
A fast direct solver for boundary integral
equations in two dimensions

P.G. Martinsson and V. Rokhlin

Yale University

Thanks to: M. Tygert

Boundary equation representation of a PDE

Example: Let us represent the solution of the boundary value problem

(BVP)

{−∆v(x) = 0, x ∈ Ω,

v(x) = f(x), x ∈ Γ,

as a double layer potential,

v(x) =
∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y), x ∈ Ω,

where n(y) is the outward pointing unit normal of Γ at y. Then the
boundary charge distribution u satisfies the boundary integral equation

(BIE)
1
2
u(x) +

∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y) = f(x), x ∈ Γ.

• (BIE) and (BVP) are in a strong sense equivalent.

• (BIE) is appealing mathematically (2nd kind Fredholm equation).

BIE as foundation for numerics

Suppose that we wish to numerically solve the integral equation

u(x) +
∫

Γ
K(x, y)u(y) ds(y) = f(x), x ∈ Γ.

We first discretize the contour into n points

Γ ∼ [x1, . . . , xn].

Then the operator
∫

Γ
K(x, y)u(y) ds(y)

turns into a matrix A with entries (sort of)

Aij = K(xi, xj), i, j = 1, . . . , n.

Γ

xi

Since A is dense, it appears that

the cost for constructing A is O(n2) (with a large constant),

the cost for solving (I + A)u = f is O(n3).

Fast solution of boundary integral equations

We let A denote the dense n× n matrix discretizing the operator
∫

Γ
K(x, y)u(y) ds(y).

There exist O(n logq n) algorithms (q = 0, 1, 2) that evaluate the map

u 7→ Au.

These include the Fast Multipole Method, Panel Clustering, multigrid,
wavelets,. . .
Developed circa 1980 – 1985.

Using iterative (Krylov) methods, the equation

(I + A)u = f

can be solved using O(
√

κ · n logq n) operations, where κ is the condition
number of I + A.

BIE formulations exist for many classical BVPs

Laplace −∆u = f ,

Elasticity
1
2
Eijkl

(
∂2uk

∂xl∂xj
+

∂2ul

∂xk∂xj

)
= fi,

Stokes ∆u = ∇p, ∇ · u = 0,

Helmholtz (−∆− k2)u = f ,

Schrödinger (−∆ + V)Ψ = i
∂Ψ
∂t

,

Maxwell




∇ ·E = ρ ∇×E = − ∂B

∂t

∇ ·B = 0 ∇×B = J +
∂E
∂t

. . . and for some non-classical ones. . .

The lattice Laplace equation
{−∆u(m) = 0, m ∈ Ω ⊂ Z2,

u(m) = g(m), m ∈ Γ = ∂Ω.

where m = (m1,m2) is an integer index and

∆u(m1,m2) =u(m1 − 1,m2)− 2u(m1, m2) + u(m1 + 1,m2)+

u(m1,m2 − 1)− 2u(m1, m2) + u(m1, m2 + 1),

has a well-conditioned boundary formulation on Γ.

Spitzer (1969), M. and Rodin (2002), M. and Babuška (2002).

When fast boundary methods work, they are:

Accurate: The computational error should be roughly κ ε, where ε is the
machine precision and κ is the actual condition number.

Optimally efficient: The CPU time requirement should be roughly
proportional to N , the actual complexity of the problem.

Robust: The computation should be black-box with no need for
fine-tuning, parameter-selection, etc. In particular, delicate mesh-
requirements currently form a major obstacle.

The technique of solving boundary value problems (BVP) via fast iterative
techniques for solving boundary integral equations (BIE) works best when

(1) there is no body force,

(2) the differential operator has constant coefficients,

(3) the BVP is linear,

(4) the BIE that is used is well-conditioned.

Over the last 20 years, much progress has been made in extending the
technique to overcome the apparent obstreperousness of problems
violating conditions (1), (2) and (3).

However, to overcome (4), we need a . . .

direct solver.

Benefits of a direct solver:

• ill-conditioned problems,

• multiple right-hand sides,

• up-dating a known solution to find the solution of another problem
that is “close”,

• constructing the SVD and other factorizations of the matrix.

There exist partial results in this direction:

• E. Michielssen, A. Boag and W.C. Chew (1996),

• G. Beylkin and N. Coult (1998),

• H-matrix methods (ca. 1998), W. Hackbusch, M. Bebendorf,
S. Börm, L. Grasedyck, S. Sauter.

• Y. Chen (2002).

For non-oscillatory problems, the off-diagonal blocks of the ma-
trix A that discretizes the integral operator have low rank.

ΓI – evaluate here

ΓJ – charges here

BI

J

A contour and the dense n× n matrix.

