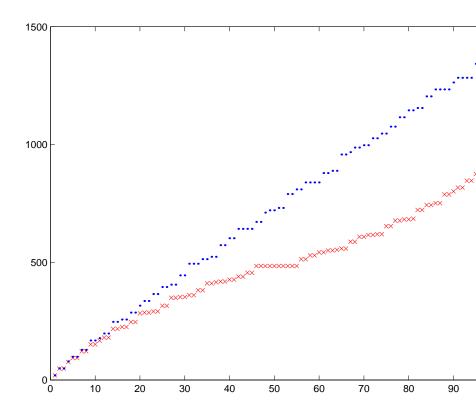
Since N is typically large, using Guassian elimination would be very expensive. However, since A_N is sparse, we can use an iterative solver (conjugate gradients/GMRES/...).

Problem:

A is an unbounded operator \Rightarrow

The matrix A_N is ill-conditioned \Rightarrow

The iterative solver converges slowly.



Pre-conditioners can help solving ill-conditioned linear systems.

A pre-conditioner is an operator P_N such that:

- It is cheap to apply P_N to a vector.
- The product $P_N A_N$ is well-conditioned.

Loosely speaking, $P_N \approx A_N^{-1}$.

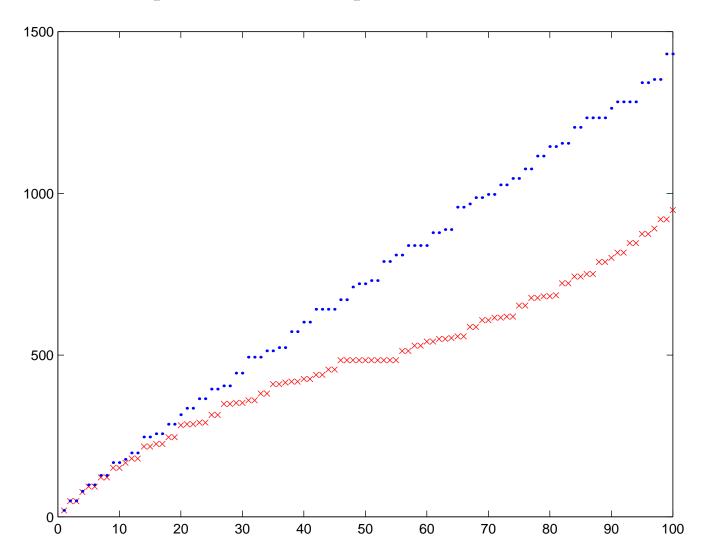
The idea is to use an iterative solver to solve

$$P_N A_N u_N = P_N g_N.$$

The popular multigrid algorithm is a form of a pre-conditioner.

However, many problems related to ill-conditioning remain.

The spectrum of the discrete Laplacian (the "five-point stencil") approximates the spectrum of the Laplacian:



Option 2 (for numerically solving a BVP):

Reformulate the BVP as a Boundary Integral Equation.

Example:

(BVP)
$$\begin{cases} -\Delta u(x) = 0, & x \in \Omega, \\ u(x) = f(x), & x \in \Gamma, \end{cases}$$

We make the following Ansatz:

$$u(x) = \int_{\Gamma} (n(y) \cdot \nabla_y \log |x - y|) v(y) ds(y), \qquad x \in \Omega,$$

where n(y) is the outward pointing unit normal of Γ at y. Then the boundary charge distribution u satisfies the Boundary Integral Equation

(BIE)
$$v(x) + 2 \int_{\Gamma} (n(y) \cdot \nabla_y \log|x - y|) v(y) ds(y) = 2f(x), \quad x \in \Gamma.$$

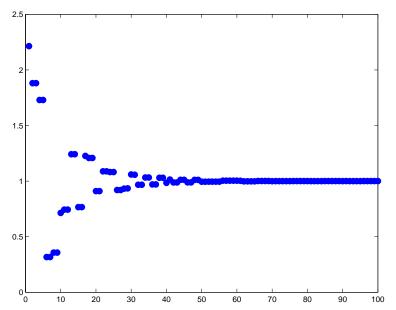
- (BIE) and (BVP) are in a strong sense equivalent.
- (BIE) is appealing mathematically (2nd kind Fredholm equation).

Second kind Fredholm Eqn.

$$(I+K) u = f$$

K is a compact ("almost finite-dimensional") operator.

