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Goal: To find methods for designing structures that support no

propagating waves in certain pre-scribed frequency bands.
Applications: Most notably in optics: design of wave-guides, etc.

A representative problem:

Meaiufz Oscillating load
amp 1tude f = fO SlIl(Ldt)
here.

Design the blue box so that the amplitude of the vibration

at the attachment point is minimized.



A simple solution strategy:

Step 1:
Solve a problem with a re-
peating unit cell in an infinite
medium.

Step 2:
Construct the finite box using
suitably many units of the cell

constructed in Step 1.

This strategry is sub-optimal but leads to structures that are simple both

to design and to construct.
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The wave propagation problem in the infinitely repeating unit cell is

formulated as a Helmholtz problem with periodic boundary conditions:

—V - (A(z)Vu(z)) = mwiu(z), z e (0,1)?=Q,
u(z + e1) = u(x)e!?, x € 0},
u(z + e3) = u(x)e?, x € O0f).

where A(x) is the local stiffness of the material and

W is the frequency of the oscillation,
£ = (&, &) is the wave number (“Bloch vector”)



Now consider the analogous problem on a mass-spring system.

For such structures:

(a) the equation on the unit cell reduces to a matrix equation, and,

(b) such structures capture key phenomena of continuum problems.

Lattice materials form a good sand box for developing understanding.

We will demonstrate a simple heuristic method for placing bandgaps.



Let us determine the wave propagation modes for anti-plane waves of

frequency w with wave vector & € (—m, m)? in a very simple 2D lattice.

up = e 2uy,
uw = e 2y,
un = eSluyy,

ug = e Clyy,.

The equilibrium equation for the blue node reads

mwzuM = k?(4’LLM —US —UN — UW _UE)a

where m is the mass of a node, and k is the spring constant of the bars.

Inserting the periodicity assumption, we obtain the equation

mw uy = ko (&)un,

where

o(€) =4 —el¥t — 7181 _ple2 _ o712 — g2 % + 4 sin* %2



The conclusion from the calculation is that for a given wave-vector

¢ = (&, &) € (—m, 7)2, only waves of frequency

k
Ww=4/]— 4sin2§—1+4sin2£—2
m 2 2

can propagate through the lattice.
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The symbol conveniently encodes all the relevant information about the
lattice. Some of this information can be visualized by plotting the

eigenvalues of o(§) as & travels along the path B — 0 — A — B.



Dispersion diagram for the square lattice:
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To the original lattice (black The corresponding dispersion
and red), we add the blue diagram.
nodes and the green springs. Note the band gap!



What determines the location of the bandgap?
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Look at an isolated oscillator. For the case plotted here,

Its equation is Mose = 2,
moscwgscu = 4kosctt, and
SO kosc — 17
Wosc = 2 kOSC . S0

m
08¢ Wosc = \/§
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The corresponding dispersion
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moscwgsc U9 _ kOSC —1 3 —1 0 (V%)

ua 0 -1 3 —1 s
i U4 | i —1 0 —1 3 1 L U4 ]

The eigenvalues of the matrix are {1, 3, 3, 5}, so

o kosc 3 kosc 5 kosc
Wosc = , , i
Mosc Mosc Mosc




In-plane vibrations — two distinct types of lattices

Truss Lattices Frame Lattices
Strength from axial stiffness. Strength from bending stiffness.
Symbol is always a matrix: Symbol is always a matrix:

2 degrees of freedom per node. 3 degrees of freedom per node.
Typically quite stiff. Typically quite soft

(but anisotropic).
Asymptotics: Classical elasticity. Asymptotics: Cosserat elasticity:.
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The corresponding dispersion

A triangular lattice.

diagram.

Modelled as a truss.



The corresponding dispersion

diagram.

A triangular lattice with a

simple oscillator.
Modelled as a truss.



A tri lar latti ith : ; ‘
Hangiial 1attlce with - a The corresponding dispersion

complicated oscillator. :
diagram.

Modelled as a truss.



The corresponding dispersion diagram.

Notice the “soft” modes.

A honeycomb lattice.

Modelled as a frame.



18
161
14
1.2}
0.8
0.6
0.4
0.2

A honeycomb lattice with an

The corresponding dispersion diagram.

oscillator.

Modelled as a frame.



SUMMARY.

e For infinite lattice structures, the problem on the unit cell simplifies

to an eigenvalue problem for a smallish matrix.

e Due to the simplicity of the model, it is easy to “place” bandgaps.

Heuristic understanding of the problem.

e It is possible to take advantage of the anisotropy of frame lattices to

place bandgaps in low frequency bands.