The sub-matrix B has elements

Bij = K(xi, xj), i ∈ I, j ∈ J.

Compression of rank-deficient matrices

Let B be an m× n matrix with rank k.

Using O(mnk) arithmetic operations, we can find k rows of B that form a
well-conditioned basis for the row-space of B. In other words, there exists
a well-conditioned set of row operations with the following effect:

→

→




b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




u
u
u
u

u
u
u
u

-
Q
Q
Q
Q
Q
Qs

@
@
@
@
@
@R

PPPPPPq��
��

��1

-PPPPPPq-




b11 b12 b13 b14

b31 b32 b33 b34

0 0 0 0

0 0 0 0




For large matrices, we illustrate such row operations as follows:

row ops−→

The results presented here follow from results by Gu and Eisenstat (1996).

Single-level compression

(a)

Step 1−→

(b)

Step 2−→

(c)

Step 1: Apply row operations in the top row of blocks to introduce zeros
in the blocks marked with ’x’ in (a).

Step 2: Apply column operations in the left column of blocks to
introduce zeros in the blocks marked with ’x’ in (b).

Important: The non-zero off-diagonal blocks that remain in (c) are
sub-matrices of the off-diagonal blocks in (a).

Single-level compression, more . . .

row ops−→ col ops−→

row ops−→ col ops−→

row ops−→ col ops−→ Schur−→

The single-level compression can be represented as a matrix factorization:

A−1 = B Ã−1 C + D,

where Ã is the compressed matrix and B, C and D are block-diagonal.

−1

=

−1

+

A−1 B Ã−1 C D

Important: The off-diagonal blocks of Ã are submatrices of the
off-diagonal blocks of A.

Hierarchical Compression

↓ Compress ↗ ↓ Compress ↗ ↓ Compress

Cluster Cluster

Expressed in terms of matrix algebra, the hierarchical scheme is obtained
by setting A = A(1) and telescoping the factorization

(1)
[
A(1)

]−1
= B(1)

[
Ã(1)

]−1
C(1) + D(1).

That is, we set A(2) = Ã(1) (with blocks clustered) and compress A(2);

(2)
[
A(2)

]−1
= B(2)

[
Ã(2)

]−1
C(2) + D(2).

Combining (1) and (2), we obtain
[
A(1)

]−1
= B(1)

(
B(2)

[
Ã(2)

]−1
C(2) + D(2)

)
C(1) + D(1).

The process is continued recursively.

The output of the scheme is:

• A compressed block matrix Ã.

• A sequence of block-diagonal matrices {B(q), C(q), D(q)}Q
q=1.

Some comments:

So far, the scheme is generic — it depends only on rank considerations.

When applied to a matrix representing a non-oscillatory contour integral
equation, the complexity of the scheme is O(n2 log n).

Instead of the skeleton compression, we could have used the SVD.

However, the fact that the skeletons preserve the structure of the matrix
in a certain sense allows for an improvement that leads to O(n logq n)
complexity (for q = 1, 2).

A scheme tailored for boundary integral equations

The most expensive part of the computation is the compression of the
off-diagonal blocks.

Γ1

A segmented contour and the corresponding matrix.

Since the off-diagonal blocks are not updated, we only need to determine
the row and column operations and apply them to the diagonal block.
This is a local operation!

Γ1

Γ\Γ1

Instead of compressing the large
matrix representing the interac-
tion between Γ1 and all of the
rest of the contour...

Γ1

Γartif

... it is sufficient to compress only
the interaction between Γ1 and
the artificial contour Γartif .

Caveat emptor:

One step in the scheme relies on the following matrix factorization (which
is a version of the Schur complement):




X11 X12 X13

X21 X22 0

X12 0 X33




−1

=




I 0

−X−1
22 X21 0

0 I




[
X11 −X12X

−1
22 X21 X13

X31 X33

]−1 [
I −X12X

−1
22 0

0 0 I

]
+




0 0 0

0 X−1
22 0

0 0 0


 .

For this relation to be useful, the quantity

||X−1
22 ||2

must not be excessively large. Extensive numerical experiments indicate
that in the context of boundary integral equations it is not. However, this
has not been proved.

Numerical examples

The algorithm was implemented in Matlab (using mex-programs for the
skeletonization).

The experiments were run on a Pentium IV with a 2.8Ghz processor and
512 Mb of RAM.

Example 1

A smooth contour. Its length is roughly 15 and its
horizontal width is 2.