Typical spectrum of I + K:

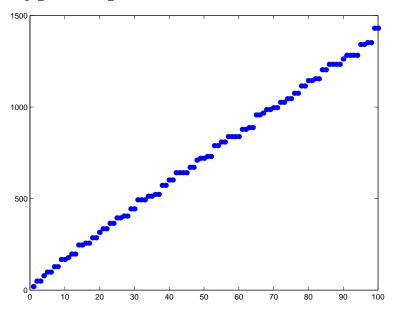


Partial Differential Equation

$$-\Delta u = g$$

 $-\Delta$ is an unbounded operator.

Typical spectrum of $-\Delta$:



The condition numbers of the discretized operators.

h	Cond. nr. of discretized BIE	Cond. nr. of discrete Laplacian
0.2	8.546837835256035 (N=25)) $2.1E1 (N = 50)$
0.1	7.053618952378199 (N = 50)) $7.0E1 (N = 200)$
0.05	6.993154106860152 (N = 100)	0) $2.6E2 (N = 800)$
0.025	6.993012937976997 (N = 200)	0) $9.9E2 (N = 1600)$
0.0125		0) $3.9E3 (N = 6400)$
0.00625	6.993012936936595 (N = 800)	0) $ 1.5E4 (N = 25600)$

Rewriting the BVP as a BIE can be viewed as analytic pre-conditioning.

We frequently have a choice between:

PDE formulation \Leftrightarrow Integral Equation formulation

There are compelling arguments in favor of the IE formulation:

Conditioning:

When there exists an IE formulation that is a Fredholm equation of the second kind, the mathematical equation itself is well-conditioned.

Dimensionality:

Frequently, an IE can be defined on the boundary of the domain.

Integral operators are benign objects:

It is (relatively) easy to implement high order discretizations of integral operators. Relative accuracy of 10^{-10} or better is often achieved.

Unfortunately, there is a fundamental drawback to basing numerical methods on integral operators:

Discretization of integral operators typically results in dense matrices.

In the 1950's when computers made numerical PDE solvers possible, researchers faced a grim choice:

PDE-based:	Ill-conditioned, N is too large, low accuracy.
Integral Equations:	Dense system.

The integral equations lost and were largely forgotten
— they were simply too expensive.

(Except in some scattering problems where there was no choice.)

The situation changed dramatically in the 1980's. It was discovered that while K_N is dense, it is possible to evaluate the matrix-vector product

$$v \mapsto K_N v$$

in O(N) operators – to high accuracy and with a small constant.

The most successful such algorithm is the Fast Multipole Method by Rokhlin and Greengard.

Let

$$(I+K_N)\,v_N=g_N,$$

denote the discretized version of a second kind Fredholm equation, e.g.

$$u(x) + 2 \int_{\Gamma} (n(y) \cdot \nabla_y \log|x - y|) u(y) ds(y) = 2f(x), \qquad x \in \Gamma.$$

A PRESCRIPTION FOR RAPIDLY SOLVING BVPs:

(BVP)
$$\begin{cases} -\Delta v(x) = 0, & x \in \Omega, \\ v(x) = f(x), & x \in \Gamma. \end{cases}$$

Convert (BVP) to a second kind Fredholm equation:

(BIE)
$$u(x) + \int_{\Gamma} (n(y) \cdot \nabla_y \log|x - y|) u(y) ds(y) = f(x), \quad x \in \Gamma.$$

Discretize (BIE) into the discrete equation

(DISC)
$$(I + K_N)u_N = f_N$$

where K_N is a (typically dense) $N \times N$ matrix.

Fast Multipole Method — Can multiply K_N by a vector in O(N) time.

Iterative solver — Solves (DISC) using $\sqrt{\kappa}$ matrix-vector multiplies, where κ is the condition number of $(I + K_N)$.

Total complexity — $O(\sqrt{\kappa} N)$. (Recall that κ is small. Like 14.)

Example:

External Laplace problem with Dirichlet boundary data.

The contour is discretized into $25\,600$ points.

A single matrix-vector multiply takes 0.2 sec on a 2.8 Ghz desktop PC.

Fifteen iterations required for 10^{-10} accuracy \rightarrow total CPU time is 3 sec.