Nstart Nfinal ttot tsolve Eactual Eres Epot ctop σmin M

800 335 1.2 0.01 4.0e-09 3.4e-9 5.6e-10 1.9e+2 1.5e-2 4250

1600 368 4.2 0.02 1.1e-09 2.4e-9 4.4e-10 3.6e+2 1.4e-2 6627

3200 369 8.4 0.05 — 2.7e-9 6.4e-10 3.6e+2 1.4e-2 8987

6400 369 9.0 0.07 — 3.3e-9 1.6e-10 8.1e+2 1.4e-2 13301

12800 369 13 0.12 — 2.6e-9 6.6e-10 1.6e+3 1.4e-2 21991

25600 370 16 0.24 — 3.8e-9 2.7e-10 1.6e+3 1.4e-2 39970

51200 371 35 0.49 — 2.9e-9 4.9e-10 2.0e+3 — 76346

102400 375 90 0.98 — 1.3e-9 — 1.2e+4 — 151571

Computational results for the double layer potential
associated with an exterior Laplace Dirichlet problem.

The points left after two rounds of compression. The crosses
mark the boundary points between adjacent clusters.

k Nstart Nfinal ttot tsolve Eres Epot σmin M

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 7.5e+00 1.7e-08 1.4e-08 3.3e-01 350984

1264 51200 2864 (1.5e+03) (2.3e+02) 9.5e-09 — — 835847

Computational results for an exterior Helmholtz
Dirichlet problem discretized with 10th order accurate
quadrature. The Helmholtz parameter was chosen to
keep the number of discretization points per wave-
length constant at roughly 45 points per wavelength
(resulting in a quadrature error about 10−12).

Example 2

(a) (b)

(a) A rippled contour. (b) A close-up of the area
marked by a dashed rectangle in (a). The horizon-
tal axis of the contour has length 1 and the number
of ripples change between the different experiments to
keep a constant ratio of 80 discretization nodes per
wavelength.

Nstart Nfinal ttot tsolve Eactual Eres Epot σmin M

400 160 2.4e-01 4.6e-03 2.3e-09 2.0e-09 1.2e-09 4.0e-02 954

800 214 4.7e-01 8.9e-03 2.3e-09 2.5e-09 2.8e-10 3.1e-02 2110

1600 286 7.5e+00 2.6e-02 1.9e-09 2.1e-09 9.8e-11 2.2e-02 4710

3200 361 1.1e+01 3.7e-02 — 1.4e-09 1.8e-10 1.8e-02 9781

6400 437 1.5e+01 7.2e-02 — 2.0e-09 1.3e-10 1.5e-02 20484

12800 508 2.1e+01 1.5e-01 — 1.6e-09 9.2e-11 1.4e-02 42307

25600 559 3.7e+01 2.9e-01 — 2.0e-09 1.3e-10 1.3e-02 86481

51200 599 8.0e+01 6.1e-01 — 1.8e-09 2.8e-10 — 177442

102400 634 1.9e+02 1.2e+00 — 1.4e-09 — — 365495

Computational results for the double layer potential asso-
ciated with an exterior Laplace Dirichlet problem on the
rippled contour.

k Nstart Nfinal ttot tsolve Eres Epot σmin M

7 400 224 2.9e+00 9.0e-03 6.9e-08 9.4e-07 7.9e-01 3241

15 800 320 7.7e+00 1.9e-02 7.4e-08 1.2e-07 7.9e-01 8233

29 1600 470 2.1e+01 4.6e-02 6.7e-08 8.1e-08 7.8e-01 20469

58 3200 704 6.1e+01 1.1e-01 5.2e-08 6.4e-08 8.0e-01 49854

115 6400 1122 1.4e+02 2.9e-01 4.8e-08 7.5e-08 8.0e-01 126576

230 12800 1900 (4.7e+02) (2.5e+01) 5.5e-08 7.5e-08 8.0e-01 341054

461 25600 3398 — — — — — 983061

Computational results for an exterior Helmholtz Dirichlet
problem on the rippled contour. The Helmholtz parameter
k was chosen to keep the number of discretization points per
wavelength constant at roughly 55 points per wavelength
(resulting in a quadrature error about 10−12).

Example 3

A smooth pentagram. Its diameter is 2.5 and its
length is roughly 8.3.

99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.

j pj nj γj tj ||C(j)||∞ ||B(j)||∞ ||D(j)||∞
1 128 50.00 0.76 15.50 1.12e+00 1.12e+00 4.20e-02

2 64 76.00 0.59 14.32 3.27e+01 3.27e+01 1.75e+00

3 32 89.72 0.60 8.94 1.63e+01 1.62e+01 9.28e-01

4 16 107.00 0.64 6.27 9.09e+00 9.17e+00 2.41e+00

5 8 138.00 0.72 5.97 7.32e+00 7.31e+00 3.64e+00

6 4 199.50 0.80 7.76 3.22e+00 3.23e+00 3.86e+00

Interior Helmholtz Dirichlet problem on a smooth pentagram for the
case N = 6 400, k = 100.011027569 · · · and σmin = 0.00001366 · · · .
For each level j, the table shows the number of clusters pj on that
level, the average size of a cluster nj , the compression ratio γj , the time
required for the factorization tj and the size of the matrices B(j), C(j)

and D(j) in the maximum norm. For this computation, Eres = 2.8·10−10

and Epot = 3.3 · 10−5.

Example 4

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

6

7

Contour: ttot Nstart Nfinal M

Rippled dumb-bell 37s 25 600 559 86Mb

Star-fish lattice 172s 25 600 1202 210Mb

Test results for two experiments concerning the matrix obtained
by discretizing a double layer Laplace Dirichlet problem.

For the lattice problem, the computational complexity turns
out to be O(N3/2).

3.5 4 4.5 5 5.5 6

3

3.5

4

4.5

5

(a)

3.5 4 4.5 5 5.5 6

3

3.5

4

4.5

5

(b)

Fig. (a) shows a close-up of the star-fish lattice. Fig. (b)
shows the nodes remaining after the interaction between the
cluster formed by the points inside the parallelogram and the
remainder of the contour has been compressed.

Summary

We have presented an O(n log n) direct solver for contour integral
equations with non-oscillatory (or moderately oscillatory) kernels.

Work in progress:

• Applications of the scheme.

• Computing standard factorizations (SVD) of a dense matrix.

• Integral equations defined on surfaces rather than curves.

• Highly oscillatory problems.

Mini-lecture on factorizations of low-rank matrices

Suppose that A is an m× n matrix of rank k.

By definition, there exist matrices B and C such that

A = B

C

m× n m× k k × n

Such decompositions are useful for:

• storing A,

• applying A cheaply to a vector or a matrix,

• gaining heuristic understanding.

Not all factorizations are created equal.

The least equal is the Singular Value Decomposition (SVD),

A = U

D V t

m× n m× k k × k k × n

• U and V have orthonormal columns, i.e. U tU = V tV = Ik,

• D is diagonal,

• D has (by definition) the same spectral properties as A,

• if A does not have rank k, then the rank-k SVD is the optimal rank-k
approximation.

Defying the many advantages of the SVD, let us try something different.

If the top left k × k submatrix A11 of A is non-singular, then

A11 A12

A21 A22

=

I

A21A
−1
11

A11 I A−1
11 A12

m× n m× k k × k k × n

This “SVD-like” decomposition preserves the geometry of A in the sense
that the middle factor is a sub-matrix of A.

However, it is useless if A11 is singular or ill-conditioned.

To overcome the potential problems of ill-conditioning, let us consider a
pivoted factorization:

PL APR =
S

I Ã I T

m× n m× k k × k k × n

where

• PL and PR are permutation matrices,

• Ã is a sub-matrix of PLAPR.

(1) PL APR
=

S

I Ã I T

m× n m× k k × k k × n

There exists an algorithm that computes a factorization of the
form (1) such that

• S and T are moderate in size.

• The spectrum of Ã approximates the spectrum of A.

The algorithm requires at most O(mn min(m,n)) arithmetic
operations; but typically requires only O(mnk).

The statement relies on results by M. Gu and S.C. Eisenstat (1996).

Comparison

SVD

A
=

U
D V t

“Skeletonization”

A′
= I

S

Ã I T

• U and V are unitary

• σ(D) = σ(A)

• mixes coordinates

•

• S and T are small but not zero

• σ(Ã) ∼ σ(A)

• preserves the geometry of A

• cheaper to apply to a vector

The skeleton-factorization has one more advantage:

It can be computed through a Gram-Schmidt process.

The complexity of this algorithm is O(mnk) and the code is simple
(but must be implemented very carefully).

This cheat may in principle fail but we have never seen it happen.

So what about the claim that given an m× n matrix B of rank k, there
exists a well-conditioned m×m matrix L such that

L B =
B̂

0

where B̂ is a k ×m matrix consisting of k of the rows of B?

The m× n matrix B of rank k has the skeletonization

(1) PLBPR =


 I

S


 B̃ [I T] ⇔ PLB =


 I

S




[
B̃ B̃T

]
P t

R︸ ︷︷ ︸
=:B̂

.

The matrix B̂ thus constructed is necessarily formed by k of the rows of
B. Defining

L =


 I 0

−S I


PL,

we find that

LB =


 I 0

−S I


PLB =


 I 0

−S I





 I

S


 B̂ =


 B̂

0


 .

NB: This is not how the row operations are implemented in practise.