For the boundary value problems where the "boundary equation + iterative solver + FMM" methodology works, it is in a strong sense an optimal solver:

1. The condition number of the numerical equation is similar to the condition number of the original problem. As a consequence, very high accuracy can be obtained,

achievable accuracy $\sim \kappa \, \varepsilon_{\text{machine}}$.

2. Computational complexity is asymptotically optimal:

number of flops $\sim N$,

where N is the number of discretization points on the boundary.

3. Ease of discretization of a curve – as opposed to an area.

Ease of discretization of an integral operator – as opposed to a PDO.

High order schemes are easily implemented.

<u>Limitations:</u>

These schemes are fundamentally linear.

Not all BVPs can be reformulated as boundary integral equations. For those that cannot, there is no gain in dimensionality.

More research is needed:

- 1. Lack of systematic techniques for rewriting PDE's to second kind Fredholm equations on the boundary. In particular: The presence of corners, cracks, cusps, ridges, etc, make it harder to construct second kind Fredholm equations (the compactness of the integral operators is compromised).
- 2. Lack of discretization schemes for "difficult geometries", even in 2D.
- 3. Lack of systematic schemes for discretizing surfaces in 3D.

Dependence on iterative solvers is a problem:

As long as a numerical method is based on iterative solvers, its performance is held hostage to the number of iterations required.

This is a particular problem when it comes to problems that are inherently poorly conditioned, such as high-frequency scattering problems.

Another drawback of relying on iterative solvers is that they have a bad reputation among developers of general-purpose software. In commercial software development, robustness is a higher priority than performance.

New development:

• Derivation of direct solvers to complement, and hopefully replace, the iterative ones. (PGM, V. Rokhlin, M. Tygert)

DIRECT SOLVERS

Recall that many BVPs can be cast in the following form:

(BIE)
$$u(x) + \int_{\Gamma} g(x, y)u(y) ds(y) = f(x), \qquad x \in \Gamma.$$

Upon discretization, equation (BIE) turns into a discrete equation

(DISC)
$$(I + K_N)u = f$$

where K_N is a (typically dense) $N \times N$ matrix.

A direct method computes a compressed representation for $(I + K_N)^{-1}$.

- Cost for pre-computing the inverse.
- Cost for applying the inverse to a vector.

In many environments, both of these costs can be made O(N).

Direct methods are good for (1) ill-conditioned problems, (2) problems with multiple right-hand sides, (3) spectral decompositions, (4) updating, ...

Sampling of related work:

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, et al,

2002 inversion of Lippmann-Schwinger equations, Y. Chen.

Current state of the research

The fast direct solvers we are developing exploit the fact that off-diagonal blocks of the matrix to be inverted have low rank.

This restricts the range of application to non-oscillatory, or moderately oscillatory problems. In other words, we **can** do:

- Laplace's equation, equations of elasticity, Yukawa's equation,...
- Helmholtz' and Maxwell's equations for low- and intermediate freqs.

(In special cases, high frequency problem can also be solved.)

Boundary integral equations in 2D are completely understood.

Lippmann-Schwinger eqns in 2D are well understood, implementation is under way.

In 3D, we "know" how to solve the problem, but much work remains.

TECHNICAL ASPECTS:

Once you have a compressed inverse, applying it is very similar to applying the original operator using an FMM:

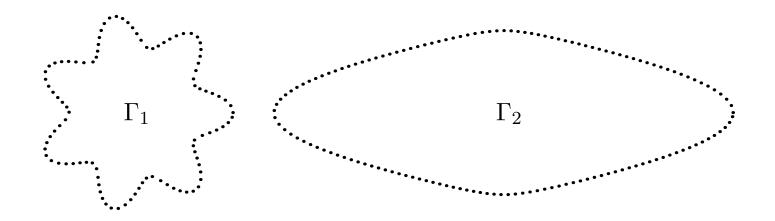
- Hierarchical (adaptive) subdivision of the computational domain.
- Outgoing fields are aggregated through an upwards pass.
- Incoming fields are aggregated through a downwards pass.

Pre-computation of the inverse operator is slightly different:

- There is only an upwards pass.
- For each subdomain, we compute operators, rather than fields. (Inverses, and "Schur complements").

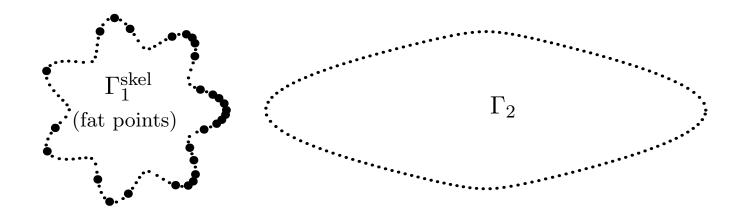
Important differences between the current methods and classical FMM:

- Incoming and outgoing potentials are represented via tabulation.
- Randomized algorithms are used to compress low-rank matrices.



100 charges on Γ_1 induce a potential v on Γ_2 .

The same potential v can be reproduced by placing only 30 charges on the bold points in the figure below. (To within precision 10^{-10} .)



One can pick the 30 charge locations so that they work for **any** distribution of charges.

(In the classical FMM, a multipole expansion was used to reproduce v.)

Let A_{21} denote the matrix that maps charges on Γ_1 to potentials on Γ_2 . (In other words, A_{21} is an off-diagonal block of the system matrix.)

Suppose that A_{21} is an $m \times n$ matrix and has ε -rank k.

Then A_{21} allows the factorization

$$A_{21} = A_{col} \quad P \quad +O(\varepsilon)$$
 $m \times n \quad m \times k \quad k \times n$

where

- A_{col} consists of k columns of A_{21} .
- The $k \times k$ identity matrix is a submatrix of P.
- No element of P has magnitude larger than one.

Let A_{21} denote the matrix that maps charges on Γ_1 to potentials on Γ_2 . (In other words, A_{21} is an off-diagonal block of the system matrix.)

Suppose that A_{21} is an $m \times n$ matrix and has ε -rank k.

Then A_{21} allows the factorization

$$A_{21} = A_{col} \quad P \quad +O(\varepsilon)$$
 $m \times n \quad m \times k \quad k \times n$

where

- A_{col} consists of k columns of A_{21} .
- The $k \times k$ identity matrix is a submatrix of P.
- No element of P has magnitude larger than one.

Question: How do you compute the factorization above when m and n are much larger than k, but you can apply A_{21} rapidly to a vector?

Generalization — an interpolation result:

Theorem: Let Ω be a compact set, and let V be a k-dimensional space of complex-valued continuous functions on Ω .

Then there exist k points $\{x_j\}_{j=1}^k \subseteq \Omega$, and k continuous functions $\{\varphi_j\}_{j=1}^k$ on Ω such that for all $f \in V$,

$$f(x) = \sum_{j=1}^{k} f(x_j) \varphi_j(x).$$

Moreover, for $j = 1, \ldots, k$,

$$|\varphi_j(x)| \le 1, \quad \forall \ x \in \Omega.$$

In many environments, the points $(x_n)_{n=1}^N$ and the functions $(\varphi_n)_{n=1}^N$ can be computed rapidly and accurately.

For the result regarding an $m \times n$ matrix A of rank k, simply set:

$$\Omega = \{1, 2, \dots, n\}, \qquad V = \text{Row}(A).$$

Randomized algorithms:

(Mark Tygert, Vladimir Rokhlin, PGM)

A rank-k approximation to a matrix A can be obtained via the application of A to k + 20 random vectors.

Theorem: Let A be an $m \times n$ matrix and let k be an integer. Set l = k+20, and let G be an $n \times l$ matrix with i.i.d. Gaussian elements. Let $(q_j)_{j=1}^k$ denote the first k left singular vectors of AG and set $Q = [q_1, \ldots, q_k]$. Then with probability at most 10^{-17} ,

$$||A - Q Q^{t} A||_{2} \le 10 \sqrt{(k+20) m} \sigma_{k+1},$$

where σ_j denotes the j'th singular value of A.

This should be compared to Krylov-subspace methods (Lanczos etc.).

The Rokhlin-paradigm for solving PDEs:

- 1. Rewrite as a second kind Fredholm equation.
- 2. Use iterative solvers + FMM to solve the integral equation.

Work in progress:

- Replace [Iterative solver + FMM] by direct solvers. 2D is done.
- Interpolative representation of functions.
- Randomized algorithms.

Applications:

- Fast methods for anisotropic elasticity.
- Heterogeneous materials: percolation and wave-propagation.
- Computational strategies for modeling biochemical phenomena, in particular, ion channels and macro-molecules in ionic solutions.